Hot-Casting Large-Grain Perovskite Film for Efficient Solar Cells: Film Formation and Device Performance
Corresponding Author: Feng Hao
Nano-Micro Letters,
Vol. 12 (2020), Article Number: 156
Abstract
Organic–inorganic metal halide perovskite solar cells (PSCs) have recently been considered as one of the most competitive contenders to commercial silicon solar cells in the photovoltaic field. The deposition process of a perovskite film is one of the most critical factors affecting the quality of the film formation and the photovoltaic performance. A hot-casting technique has been widely implemented to deposit high-quality perovskite films with large grain size, uniform thickness, and preferred crystalline orientation. In this review, we first review the classical nucleation and crystal growth theory and discuss those factors affecting the hot-casted perovskite film formation. Meanwhile, the effects of the deposition parameters such as temperature, thermal annealing, precursor chemistry, and atmosphere on the preparation of high-quality perovskite films and high-efficiency PSC devices are comprehensively discussed. The excellent stability of hot-casted perovskite films and integration with scalable deposition technology are conducive to the commercialization of PSCs. Finally, some open questions and future perspectives on the maturity of this technology toward the upscaling deposition of perovskite film for related optoelectronic devices are presented.
Highlights:
1 Recent advances of a hot-casting technique used to deposit high-quality perovskite films are reviewed.
2 Perovskite films with large grain size, uniform thickness, and preferred crystalline orientation are deposited.
3 Future perspectives on the upscaling of perovskite solar cell are described.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
- F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014). https://doi.org/10.1021/ja5033259
- F. Hao, C.C. Stoumpos, P.J. Guo, N.J. Zhou, T.J. Marks, R.P.H. Chang, M.G. Kanatzidis, Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445–11452 (2015). https://doi.org/10.1021/jacs.5b06658
- F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
- C.B. Li, A.L. Wang, L.S. Xie, X.Y. Deng, K.J. Liao, J.A. Yang, T.S. Li, F. Hao, Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J. Mater. Chem. A 7, 24150–24163 (2019). https://doi.org/10.1039/c9ta08130e
- L.S. Xie, J.W. Wang, K.J. Liao, J.A. Yang, A.L. Wang et al., Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells. J. Mater. Chem. A 7, 18626–18633 (2019). https://doi.org/10.1039/c9ta06317j
- X. Li, M.I. Dar, C.Y. Yi, J.S. Luo, M. Tschumi et al., Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nat. Chem. 7, 703–711 (2015). https://doi.org/10.1038/nchem.2324
- M.D. Xiao, F.Z. Huang, W.C. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014). https://doi.org/10.1002/anie.201405334
- H.C. Liao, P.J. Guo, C.P. Hsu, M. Lin, B.H. Wang et al., Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation. Adv. Energy Mater. 7, 1601660 (2017). https://doi.org/10.1002/aenm.201601660
- H.B. Zhang, H. Chen, C.C. Stoumpos, J. Ren, Q.Z. Hou et al., Thiazole-induced surface passivation and recrystallization of CH3NH3PbI3 films for perovskite solar cells with ultrahigh fill factors. ACS Appl. Mater. Interfaces 10, 42436–42443 (2018). https://doi.org/10.1021/acsami.8b16124
- W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
- J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, N.G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
- C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a(2/1)-step spin-coating process. J. Mater. Chem. A 2, 15897–15903 (2014). https://doi.org/10.1039/c4ta03674c
- Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014). https://doi.org/10.1021/ja411509g
- C.M.M. Soe, W.Y. Nie, C.C. Stoumpos, H. Tsai, J.C. Blancon et al., Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high-efficiency solar cells. Adv. Energy Mater. 8, 1700979 (2018). https://doi.org/10.1002/aenm.201700979
- Y.N. Chen, Y. Sun, J.J. Peng, W. Zhang, X.J. Su et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7, 1700162 (2017). https://doi.org/10.1002/aenm.201700162
- W.Y. Nie, H.H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). https://doi.org/10.1126/science.aaa0472
- C.Y. Chang, Y.C. Huang, C.S. Tsao, W.F. Su, Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering. ACS Appl. Mater. Interfaces 8, 26712–26721 (2016). https://doi.org/10.1021/acsami.6b07468
- N. Faibut, P. Kamlangwan, W. Jarernboon, P. Klangtakai, V. Harnchana, V. Amornkitbamrung, CH3NH3PbI3thin films prepared by hot-casting technique in the air: growth mechanism, trap states and relating solar cells. Jpn. J. Appl. Phys. 58, 8–17 (2019). https://doi.org/10.7567/1347-4065/ab2535
- J.J. van Franeker, K.H. Hendriks, B.J. Bruijnaers, M. Verhoeven, M.M. Wienk, R.A.J. Janssen, Monitoring thermal annealing of perovskite solar cells with in situ photoluminescence. Adv. Energy Mater. 7, 1601822 (2017). https://doi.org/10.1002/aenm.201601822
- C.C. Stoumpos, C.M.M. Soe, H. Tsai, W.Y. Nie, J.C. Blancon et al., High members of the 2D ruddlesden-popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017). https://doi.org/10.1016/j.chempr.2017.02.004
- Y. Lin, Y. Fang, J. Zhao, Y. Shao, S.J. Stuard et al., Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019). https://doi.org/10.1038/s41467-019-08958-9
- R.T. Dong, C.Y. Lan, X.W. Xu, X.G. Liang, X.Y. Hu et al., Novel series of quasi-2D Ruddlesden–Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces 10, 19019–19026 (2018). https://doi.org/10.1021/acsami.8b03517
- Z.A. Peng, X.G. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002). https://doi.org/10.1021/ja0173167
- E.E. Finney, R.G. Finke, Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J. Colloid Interface Sci. 317, 351–374 (2008). https://doi.org/10.1016/j.jcis.2007.05.092
- C.D. Donega, P. Liljeroth, D. Vanmaekelbergh, Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005). https://doi.org/10.1002/smll.200500239
- V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of mono-dispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950). https://doi.org/10.1021/ja01167a001
- J.A. Blackman, A. Wilding, Scaling theory of island growth in thin-films. EuroPhys. Lett. 16, 115–120 (1991). https://doi.org/10.1209/0295-5075/16/1/020
- H.Z. Yu, C.V. Thompson, Grain growth and complex stress evolution during Volmer–Weber growth of polycrystalline thin films. Acta Mater. 67, 189–198 (2014). https://doi.org/10.1016/j.actamat.2013.12.031
- A. Toramaru, Model of nucleation and growth of crystals in cooling magmas. Contrib. Mineral. Petrol. 108, 106–117 (1991). https://doi.org/10.1007/bf00307330
- C. Friesen, C.V. Thompson, Reversible stress relaxation during precoalescence interruptions of Volmer–Weber thin film growth. Phys. Rev. Lett. 89, 126103 (2002). https://doi.org/10.1103/PhysRevLett.89.126103
- C. Liu, Y. Yang, X. Xia, Y. Ding, Z. Arain et al., Soft template-controlled growth of high-quality CsPbI3 films for efficient and stable solar cells. Adv. Energy Mater. 10, 1903751 (2020). https://doi.org/10.1002/aenm.201903751
- Y. Ding, I.S. Yang, Z.Q. Li, X. Xia, W.I. Lee et al., Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications. Prog. Mater. Sci. 109, 100620 (2020). https://doi.org/10.1016/j.pmatsci.2019.100620
- M. Anaya, J.F. Galisteo-Lopez, M.E. Calvo, C. Lopez, H. Miguez, Photophysical analysis of the formation of organic-inorganic trihalide perovskite films: identification and characterization of crystal nucleation and growth. J. Phys. Chem. C 120, 3071–3076 (2016). https://doi.org/10.1021/acs.jpcc.6b00398
- Y.C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, H.G. Yang, Thermal-induced Volmer–Weber growth behavior for planar heterojunction perovskites solar cells. Chem. Mater. 27, 5116–5121 (2015). https://doi.org/10.1021/acs.chemmater.5b01924
- C.Y. Xue, Y.T. Shi, C.Y. Zhang, Y.P. Lv, Y.L. Feng et al., Favorable growth of well-crystallized layered hybrid perovskite by combination of thermal and solvent assistance. J. Power Sources 422, 156–162 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.037
- N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: dependence of photovoltaic performance on morphology evolution. Thin Solid Films 660, 65–74 (2018). https://doi.org/10.1016/j.tsf.2018.03.038
- S. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba, A. Abate, Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Adv. Energy Mater. 8, 1802060 (2018). https://doi.org/10.1002/aenm.201802060
- S. Sanchez, X. Hua, N. Phung, U. Steiner, A. Abate, Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1702915 (2018). https://doi.org/10.1002/aenm.201702915
- X.L. Li, L.H. Li, Z.H. Ma, J.L. Huang, F.Z. Ren, Low-cost synthesis, fluorescent properties, growth mechanism and structure of CH3NH3PbI3 with millimeter grains. Optik 142, 293–300 (2017). https://doi.org/10.1016/j.ijleo.2017.05.107
- D.N. Feria, C.Y. Chang, K.P.O. Mahesh, C.L. Hsu, Y.C. Chao, Perovskite solar cells based on a perovskite film with improved film coverage. Synthetic Met. 260, 116283 (2020). https://doi.org/10.1016/j.synthmet.2019.116283
- A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Gratzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014). https://doi.org/10.1002/adfm.201304022
- S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221–9225 (2014). https://doi.org/10.1039/c4ta00435c
- H. Tsai, W.Y. Nie, Y.H. Lin, J.C. Blancon, S. Tretiak et al., Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Adv. Energy Mater. 7, 1602159 (2017). https://doi.org/10.1002/aenm.201602159
- Y.H. Seo, E.C. Kim, S.P. Cho, S.S. Kim, S.I. Na, High-performance planar perovskite solar cells: influence of solvent upon performance. Appl. Mater. Today 9, 598–604 (2017). https://doi.org/10.1016/j.apmt.2017.11.003
- Z. Arain, C. Liu, Y. Yang, M. Mateen, Y.K. Ren et al., Elucidating the dynamics of solvent engineering for perovskite solar cells. Sci. China-Mater. 62, 161–172 (2019). https://doi.org/10.1007/s40843-018-9336-1
- B. Li, D. Binks, G.Z. Cao, J.J. Tian, Engineering halide perovskite crystals through precursor chemistry. Small 15, 1903613 (2019). https://doi.org/10.1002/smll.201903613
- Z.H. Liu, J.N. Hu, H.Y. Jiao, L. Li, G.H.J. Zheng et al., Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells. Adv. Mater. 29, 1606774 (2017). https://doi.org/10.1002/adma.201606774
- C.H. Chiang, J.W. Lin, C.G. Wu, One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. J. Mater. Chem. A 4, 13525–13533 (2016). https://doi.org/10.1039/c6ta05209f
- K.J. Liao, J.A. Yang, C.B. Li, T.S. Li, F. Hao, Off-stoichiometric methylammonium iodide passivated large-grain perovskite film in ambient air for efficient inverted solar cells. ACS Appl. Mater. Interfaces 11, 39882–39889 (2019). https://doi.org/10.1021/acsami.9b12829
- J.H. Chen, L.J. Zuo, Y.Z. Zhang, X.M. Lian, W.F. Fu et al., High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater. 8, 1800438 (2018). https://doi.org/10.1002/aenm.201800438
- T.H. Liu, Y.Y. Zhou, Q. Hu, K. Chen, Y.F. Zhang et al., Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Sci. China-Mater. 60, 608–616 (2017). https://doi.org/10.1007/s40843-017-9044-y
- S.W. Wang, L.J. Wang, L. Zhang, L. Chang, L. Wang, J.L. Wang, Construction of high performance CH3NH3PbI3-based solar cells by hot-casting technique. Sol. Energy Mater. Sol. Cells 163, 120–124 (2017). https://doi.org/10.1016/j.solmat.2017.01.009
- M.A. Afroz, R.K. Gupta, R. Garai, M. Hossain, S.P. Tripathi, P.K. Iyer, Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast perovskite-based solar cells. Org. Electron. 74, 172–178 (2019). https://doi.org/10.1016/j.orgel.2019.07.007
- G.S. Shin, W.G. Choi, S. Na, F.P. Gokdemir, T. Moon, Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155–160 (2018). https://doi.org/10.1007/s13391-018-0042-1
- L.F. Chao, Y.D. Xia, B.X. Li, G.C. Xing, Y.H. Chen, W. Huang, Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5, 995–1006 (2019). https://doi.org/10.1016/j.chempr.2019.02.025
- Y. Ding, J. Chen, H. Chen, Y.M. Yang, J. Xu, J.X. Yao, Atmosphere dependent gas-solid reaction for high-quality MAPbBr 3 perovskite solar cells. Appl. Surf. Sci. 510, 145356 (2020). https://doi.org/10.1016/j.apsusc.2020.145356
- J.A. Christians, P.A.M. Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015). https://doi.org/10.1021/ja511132a
- Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, Y.B. Cheng, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015). https://doi.org/10.1039/c5ta00358j
- I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
- K.A. Bush, A.F. Palmstrom, Z.S.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
- B.L. Lei, V.O. Eze, T. Mori, High-performance CH3NH3PbI3 perovskite solar cells fabricated under ambient conditions with high relative humidity. Jpn. J. Appl. Phys. 54, 100305 (2015). https://doi.org/10.7567/jjap.54.100305
- M. Habibi, M.R. Ahmadian-Yazdi, M. Eslamian, Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells. J. Photonics Energy 7, 022003 (2017). https://doi.org/10.1117/1.Jpe.7.022003
- J.A. Aguiar, N.R. Alkurd, S. Wozny, M.K. Patel, M.J. Yang et al., In situ investigation of halide incorporation into perovskite solar cells. MRS Commun. 7, 575–582 (2017). https://doi.org/10.1557/mrc.2017.52
- K.Q. Huang, C.H. Wang, C.J. Zhang, S.C. Tong, H.Y. Li et al., Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Org. Electron. 55, 140–145 (2018). https://doi.org/10.1016/j.orgel.2018.01.029
- J.A. Yang, T.X. Qin, L.S. Xie, K.J. Liao, T.S. Li, F. Hao, Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. J. Mater. Chem. C 7, 10724–10742 (2019). https://doi.org/10.1039/c9tc03490k
- C.B. Li, A.L. Wang, L.S. Xie, X.Y. Deng, K.J. Liao, J.A. Yang, Y. Xiang, F. Hao, Secondary lateral growth of MAPbI3 grains for the fabrication of efficient perovskite solar cells. J. Mater. Chem. C 8, 3217–3225 (2020). https://doi.org/10.1039/c9tc06293a
- G. Wang, C. Liu, W. Kong, H. Chen, D. Li et al., Liberating researchers from the glovebox: a universal thermal radiation protocol toward efficient fully air-processed perovskite solar cells. Sol. RRL 3, 1800324 (2019). https://doi.org/10.1002/solr.201800324
- Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng et al., Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 9, 5302 (2018). https://doi.org/10.1038/s41467-018-07440-2
- Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng et al., A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30, 1707314 (2018). https://doi.org/10.1002/adma.201707314
- Z. Yu, L. Zhang, S. Tian, F. Zhang, B. Zhang et al., Hot-substrate deposition of hole- and electron-transport layers for enhanced performance in perovskite solar cells. Adv. Energy Mater. 8, 1701659 (2018). https://doi.org/10.1002/aenm.201701659
- A. Wang, Z. Cao, J. Wang, S. Wang, C. Li et al., Vacancy defect modulation in hot-casted NiOx film for efficient inverted planar perovskite solar cells. J. Energy Chem. 48, 426–434 (2020). https://doi.org/10.1016/j.jechem.2020.02.034
- S. Bag, M.F. Durstock, Large perovskite grain growth in low-temperature solution-processed planar p–i–n solar cells by sodium addition. ACS Appl. Mater. Interfaces 8, 5053–5057 (2016). https://doi.org/10.1021/acsami.5b11494
- J.W. Lee, H.S. Kim, N.G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
- E. Horvath, M. Spina, Z. Szekrenyes, K. Kamaras, R. Gaal, D. Gachet, L. Forro, Nanowires of methylammonium lead iodide CH3NH3Pbl3 prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014). https://doi.org/10.1021/nl5020684
- S. Wang, Z.R. Ma, B.B. Liu, W.C. Wu, Y. Zhu, R.X. Ma, C.Y. Wang, High-performance perovskite solar cells with large grain-size obtained by using the Lewis acid–base adduct of thiourea. Sol. RRL 2, 1800034 (2018). https://doi.org/10.1002/solr.201800034
- F.Z. Huang, A.R. Pascoe, W.Q. Wu, Z.L. Ku, Y. Peng et al., Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells. Adv. Mater. 29, 1601715 (2017). https://doi.org/10.1002/adma.201601715
- A.R. Pascoe, S. Meyer, W.C. Huang, W. Li, I. Benesperi et al., Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphology. Adv. Funct. Mater. 26, 1278–1285 (2016). https://doi.org/10.1002/adfm.201504190
- L.A. Muscarella, E.M. Hutter, S. Sanchez, C.D. Dieleman, T.J. Savenije et al., Crystal orientation and grain size: do they determine optoelectronic properties of MAPbI3 perovskite? J. Phys. Chem. Lett. 10, 6010–6018 (2019). https://doi.org/10.1021/acs.jpclett.9b02757
- A. Krishna, S. Gottis, M.K. Nazeeruddin, F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 29, 1806482 (2019). https://doi.org/10.1002/adfm.201806482
- S. Chen, G.Q. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29, 1605448 (2017). https://doi.org/10.1002/adma.201605448
- L.T. Dou, A.B. Wong, Y. Yu, M.L. Lai, N. Kornienko et al., Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015). https://doi.org/10.1126/science.aac7660
- L. Pedesseau, D. Sapori, B. Traore, R. Robles, H.H. Fang et al., Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016). https://doi.org/10.1021/acsnano.6b05944
- G.B. Wu, J.Y. Zhou, J.Q. Zhang, R. Meng, B.X. Wang et al., Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy 58, 706–714 (2019). https://doi.org/10.1016/j.nanoen.2019.02.002
- X. Zhang, R. Munir, Z. Xu, Y. Liu, H. Tsai et al., Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Adv. Mater. 30, 1707166 (2018). https://doi.org/10.1002/adma.201707166
- Z. Wang, X.D. Liu, Y.W. Lin, Y.J. Liao, Q. Wei et al., Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells. J. Mater. Chem. A 7, 2773–2779 (2019). https://doi.org/10.1039/c8ta09855g
- J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
- O. Granas, D. Vinichenko, E. Kaxiras, Establishing the limits of efficiency of perovskite solar cells from first principles modeling. Sci. Rep. 6, 36108 (2016). https://doi.org/10.1038/srep36108
- H.H. Tsai, W.Y. Nie, J.C. Blancon, C.C.S. Toumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016). https://doi.org/10.1038/nature18306
- B. Ghosh, B. Wu, X.T. Guo, P.C. Harikesh, R.A. John et al., Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions. Adv. Energy Mater. 8, 1802051 (2018). https://doi.org/10.1002/aenm.201802051
- W.Z. Li, J.L. Li, L.D. Wang, G.D. Niu, R. Gao, Y. Qiu, Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J. Mater. Chem. A 1, 11735–11740 (2013). https://doi.org/10.1039/c3ta12240a
- K.C. Hsiao, M.H. Jao, B.T. Li, T.H. Lin, S.H.C. Liao, M.C. Wu, W.F. Su, Enhancing efficiency and stability of hot casting p–i–n perovskite solar cell via dipolar ion passivation. ACS Appl. Mater. Interfaces 2, 4821–4832 (2019). https://doi.org/10.1021/acsaem.9b00486
- J.H. Heo, M.H. Lee, M.H. Jang, S.H. Im, Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016). https://doi.org/10.1039/c6ta06718b
- S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang et al., Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017). https://doi.org/10.1002/aenm.201700302
- J. Li, R. Munir, Y. Fan, T. Niu, Y. Liu et al., Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2, 1313–1330 (2018). https://doi.org/10.1016/j.joule.2018.04.011
- Y.Y. Dang, J. Wei, X.L. Liu, X. Wang, K. Xu et al., Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustain. Energy Fuels 2, 2237–2243 (2018). https://doi.org/10.1039/c8se00213d
- W. Zhao, X. Gan, L. Ke, L. Guo, H. Liu, 2D multilayered perovskites based on 4-chlorophenylethylamine for solar cell application. Sol. Energy 196, 1–9 (2020). https://doi.org/10.1016/j.solener.2019.12.021
- X. Zhu, Z. Xu, S. Zuo, J. Feng, Z. Wang et al., Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability. Energy Environ. Sci. 11, 3349–3357 (2018). https://doi.org/10.1039/c8ee02284d
- Y. Zhang, P. Wang, M.C. Tang, D. Barrit, W. Ke et al., Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141, 2684–2694 (2019). https://doi.org/10.1021/jacs.8b13104
- Y. Zhou, X. Yin, Q. Luo, X. Zhao, D. Zhou et al., Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes. ACS Appl. Mater. Interfaces 10, 31384–31393 (2018). https://doi.org/10.1021/acsami.8b10253
- Q. Zhang, H. Nan, Y.Y. Zhou, Y.C. Gu, M.Q. Tai et al., In situ growth of alpha-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. J. Mater. Chem. C 7, 6795–6804 (2019). https://doi.org/10.1039/c9tc01012b
- Q. Luo, H. Ma, F. Hao, Q.Z. Hou, J. Ren et al., Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27, 1703068 (2017). https://doi.org/10.1002/adfm.201703068
- Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang et al., Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018). https://doi.org/10.1021/acs.jpclett.7b02679
- L. Li, N. Zhou, Q. Chen, Q. Shang, Q. Zhang, X. Wang, H. Zhou, Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics. J. Phys. Chem. Lett. 9, 1124–1132 (2018). https://doi.org/10.1021/acs.jpclett.7b03294
- Y. Fan, J. Fang, X. Chang, M.C. Tang, D. Barrit et al., Scalable ambient fabrication of high-performance CsPbI2Br solar cells. Joule 3, 2485–2502 (2019). https://doi.org/10.1016/j.joule.2019.07.015
- D.B. Kim, S. Lee, C.H. Jang, J.H. Park, A.Y. Lee, M.H. Song, Uniform and large-area cesium-based quasi-2D perovskite light-emitting diodes using hot-casting method. Adv. Mater. Interfaces 7, 1902158 (2020). https://doi.org/10.1002/admi.201902158
- A.T. Mallajosyula, K. Fernando, S. Bhatt, A. Singh, B.W. Alphenaar et al., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl. Mater. Today 3, 96–102 (2016). https://doi.org/10.1016/j.apmt.2016.03.002
- Y. Deng, Q. Wang, Y. Yuan, J. Huang, Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz. 2, 578–583 (2015). https://doi.org/10.1039/c5mh00126a
- Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018). https://doi.org/10.1038/s41560-018-0153-9
- J.E. Kim, S.S. Kim, C. Zuo, M. Gao, D. Vak, D.Y. Kim, Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Adv. Funct. Mater. 29, 1809194 (2019). https://doi.org/10.1002/adfm.201809194
References
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338, 643–647 (2012). https://doi.org/10.1126/science.1228604
F. Hao, C.C. Stoumpos, R.P.H. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014). https://doi.org/10.1021/ja5033259
F. Hao, C.C. Stoumpos, P.J. Guo, N.J. Zhou, T.J. Marks, R.P.H. Chang, M.G. Kanatzidis, Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells. J. Am. Chem. Soc. 137, 11445–11452 (2015). https://doi.org/10.1021/jacs.5b06658
F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014). https://doi.org/10.1038/nphoton.2014.82
C.B. Li, A.L. Wang, L.S. Xie, X.Y. Deng, K.J. Liao, J.A. Yang, T.S. Li, F. Hao, Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J. Mater. Chem. A 7, 24150–24163 (2019). https://doi.org/10.1039/c9ta08130e
L.S. Xie, J.W. Wang, K.J. Liao, J.A. Yang, A.L. Wang et al., Low-cost coenzyme Q10 as an efficient electron transport layer for inverted perovskite solar cells. J. Mater. Chem. A 7, 18626–18633 (2019). https://doi.org/10.1039/c9ta06317j
X. Li, M.I. Dar, C.Y. Yi, J.S. Luo, M. Tschumi et al., Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid omega-ammonium chlorides. Nat. Chem. 7, 703–711 (2015). https://doi.org/10.1038/nchem.2324
M.D. Xiao, F.Z. Huang, W.C. Huang, Y. Dkhissi, Y. Zhu et al., A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells. Angew. Chem. Int. Ed. 53, 9898–9903 (2014). https://doi.org/10.1002/anie.201405334
H.C. Liao, P.J. Guo, C.P. Hsu, M. Lin, B.H. Wang et al., Enhanced efficiency of hot-cast large-area planar perovskite solar cells/modules having controlled chloride incorporation. Adv. Energy Mater. 7, 1601660 (2017). https://doi.org/10.1002/aenm.201601660
H.B. Zhang, H. Chen, C.C. Stoumpos, J. Ren, Q.Z. Hou et al., Thiazole-induced surface passivation and recrystallization of CH3NH3PbI3 films for perovskite solar cells with ultrahigh fill factors. ACS Appl. Mater. Interfaces 10, 42436–42443 (2018). https://doi.org/10.1021/acsami.8b16124
W.S. Yang, J.H. Noh, N.J. Jeon, Y.C. Kim, S. Ryu, J. Seo, S.I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 348, 1234–1237 (2015). https://doi.org/10.1126/science.aaa9272
J.H. Im, I.H. Jang, N. Pellet, M. Gratzel, N.G. Park, Growth of CH3NH3PbI3 cuboids with controlled size for high-efficiency perovskite solar cells. Nat. Nanotechnol. 9, 927–932 (2014). https://doi.org/10.1038/nnano.2014.181
C.H. Chiang, Z.L. Tseng, C.G. Wu, Planar heterojunction perovskite/PC71BM solar cells with enhanced open-circuit voltage via a(2/1)-step spin-coating process. J. Mater. Chem. A 2, 15897–15903 (2014). https://doi.org/10.1039/c4ta03674c
Q. Chen, H. Zhou, Z. Hong, S. Luo, H.S. Duan et al., Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136, 622–625 (2014). https://doi.org/10.1021/ja411509g
C.M.M. Soe, W.Y. Nie, C.C. Stoumpos, H. Tsai, J.C. Blancon et al., Understanding film formation morphology and orientation in high member 2D Ruddlesden–Popper perovskites for high-efficiency solar cells. Adv. Energy Mater. 8, 1700979 (2018). https://doi.org/10.1002/aenm.201700979
Y.N. Chen, Y. Sun, J.J. Peng, W. Zhang, X.J. Su et al., Tailoring organic cation of 2D air-stable organometal halide perovskites for highly efficient planar solar cells. Adv. Energy Mater. 7, 1700162 (2017). https://doi.org/10.1002/aenm.201700162
W.Y. Nie, H.H. Tsai, R. Asadpour, J.C. Blancon, A.J. Neukirch et al., High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 347, 522–525 (2015). https://doi.org/10.1126/science.aaa0472
C.Y. Chang, Y.C. Huang, C.S. Tsao, W.F. Su, Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering. ACS Appl. Mater. Interfaces 8, 26712–26721 (2016). https://doi.org/10.1021/acsami.6b07468
N. Faibut, P. Kamlangwan, W. Jarernboon, P. Klangtakai, V. Harnchana, V. Amornkitbamrung, CH3NH3PbI3thin films prepared by hot-casting technique in the air: growth mechanism, trap states and relating solar cells. Jpn. J. Appl. Phys. 58, 8–17 (2019). https://doi.org/10.7567/1347-4065/ab2535
J.J. van Franeker, K.H. Hendriks, B.J. Bruijnaers, M. Verhoeven, M.M. Wienk, R.A.J. Janssen, Monitoring thermal annealing of perovskite solar cells with in situ photoluminescence. Adv. Energy Mater. 7, 1601822 (2017). https://doi.org/10.1002/aenm.201601822
C.C. Stoumpos, C.M.M. Soe, H. Tsai, W.Y. Nie, J.C. Blancon et al., High members of the 2D ruddlesden-popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2, 427–440 (2017). https://doi.org/10.1016/j.chempr.2017.02.004
Y. Lin, Y. Fang, J. Zhao, Y. Shao, S.J. Stuard et al., Unveiling the operation mechanism of layered perovskite solar cells. Nat. Commun. 10, 1008 (2019). https://doi.org/10.1038/s41467-019-08958-9
R.T. Dong, C.Y. Lan, X.W. Xu, X.G. Liang, X.Y. Hu et al., Novel series of quasi-2D Ruddlesden–Popper perovskites based on short-chained spacer cation for enhanced photodetection. ACS Appl. Mater. Interfaces 10, 19019–19026 (2018). https://doi.org/10.1021/acsami.8b03517
Z.A. Peng, X.G. Peng, Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. J. Am. Chem. Soc. 124, 3343–3353 (2002). https://doi.org/10.1021/ja0173167
E.E. Finney, R.G. Finke, Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J. Colloid Interface Sci. 317, 351–374 (2008). https://doi.org/10.1016/j.jcis.2007.05.092
C.D. Donega, P. Liljeroth, D. Vanmaekelbergh, Physicochemical evaluation of the hot-injection method, a synthesis route for monodisperse nanocrystals. Small 1, 1152–1162 (2005). https://doi.org/10.1002/smll.200500239
V.K. LaMer, R.H. Dinegar, Theory, production and mechanism of formation of mono-dispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950). https://doi.org/10.1021/ja01167a001
J.A. Blackman, A. Wilding, Scaling theory of island growth in thin-films. EuroPhys. Lett. 16, 115–120 (1991). https://doi.org/10.1209/0295-5075/16/1/020
H.Z. Yu, C.V. Thompson, Grain growth and complex stress evolution during Volmer–Weber growth of polycrystalline thin films. Acta Mater. 67, 189–198 (2014). https://doi.org/10.1016/j.actamat.2013.12.031
A. Toramaru, Model of nucleation and growth of crystals in cooling magmas. Contrib. Mineral. Petrol. 108, 106–117 (1991). https://doi.org/10.1007/bf00307330
C. Friesen, C.V. Thompson, Reversible stress relaxation during precoalescence interruptions of Volmer–Weber thin film growth. Phys. Rev. Lett. 89, 126103 (2002). https://doi.org/10.1103/PhysRevLett.89.126103
C. Liu, Y. Yang, X. Xia, Y. Ding, Z. Arain et al., Soft template-controlled growth of high-quality CsPbI3 films for efficient and stable solar cells. Adv. Energy Mater. 10, 1903751 (2020). https://doi.org/10.1002/aenm.201903751
Y. Ding, I.S. Yang, Z.Q. Li, X. Xia, W.I. Lee et al., Nanoporous TiO2 spheres with tailored textural properties: controllable synthesis, formation mechanism, and photochemical applications. Prog. Mater. Sci. 109, 100620 (2020). https://doi.org/10.1016/j.pmatsci.2019.100620
M. Anaya, J.F. Galisteo-Lopez, M.E. Calvo, C. Lopez, H. Miguez, Photophysical analysis of the formation of organic-inorganic trihalide perovskite films: identification and characterization of crystal nucleation and growth. J. Phys. Chem. C 120, 3071–3076 (2016). https://doi.org/10.1021/acs.jpcc.6b00398
Y.C. Zheng, S. Yang, X. Chen, Y. Chen, Y. Hou, H.G. Yang, Thermal-induced Volmer–Weber growth behavior for planar heterojunction perovskites solar cells. Chem. Mater. 27, 5116–5121 (2015). https://doi.org/10.1021/acs.chemmater.5b01924
C.Y. Xue, Y.T. Shi, C.Y. Zhang, Y.P. Lv, Y.L. Feng et al., Favorable growth of well-crystallized layered hybrid perovskite by combination of thermal and solvent assistance. J. Power Sources 422, 156–162 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.037
N.J. Zadeh, M.B. Zarandi, M.R. Nateghi, Effect of crystallization strategies on CH3NH3PbI3 perovskite layer deposited by spin coating method: dependence of photovoltaic performance on morphology evolution. Thin Solid Films 660, 65–74 (2018). https://doi.org/10.1016/j.tsf.2018.03.038
S. Sanchez, N. Christoph, B. Grobety, N. Phung, U. Steiner, M. Saliba, A. Abate, Efficient and stable inorganic perovskite solar cells manufactured by pulsed flash infrared annealing. Adv. Energy Mater. 8, 1802060 (2018). https://doi.org/10.1002/aenm.201802060
S. Sanchez, X. Hua, N. Phung, U. Steiner, A. Abate, Flash infrared annealing for antisolvent-free highly efficient perovskite solar cells. Adv. Energy Mater. 8, 1702915 (2018). https://doi.org/10.1002/aenm.201702915
X.L. Li, L.H. Li, Z.H. Ma, J.L. Huang, F.Z. Ren, Low-cost synthesis, fluorescent properties, growth mechanism and structure of CH3NH3PbI3 with millimeter grains. Optik 142, 293–300 (2017). https://doi.org/10.1016/j.ijleo.2017.05.107
D.N. Feria, C.Y. Chang, K.P.O. Mahesh, C.L. Hsu, Y.C. Chao, Perovskite solar cells based on a perovskite film with improved film coverage. Synthetic Met. 260, 116283 (2020). https://doi.org/10.1016/j.synthmet.2019.116283
A. Dualeh, N. Tetreault, T. Moehl, P. Gao, M.K. Nazeeruddin, M. Gratzel, Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24, 3250–3258 (2014). https://doi.org/10.1002/adfm.201304022
S.A. Kulkarni, T. Baikie, P.P. Boix, N. Yantara, N. Mathews, S. Mhaisalkar, Band-gap tuning of lead halide perovskites using a sequential deposition process. J. Mater. Chem. A 2, 9221–9225 (2014). https://doi.org/10.1039/c4ta00435c
H. Tsai, W.Y. Nie, Y.H. Lin, J.C. Blancon, S. Tretiak et al., Effect of precursor solution aging on the crystallinity and photovoltaic performance of perovskite solar cells. Adv. Energy Mater. 7, 1602159 (2017). https://doi.org/10.1002/aenm.201602159
Y.H. Seo, E.C. Kim, S.P. Cho, S.S. Kim, S.I. Na, High-performance planar perovskite solar cells: influence of solvent upon performance. Appl. Mater. Today 9, 598–604 (2017). https://doi.org/10.1016/j.apmt.2017.11.003
Z. Arain, C. Liu, Y. Yang, M. Mateen, Y.K. Ren et al., Elucidating the dynamics of solvent engineering for perovskite solar cells. Sci. China-Mater. 62, 161–172 (2019). https://doi.org/10.1007/s40843-018-9336-1
B. Li, D. Binks, G.Z. Cao, J.J. Tian, Engineering halide perovskite crystals through precursor chemistry. Small 15, 1903613 (2019). https://doi.org/10.1002/smll.201903613
Z.H. Liu, J.N. Hu, H.Y. Jiao, L. Li, G.H.J. Zheng et al., Chemical reduction of intrinsic defects in thicker heterojunction planar perovskite solar cells. Adv. Mater. 29, 1606774 (2017). https://doi.org/10.1002/adma.201606774
C.H. Chiang, J.W. Lin, C.G. Wu, One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module. J. Mater. Chem. A 4, 13525–13533 (2016). https://doi.org/10.1039/c6ta05209f
K.J. Liao, J.A. Yang, C.B. Li, T.S. Li, F. Hao, Off-stoichiometric methylammonium iodide passivated large-grain perovskite film in ambient air for efficient inverted solar cells. ACS Appl. Mater. Interfaces 11, 39882–39889 (2019). https://doi.org/10.1021/acsami.9b12829
J.H. Chen, L.J. Zuo, Y.Z. Zhang, X.M. Lian, W.F. Fu et al., High-performance thickness insensitive perovskite solar cells with enhanced moisture stability. Adv. Energy Mater. 8, 1800438 (2018). https://doi.org/10.1002/aenm.201800438
T.H. Liu, Y.Y. Zhou, Q. Hu, K. Chen, Y.F. Zhang et al., Fabrication of compact and stable perovskite films with optimized precursor composition in the fast-growing procedure. Sci. China-Mater. 60, 608–616 (2017). https://doi.org/10.1007/s40843-017-9044-y
S.W. Wang, L.J. Wang, L. Zhang, L. Chang, L. Wang, J.L. Wang, Construction of high performance CH3NH3PbI3-based solar cells by hot-casting technique. Sol. Energy Mater. Sol. Cells 163, 120–124 (2017). https://doi.org/10.1016/j.solmat.2017.01.009
M.A. Afroz, R.K. Gupta, R. Garai, M. Hossain, S.P. Tripathi, P.K. Iyer, Crystallization and grain growth regulation through Lewis acid-base adduct formation in hot cast perovskite-based solar cells. Org. Electron. 74, 172–178 (2019). https://doi.org/10.1016/j.orgel.2019.07.007
G.S. Shin, W.G. Choi, S. Na, F.P. Gokdemir, T. Moon, Lead acetate based hybrid perovskite through hot casting for planar heterojunction solar cells. Electron. Mater. Lett. 14, 155–160 (2018). https://doi.org/10.1007/s13391-018-0042-1
L.F. Chao, Y.D. Xia, B.X. Li, G.C. Xing, Y.H. Chen, W. Huang, Room-temperature molten salt for facile fabrication of efficient and stable perovskite solar cells in ambient air. Chem 5, 995–1006 (2019). https://doi.org/10.1016/j.chempr.2019.02.025
Y. Ding, J. Chen, H. Chen, Y.M. Yang, J. Xu, J.X. Yao, Atmosphere dependent gas-solid reaction for high-quality MAPbBr 3 perovskite solar cells. Appl. Surf. Sci. 510, 145356 (2020). https://doi.org/10.1016/j.apsusc.2020.145356
J.A. Christians, P.A.M. Herrera, P.V. Kamat, Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015). https://doi.org/10.1021/ja511132a
Y. Han, S. Meyer, Y. Dkhissi, K. Weber, J.M. Pringle, U. Bach, L. Spiccia, Y.B. Cheng, Degradation observations of encapsulated planar CH3NH3PbI3 perovskite solar cells at high temperatures and humidity. J. Mater. Chem. A 3, 8139–8147 (2015). https://doi.org/10.1039/c5ta00358j
I.C. Smith, E.T. Hoke, D. Solis-Ibarra, M.D. McGehee, H.I. Karunadasa, A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014). https://doi.org/10.1002/anie.201406466
K.A. Bush, A.F. Palmstrom, Z.S.J. Yu, M. Boccard, R. Cheacharoen et al., 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017). https://doi.org/10.1038/nenergy.2017.9
B.L. Lei, V.O. Eze, T. Mori, High-performance CH3NH3PbI3 perovskite solar cells fabricated under ambient conditions with high relative humidity. Jpn. J. Appl. Phys. 54, 100305 (2015). https://doi.org/10.7567/jjap.54.100305
M. Habibi, M.R. Ahmadian-Yazdi, M. Eslamian, Optimization of spray coating for the fabrication of sequentially deposited planar perovskite solar cells. J. Photonics Energy 7, 022003 (2017). https://doi.org/10.1117/1.Jpe.7.022003
J.A. Aguiar, N.R. Alkurd, S. Wozny, M.K. Patel, M.J. Yang et al., In situ investigation of halide incorporation into perovskite solar cells. MRS Commun. 7, 575–582 (2017). https://doi.org/10.1557/mrc.2017.52
K.Q. Huang, C.H. Wang, C.J. Zhang, S.C. Tong, H.Y. Li et al., Efficient and stable planar heterojunction perovskite solar cells fabricated under ambient conditions with high humidity. Org. Electron. 55, 140–145 (2018). https://doi.org/10.1016/j.orgel.2018.01.029
J.A. Yang, T.X. Qin, L.S. Xie, K.J. Liao, T.S. Li, F. Hao, Methylamine-induced defect-healing and cationic substitution: a new method for low-defect perovskite thin films and solar cells. J. Mater. Chem. C 7, 10724–10742 (2019). https://doi.org/10.1039/c9tc03490k
C.B. Li, A.L. Wang, L.S. Xie, X.Y. Deng, K.J. Liao, J.A. Yang, Y. Xiang, F. Hao, Secondary lateral growth of MAPbI3 grains for the fabrication of efficient perovskite solar cells. J. Mater. Chem. C 8, 3217–3225 (2020). https://doi.org/10.1039/c9tc06293a
G. Wang, C. Liu, W. Kong, H. Chen, D. Li et al., Liberating researchers from the glovebox: a universal thermal radiation protocol toward efficient fully air-processed perovskite solar cells. Sol. RRL 3, 1800324 (2019). https://doi.org/10.1002/solr.201800324
Y. Liu, Y. Zhang, Z. Yang, H. Ye, J. Feng et al., Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 9, 5302 (2018). https://doi.org/10.1038/s41467-018-07440-2
Y. Liu, Y. Zhang, K. Zhao, Z. Yang, J. Feng et al., A 1300 mm2 ultrahigh-performance digital imaging assembly using high-quality perovskite single crystals. Adv. Mater. 30, 1707314 (2018). https://doi.org/10.1002/adma.201707314
Z. Yu, L. Zhang, S. Tian, F. Zhang, B. Zhang et al., Hot-substrate deposition of hole- and electron-transport layers for enhanced performance in perovskite solar cells. Adv. Energy Mater. 8, 1701659 (2018). https://doi.org/10.1002/aenm.201701659
A. Wang, Z. Cao, J. Wang, S. Wang, C. Li et al., Vacancy defect modulation in hot-casted NiOx film for efficient inverted planar perovskite solar cells. J. Energy Chem. 48, 426–434 (2020). https://doi.org/10.1016/j.jechem.2020.02.034
S. Bag, M.F. Durstock, Large perovskite grain growth in low-temperature solution-processed planar p–i–n solar cells by sodium addition. ACS Appl. Mater. Interfaces 8, 5053–5057 (2016). https://doi.org/10.1021/acsami.5b11494
J.W. Lee, H.S. Kim, N.G. Park, Lewis acid-base adduct approach for high efficiency perovskite solar cells. Acc. Chem. Res. 49, 311–319 (2016). https://doi.org/10.1021/acs.accounts.5b00440
E. Horvath, M. Spina, Z. Szekrenyes, K. Kamaras, R. Gaal, D. Gachet, L. Forro, Nanowires of methylammonium lead iodide CH3NH3Pbl3 prepared by low temperature solution-mediated crystallization. Nano Lett. 14, 6761–6766 (2014). https://doi.org/10.1021/nl5020684
S. Wang, Z.R. Ma, B.B. Liu, W.C. Wu, Y. Zhu, R.X. Ma, C.Y. Wang, High-performance perovskite solar cells with large grain-size obtained by using the Lewis acid–base adduct of thiourea. Sol. RRL 2, 1800034 (2018). https://doi.org/10.1002/solr.201800034
F.Z. Huang, A.R. Pascoe, W.Q. Wu, Z.L. Ku, Y. Peng et al., Effect of the microstructure of the functional layers on the efficiency of perovskite solar cells. Adv. Mater. 29, 1601715 (2017). https://doi.org/10.1002/adma.201601715
A.R. Pascoe, S. Meyer, W.C. Huang, W. Li, I. Benesperi et al., Enhancing the optoelectronic performance of perovskite solar cells via a textured CH3NH3PbI3 morphology. Adv. Funct. Mater. 26, 1278–1285 (2016). https://doi.org/10.1002/adfm.201504190
L.A. Muscarella, E.M. Hutter, S. Sanchez, C.D. Dieleman, T.J. Savenije et al., Crystal orientation and grain size: do they determine optoelectronic properties of MAPbI3 perovskite? J. Phys. Chem. Lett. 10, 6010–6018 (2019). https://doi.org/10.1021/acs.jpclett.9b02757
A. Krishna, S. Gottis, M.K. Nazeeruddin, F. Sauvage, Mixed dimensional 2D/3D hybrid perovskite absorbers: the future of perovskite solar cells? Adv. Funct. Mater. 29, 1806482 (2019). https://doi.org/10.1002/adfm.201806482
S. Chen, G.Q. Shi, Two-dimensional materials for halide perovskite-based optoelectronic devices. Adv. Mater. 29, 1605448 (2017). https://doi.org/10.1002/adma.201605448
L.T. Dou, A.B. Wong, Y. Yu, M.L. Lai, N. Kornienko et al., Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015). https://doi.org/10.1126/science.aac7660
L. Pedesseau, D. Sapori, B. Traore, R. Robles, H.H. Fang et al., Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10, 9776–9786 (2016). https://doi.org/10.1021/acsnano.6b05944
G.B. Wu, J.Y. Zhou, J.Q. Zhang, R. Meng, B.X. Wang et al., Management of the crystallization in two-dimensional perovskite solar cells with enhanced efficiency within a wide temperature range and high stability. Nano Energy 58, 706–714 (2019). https://doi.org/10.1016/j.nanoen.2019.02.002
X. Zhang, R. Munir, Z. Xu, Y. Liu, H. Tsai et al., Phase transition control for high performance Ruddlesden–Popper perovskite solar cells. Adv. Mater. 30, 1707166 (2018). https://doi.org/10.1002/adma.201707166
Z. Wang, X.D. Liu, Y.W. Lin, Y.J. Liao, Q. Wei et al., Hot-substrate deposition of all-inorganic perovskite films for low-temperature processed high-efficiency solar cells. J. Mater. Chem. A 7, 2773–2779 (2019). https://doi.org/10.1039/c8ta09855g
J.P. Correa-Baena, M. Saliba, T. Buonassisi, M. Gratzel, A. Abate, W. Tress, A. Hagfeldt, Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017). https://doi.org/10.1126/science.aam6323
O. Granas, D. Vinichenko, E. Kaxiras, Establishing the limits of efficiency of perovskite solar cells from first principles modeling. Sci. Rep. 6, 36108 (2016). https://doi.org/10.1038/srep36108
H.H. Tsai, W.Y. Nie, J.C. Blancon, C.C.S. Toumpos, R. Asadpour et al., High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016). https://doi.org/10.1038/nature18306
B. Ghosh, B. Wu, X.T. Guo, P.C. Harikesh, R.A. John et al., Superior performance of silver bismuth iodide photovoltaics fabricated via dynamic hot-casting method under ambient conditions. Adv. Energy Mater. 8, 1802051 (2018). https://doi.org/10.1002/aenm.201802051
W.Z. Li, J.L. Li, L.D. Wang, G.D. Niu, R. Gao, Y. Qiu, Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance. J. Mater. Chem. A 1, 11735–11740 (2013). https://doi.org/10.1039/c3ta12240a
K.C. Hsiao, M.H. Jao, B.T. Li, T.H. Lin, S.H.C. Liao, M.C. Wu, W.F. Su, Enhancing efficiency and stability of hot casting p–i–n perovskite solar cell via dipolar ion passivation. ACS Appl. Mater. Interfaces 2, 4821–4832 (2019). https://doi.org/10.1021/acsaem.9b00486
J.H. Heo, M.H. Lee, M.H. Jang, S.H. Im, Highly efficient CH3NH3PbI3−xClx mixed halide perovskite solar cells prepared by re-dissolution and crystal grain growth via spray coating. J. Mater. Chem. A 4, 17636–17642 (2016). https://doi.org/10.1039/c6ta06718b
S. Tang, Y. Deng, X. Zheng, Y. Bai, Y. Fang et al., Composition engineering in doctor-blading of perovskite solar cells. Adv. Energy Mater. 7, 1700302 (2017). https://doi.org/10.1002/aenm.201700302
J. Li, R. Munir, Y. Fan, T. Niu, Y. Liu et al., Phase transition control for high-performance blade-coated perovskite solar cells. Joule 2, 1313–1330 (2018). https://doi.org/10.1016/j.joule.2018.04.011
Y.Y. Dang, J. Wei, X.L. Liu, X. Wang, K. Xu et al., Layered hybrid perovskite solar cells based on single-crystalline precursor solutions with superior reproducibility. Sustain. Energy Fuels 2, 2237–2243 (2018). https://doi.org/10.1039/c8se00213d
W. Zhao, X. Gan, L. Ke, L. Guo, H. Liu, 2D multilayered perovskites based on 4-chlorophenylethylamine for solar cell application. Sol. Energy 196, 1–9 (2020). https://doi.org/10.1016/j.solener.2019.12.021
X. Zhu, Z. Xu, S. Zuo, J. Feng, Z. Wang et al., Vapor-fumigation for record efficiency two-dimensional perovskite solar cells with superior stability. Energy Environ. Sci. 11, 3349–3357 (2018). https://doi.org/10.1039/c8ee02284d
Y. Zhang, P. Wang, M.C. Tang, D. Barrit, W. Ke et al., Dynamical transformation of two-dimensional perovskites with alternating cations in the interlayer space for high-performance photovoltaics. J. Am. Chem. Soc. 141, 2684–2694 (2019). https://doi.org/10.1021/jacs.8b13104
Y. Zhou, X. Yin, Q. Luo, X. Zhao, D. Zhou et al., Efficiently improving the stability of inverted perovskite solar cells by employing polyethylenimine-modified carbon nanotubes as electrodes. ACS Appl. Mater. Interfaces 10, 31384–31393 (2018). https://doi.org/10.1021/acsami.8b10253
Q. Zhang, H. Nan, Y.Y. Zhou, Y.C. Gu, M.Q. Tai et al., In situ growth of alpha-CsPbI3 perovskite nanocrystals on the surface of reduced graphene oxide with enhanced stability and carrier transport quality. J. Mater. Chem. C 7, 6795–6804 (2019). https://doi.org/10.1039/c9tc01012b
Q. Luo, H. Ma, F. Hao, Q.Z. Hou, J. Ren et al., Carbon nanotube based inverted flexible perovskite solar cells with all-inorganic charge contacts. Adv. Funct. Mater. 27, 1703068 (2017). https://doi.org/10.1002/adfm.201703068
Y. Lin, Y. Bai, Y. Fang, Z. Chen, S. Yang et al., Enhanced thermal stability in perovskite solar cells by assembling 2D/3D stacking structures. J. Phys. Chem. Lett. 9, 654–658 (2018). https://doi.org/10.1021/acs.jpclett.7b02679
L. Li, N. Zhou, Q. Chen, Q. Shang, Q. Zhang, X. Wang, H. Zhou, Unraveling the growth of hierarchical quasi-2D/3D perovskite and carrier dynamics. J. Phys. Chem. Lett. 9, 1124–1132 (2018). https://doi.org/10.1021/acs.jpclett.7b03294
Y. Fan, J. Fang, X. Chang, M.C. Tang, D. Barrit et al., Scalable ambient fabrication of high-performance CsPbI2Br solar cells. Joule 3, 2485–2502 (2019). https://doi.org/10.1016/j.joule.2019.07.015
D.B. Kim, S. Lee, C.H. Jang, J.H. Park, A.Y. Lee, M.H. Song, Uniform and large-area cesium-based quasi-2D perovskite light-emitting diodes using hot-casting method. Adv. Mater. Interfaces 7, 1902158 (2020). https://doi.org/10.1002/admi.201902158
A.T. Mallajosyula, K. Fernando, S. Bhatt, A. Singh, B.W. Alphenaar et al., Large-area hysteresis-free perovskite solar cells via temperature controlled doctor blading under ambient environment. Appl. Mater. Today 3, 96–102 (2016). https://doi.org/10.1016/j.apmt.2016.03.002
Y. Deng, Q. Wang, Y. Yuan, J. Huang, Vividly colorful hybrid perovskite solar cells by doctor-blade coating with perovskite photonic nanostructures. Mater. Horiz. 2, 578–583 (2015). https://doi.org/10.1039/c5mh00126a
Y. Deng, X. Zheng, Y. Bai, Q. Wang, J. Zhao, J. Huang, Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nat. Energy 3, 560–566 (2018). https://doi.org/10.1038/s41560-018-0153-9
J.E. Kim, S.S. Kim, C. Zuo, M. Gao, D. Vak, D.Y. Kim, Humidity-tolerant roll-to-roll fabrication of perovskite solar cells via polymer-additive-assisted hot slot die deposition. Adv. Funct. Mater. 29, 1809194 (2019). https://doi.org/10.1002/adfm.201809194