The Surface Coating of Commercial LiFePO4 by Utilizing ZIF-8 for High Electrochemical Performance Lithium Ion Battery
Corresponding Author: Hao Wang
Nano-Micro Letters,
Vol. 10 No. 1 (2018), Article Number: 1
Abstract
The requirement of energy-storage equipment needs to develop the lithium ion battery (LIB) with high electrochemical performance. The surface modification of commercial LiFePO4 (LFP) by utilizing zeolitic imidazolate frameworks-8 (ZIF-8) offers new possibilities for commercial LFP with high electrochemical performances. In this work, the carbonized ZIF-8 (CZIF-8) was coated on the surface of LFP particles by the in situ growth and carbonization of ZIF-8. Transmission electron microscopy indicates that there is an approximate 10 nm coating layer with metal zinc and graphite-like carbon on the surface of LFP/CZIF-8 sample. The N2 adsorption and desorption isotherm suggests that the coating layer has uniform and simple connecting mesopores. As cathode material, LFP/CZIF-8 cathode-active material delivers a discharge specific capacity of 159.3 mAh g−1 at 0.1C and a discharge specific energy of 141.7 mWh g−1 after 200 cycles at 5.0C (the retention rate is approximate 99%). These results are attributed to the synergy improvement of the conductivity, the lithium ion diffusion coefficient, and the degree of freedom for volume change of LFP/CZIF-8 cathode. This work will contribute to the improvement of the cathode materials of commercial LIB.
Highlights:
1 A surface modification layer, which has 10 nm with metal zinc and graphite-like carbon, was synthesized on commercial LiFePO4 (LFP) using ZIF-8.
2 As-prepared LFP/CZIF-8 possesses prominent electrochemical performances with a discharge specific capacity of 159.3 mAh g−1 at 0.1C and a discharge specific energy of 141.7 mWh g−1 after 200 cycles at 5.0C.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X.L. Yi, W. He, X.D. Zhang, Y.Z. Yue, G.H. Yang, Z.Y. Wang, M.J. Zhou, L.Z. Wang, Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochim. Acta 232, 550–560 (2017). doi:10.1016/j.electacta.2017.02.130
- K. Lu, J.T. Xu, J.T. Zhang, B. Song, H.Y. Ma, General preparation of three-dimensional porous metal oxide foams coated with nitrogen-doped carbon for enhanced lithium storage. ACS Appl. Mater. Interfaces 8(27), 17402–17408 (2016). doi:10.1021/acsami.6b04587
- Z.L. Zhao, F.S. Cannon, C. Nieto-Delgado, L. Pena, Lignin/collagen hybrid biomaterials as binder substitute for specialty graphites and electrodes. Carbon 108, 303–317 (2016). doi:10.1016/j.carbon.2016.07.026
- L. Shen, X. Zhang, E. Uchaker, C. Yuan, G. Cao, Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2(6), 691–698 (2012). doi:10.1002/aenm.201100720
- Z.J. Yao, X.H. Xia, Y. Zhong, Y.D. Wang, B.W. Zhang, D. Xie, X.L. Wang, J.P. Tu, Y.Z. Huang, Hybrid vertical graphene/lithium titanate-CNTs arrays for lithium ion storage with extraordinary performance. J. Mater. Chem. A 5(19), 8916–8921 (2017). doi:10.1039/C7TA02511D
- Q. Wang, S.X. Deng, H. Wang, M. Xie, J.B. Liu, H. Yan, Hydrothermal synthesis of hierarchical LiFePO4 microspheres for lithium ion battery. J. Alloys Compd. 553, 69–74 (2013). doi:10.1016/j.jallcom.2012.11.041
- M. Xie, X.X. Zhang, S.X. Deng, Y.Z. Wang, H. Wang, J.B. Liu, H. Yan, J. Laaksob, E. Levanen, The effects of supercritical carbon dioxide treatment on the morphology and electrochemical performance of LiFePO4 cathode materials. RSC Adv. 3(31), 12786–12793 (2013). doi:10.1039/c3ra41133h
- M. Xie, X.X. Zhang, Y.Z. Wang, S.X. Deng, H. Wang, J.B. Liu, H. Yan, J. Laaksob, E. Levanen, A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide. Electrochim. Acta 94, 16–20 (2013). doi:10.1016/j.electacta.2013.01.131
- X.L. Xu, S.X. Deng, H. Wang, J.B. Liu, H. Yan, Research progress in improving the cycling stability of high-voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Nano-Micro Lett. 9(2), 22 (2017). doi:10.1007/s40820-016-0123-3
- S.X. Deng, D.L. Mao, H. Wang, B. Wang, J.B. Liu, Y.L. Ma, H. Yan, Preparation and electrochemical properties of double-shell LiNi0.5Mn1.5O4 hollow microspheres as cathode materials for Li-ion batteries. RSC Adv. 6(51), 45369–45375 (2016). doi:10.1039/C6RA05620B
- X.D. Zhang, Z.Y. Bi, W. He, G. Yang, H. Liu, Y.Z. Yue, Fabricating high-energy quantum dots in ultra-thin LiFePO4 nanosheets using a multifunctional high-energy biomolecule-ATP. Energy Environ. Sci. 7(7), 2285–2294 (2014). doi:10.1039/C3EE44187C
- X.D. Zhang, X.L. Xu, W. He, G.H. Yang, J.X. Shen, J.H. Liu, Q.Z. Liu, LiFePO4/NaFe3V9O19/porous glass nanocomposite cathodes for Li+/Na+ mixed-ion batteries. J. Mater. Chem. A 3(44), 22247–22257 (2015). doi:10.1039/C5TA06424D
- X.L. Xu, Z.D. Hao, H. Wang, J.B. Liu, H. Yan, Mesoporous carbon derived from ZIF-8 for improving electrochemical performances of commercial LiFePO4. Mater. Lett. 197, 209–212 (2017). doi:10.1016/j.matlet.2017.02.093
- S.X. Deng, H. Wang, H. Liu, J.B. Liu, H. Yan, Research progress in improving the rate performance of LiFePO4 cathode materials. Nano-Micro Lett. 6(3), 209–226 (2014). doi:10.1007/BF03353785
- Y.D. Cho, G.T.K. Fey, H.M. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sources 189(1), 256–262 (2009). doi:10.1016/j.jpowsour.2008.09.053
- Y.H. Nien, J.R. Carey, J.S. Chen, Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. J. Power Sources 193(2), 822–827 (2009). doi:10.1016/j.jpowsour.2009.04.013
- Y.L. Xiao, J.T. Zai, B.B. Tian, X.F. Qian, Formation of NiFe2O4/expanded graphite nanocomposites with superior lithium storage properties. Nano-Micro Lett. 9, 34 (2017). doi:10.1007/s40820-017-0127-7
- H. Guo, X.D. Zhang, W. He, X.N. Yang, Q.Z. Liu, M. Li, J.C. Wang, Fabricating three-dimensional mesoporous carbon network-coated LiFePO4/Fe nanospheres using thermal conversion of alginate-biomass. RSC Adv. 6(21), 16933–16940 (2016). doi:10.1039/C6RA00125D
- L. Wu, X.H. Hu, J.F. Qian, F. Pei, F.Y. Wu, Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 7(1), 323–328 (2014). doi:10.1039/C3EE42944J
- D.L. Wang, H.L. Xin, R. Hovden, H.S. Wang, Y.C. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruna, Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12(1), 81–87 (2013). doi:10.1038/nmat3458
- Q. Zhang, S.Z. Huang, J. Jin, J. Liu, Y. Li, H.E. Wang, L.H. Chen, B.J. Wang, B.L. Su, Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability. Sci. Rep. 6, 25942 (2016). doi:10.1038/srep25942
- W.K. Kim, W.H. Ryu, D.W. Han, S.J. Lim, J.Y. Eom, H.S. Kwon, Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Appl. Mater. Interfaces 6(7), 4731–4736 (2014). doi:10.1021/am405335k
- X.H. Tian, Y.K. Zhou, X.F. Tu, Z.T. Zhang, G.D. Du, Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries. J. Power Sources 340, 40–50 (2017). doi:10.1016/j.jpowsour.2016.11.049
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin. Science 343(6176), 1210–1211 (2014). doi:10.1126/science.1249625
- D.L. Li, S.H. Wu, F.F. Wang, S.Y. Jia, Y. Liu, X. Han, L.W. Zhang, S.L. Zhang, Y.M. Wu, A facile one-pot synthesis of hemin/ZIF-8 composite as mimetic peroxidase. Mater. Lett. 178, 48–51 (2016). doi:10.1016/j.matlet.2016.04.200
- J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137(4), 1572–1580 (2015). doi:10.1021/ja511539a
- X.D. Shi, Z.A. Zhang, Y. Fu, Y.Q. Gan, Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater. Lett. 161, 332–335 (2015). doi:10.1016/j.matlet.2015.08.137
- N.L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 49(25), 2521–2523 (2013). doi:10.1039/c3cc38955c
- L.J. Zhang, Z.X. Su, F.L. Jiang, L.L. Yang, J.J. Qian, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12), 6590–6602 (2014). doi:10.1039/C4NR00348A
- X.Z. Zheng, Y.F. Li, Y.X. Xu, Z.S. Hong, M.D. Wei, Metal-organic frameworks: promising materials for enhancing electrochemical properties of nanostructured Zn2SnO4 anode in Li-ion batteries. CrystEngComm 14(6), 2112–2116 (2012). doi:10.1039/c2ce06350f
- G.H. Zhang, S.C. Hou, H. Zhang, W. Zeng, F.L. Yan, C.C. Li, H.G. Duan, High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27(14), 2400–2405 (2015). doi:10.1002/adma.201405222
- Q.T. Zhang, Foundation of Inorganic Materials Science (East China University of Technology Press, Shanghai, 2007)
- X.Y. Du, W. He, X.D. Zhang, J.Y. Ma, C.H. Wang, C.S. Li, Y.Z. Yue, Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction. Mater. Sci. Eng. C 33(3), 1592–1600 (2013). doi:10.1016/j.msec.2012.12.065
- W.H. Li, Z.Z. Yang, M.S. Li, Y. Jiang, X. Wei, X.W. Zhong, L. Gu, Y. Yu, Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 16(3), 1546–1553 (2016). doi:10.1021/acs.nanolett.5b03903
- Y. Cui, X.L. Zhao, R.S. Guo, Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim. Acta 55(3), 922–926 (2010). doi:10.1016/j.electacta.2009.08.020
References
X.L. Yi, W. He, X.D. Zhang, Y.Z. Yue, G.H. Yang, Z.Y. Wang, M.J. Zhou, L.Z. Wang, Graphene-like carbon sheet/Fe3O4 nanocomposites derived from soda papermaking black liquor for high performance lithium ion batteries. Electrochim. Acta 232, 550–560 (2017). doi:10.1016/j.electacta.2017.02.130
K. Lu, J.T. Xu, J.T. Zhang, B. Song, H.Y. Ma, General preparation of three-dimensional porous metal oxide foams coated with nitrogen-doped carbon for enhanced lithium storage. ACS Appl. Mater. Interfaces 8(27), 17402–17408 (2016). doi:10.1021/acsami.6b04587
Z.L. Zhao, F.S. Cannon, C. Nieto-Delgado, L. Pena, Lignin/collagen hybrid biomaterials as binder substitute for specialty graphites and electrodes. Carbon 108, 303–317 (2016). doi:10.1016/j.carbon.2016.07.026
L. Shen, X. Zhang, E. Uchaker, C. Yuan, G. Cao, Li4Ti5O12 nanoparticles embedded in a mesoporous carbon matrix as a superior anode material for high rate lithium ion batteries. Adv. Energy Mater. 2(6), 691–698 (2012). doi:10.1002/aenm.201100720
Z.J. Yao, X.H. Xia, Y. Zhong, Y.D. Wang, B.W. Zhang, D. Xie, X.L. Wang, J.P. Tu, Y.Z. Huang, Hybrid vertical graphene/lithium titanate-CNTs arrays for lithium ion storage with extraordinary performance. J. Mater. Chem. A 5(19), 8916–8921 (2017). doi:10.1039/C7TA02511D
Q. Wang, S.X. Deng, H. Wang, M. Xie, J.B. Liu, H. Yan, Hydrothermal synthesis of hierarchical LiFePO4 microspheres for lithium ion battery. J. Alloys Compd. 553, 69–74 (2013). doi:10.1016/j.jallcom.2012.11.041
M. Xie, X.X. Zhang, S.X. Deng, Y.Z. Wang, H. Wang, J.B. Liu, H. Yan, J. Laaksob, E. Levanen, The effects of supercritical carbon dioxide treatment on the morphology and electrochemical performance of LiFePO4 cathode materials. RSC Adv. 3(31), 12786–12793 (2013). doi:10.1039/c3ra41133h
M. Xie, X.X. Zhang, Y.Z. Wang, S.X. Deng, H. Wang, J.B. Liu, H. Yan, J. Laaksob, E. Levanen, A template-free method to prepare porous LiFePO4 via supercritical carbon dioxide. Electrochim. Acta 94, 16–20 (2013). doi:10.1016/j.electacta.2013.01.131
X.L. Xu, S.X. Deng, H. Wang, J.B. Liu, H. Yan, Research progress in improving the cycling stability of high-voltage LiNi0.5Mn1.5O4 cathode in lithium-ion battery. Nano-Micro Lett. 9(2), 22 (2017). doi:10.1007/s40820-016-0123-3
S.X. Deng, D.L. Mao, H. Wang, B. Wang, J.B. Liu, Y.L. Ma, H. Yan, Preparation and electrochemical properties of double-shell LiNi0.5Mn1.5O4 hollow microspheres as cathode materials for Li-ion batteries. RSC Adv. 6(51), 45369–45375 (2016). doi:10.1039/C6RA05620B
X.D. Zhang, Z.Y. Bi, W. He, G. Yang, H. Liu, Y.Z. Yue, Fabricating high-energy quantum dots in ultra-thin LiFePO4 nanosheets using a multifunctional high-energy biomolecule-ATP. Energy Environ. Sci. 7(7), 2285–2294 (2014). doi:10.1039/C3EE44187C
X.D. Zhang, X.L. Xu, W. He, G.H. Yang, J.X. Shen, J.H. Liu, Q.Z. Liu, LiFePO4/NaFe3V9O19/porous glass nanocomposite cathodes for Li+/Na+ mixed-ion batteries. J. Mater. Chem. A 3(44), 22247–22257 (2015). doi:10.1039/C5TA06424D
X.L. Xu, Z.D. Hao, H. Wang, J.B. Liu, H. Yan, Mesoporous carbon derived from ZIF-8 for improving electrochemical performances of commercial LiFePO4. Mater. Lett. 197, 209–212 (2017). doi:10.1016/j.matlet.2017.02.093
S.X. Deng, H. Wang, H. Liu, J.B. Liu, H. Yan, Research progress in improving the rate performance of LiFePO4 cathode materials. Nano-Micro Lett. 6(3), 209–226 (2014). doi:10.1007/BF03353785
Y.D. Cho, G.T.K. Fey, H.M. Kao, The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J. Power Sources 189(1), 256–262 (2009). doi:10.1016/j.jpowsour.2008.09.053
Y.H. Nien, J.R. Carey, J.S. Chen, Physical and electrochemical properties of LiFePO4/C composite cathode prepared from various polymer-containing precursors. J. Power Sources 193(2), 822–827 (2009). doi:10.1016/j.jpowsour.2009.04.013
Y.L. Xiao, J.T. Zai, B.B. Tian, X.F. Qian, Formation of NiFe2O4/expanded graphite nanocomposites with superior lithium storage properties. Nano-Micro Lett. 9, 34 (2017). doi:10.1007/s40820-017-0127-7
H. Guo, X.D. Zhang, W. He, X.N. Yang, Q.Z. Liu, M. Li, J.C. Wang, Fabricating three-dimensional mesoporous carbon network-coated LiFePO4/Fe nanospheres using thermal conversion of alginate-biomass. RSC Adv. 6(21), 16933–16940 (2016). doi:10.1039/C6RA00125D
L. Wu, X.H. Hu, J.F. Qian, F. Pei, F.Y. Wu, Sb-C nanofibers with long cycle life as an anode material for high-performance sodium-ion batteries. Energy Environ. Sci. 7(1), 323–328 (2014). doi:10.1039/C3EE42944J
D.L. Wang, H.L. Xin, R. Hovden, H.S. Wang, Y.C. Yu, D.A. Muller, F.J. DiSalvo, H.D. Abruna, Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 12(1), 81–87 (2013). doi:10.1038/nmat3458
Q. Zhang, S.Z. Huang, J. Jin, J. Liu, Y. Li, H.E. Wang, L.H. Chen, B.J. Wang, B.L. Su, Engineering 3D bicontinuous hierarchically macro-mesoporous LiFePO4/C nanocomposite for lithium storage with high rate capability and long cycle stability. Sci. Rep. 6, 25942 (2016). doi:10.1038/srep25942
W.K. Kim, W.H. Ryu, D.W. Han, S.J. Lim, J.Y. Eom, H.S. Kwon, Fabrication of graphene embedded LiFePO4 using a catalyst assisted self assembly method as a cathode material for high power lithium-ion batteries. ACS Appl. Mater. Interfaces 6(7), 4731–4736 (2014). doi:10.1021/am405335k
X.H. Tian, Y.K. Zhou, X.F. Tu, Z.T. Zhang, G.D. Du, Well-dispersed LiFePO4 nanoparticles anchored on a three-dimensional graphene aerogel as high-performance positive electrode materials for lithium-ion batteries. J. Power Sources 340, 40–50 (2017). doi:10.1016/j.jpowsour.2016.11.049
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin. Science 343(6176), 1210–1211 (2014). doi:10.1126/science.1249625
D.L. Li, S.H. Wu, F.F. Wang, S.Y. Jia, Y. Liu, X. Han, L.W. Zhang, S.L. Zhang, Y.M. Wu, A facile one-pot synthesis of hemin/ZIF-8 composite as mimetic peroxidase. Mater. Lett. 178, 48–51 (2016). doi:10.1016/j.matlet.2016.04.200
J. Tang, R.R. Salunkhe, J. Liu, N.L. Torad, M. Imura, S. Furukawa, Y. Yamauchi, Thermal conversion of core–shell metal–organic frameworks: a new method for selectively functionalized nanoporous hybrid carbon. J. Am. Chem. Soc. 137(4), 1572–1580 (2015). doi:10.1021/ja511539a
X.D. Shi, Z.A. Zhang, Y. Fu, Y.Q. Gan, Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries. Mater. Lett. 161, 332–335 (2015). doi:10.1016/j.matlet.2015.08.137
N.L. Torad, M. Hu, Y. Kamachi, K. Takai, M. Imura, Facile synthesis of nanoporous carbons with controlled particle sizes by direct carbonization of monodispersed ZIF-8 crystals. Chem. Commun. 49(25), 2521–2523 (2013). doi:10.1039/c3cc38955c
L.J. Zhang, Z.X. Su, F.L. Jiang, L.L. Yang, J.J. Qian, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6(12), 6590–6602 (2014). doi:10.1039/C4NR00348A
X.Z. Zheng, Y.F. Li, Y.X. Xu, Z.S. Hong, M.D. Wei, Metal-organic frameworks: promising materials for enhancing electrochemical properties of nanostructured Zn2SnO4 anode in Li-ion batteries. CrystEngComm 14(6), 2112–2116 (2012). doi:10.1039/c2ce06350f
G.H. Zhang, S.C. Hou, H. Zhang, W. Zeng, F.L. Yan, C.C. Li, H.G. Duan, High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ ZnO quantum dots/C core–shell nanorod arrays on a carbon cloth anode. Adv. Mater. 27(14), 2400–2405 (2015). doi:10.1002/adma.201405222
Q.T. Zhang, Foundation of Inorganic Materials Science (East China University of Technology Press, Shanghai, 2007)
X.Y. Du, W. He, X.D. Zhang, J.Y. Ma, C.H. Wang, C.S. Li, Y.Z. Yue, Low temperature biosynthesis of Li2O–MgO–P2O5–TiO2 nanocrystalline glass with mesoporous structure exhibiting fast lithium ion conduction. Mater. Sci. Eng. C 33(3), 1592–1600 (2013). doi:10.1016/j.msec.2012.12.065
W.H. Li, Z.Z. Yang, M.S. Li, Y. Jiang, X. Wei, X.W. Zhong, L. Gu, Y. Yu, Amorphous red phosphorus embedded in highly ordered mesoporous carbon with superior lithium and sodium storage capacity. Nano Lett. 16(3), 1546–1553 (2016). doi:10.1021/acs.nanolett.5b03903
Y. Cui, X.L. Zhao, R.S. Guo, Improved electrochemical performance of La0.7Sr0.3MnO3 and carbon co-coated LiFePO4 synthesized by freeze-drying process. Electrochim. Acta 55(3), 922–926 (2010). doi:10.1016/j.electacta.2009.08.020