Growth of SnO2 Nanoflowers on N-doped Carbon Nanofibers as Anode for Li- and Na-ion Batteries
Corresponding Author: Jianmin Ma
Nano-Micro Letters,
Vol. 10 No. 2 (2018), Article Number: 21
Abstract
It is urgent to solve the problems of the dramatic volume expansion and pulverization of SnO2 anodes during cycling process in battery systems. To address this issue, we design a hybrid structure of N-doped carbon fibers@SnO2 nanoflowers (NC@SnO2) to overcome it in this work. The hybrid NC@SnO2 is synthesized through the hydrothermal growth of SnO2 nanoflowers on the surface of N-doped carbon fibers obtained by electrospinning. The NC is introduced not only to provide a support framework in guiding the growth of the SnO2 nanoflowers and prevent the flower-like structures from agglomeration, but also serve as a conductive network to accelerate electronic transmission along one-dimensional structure effectively. When the hybrid NC@SnO2 was served as anode, it exhibits a high discharge capacity of 750 mAh g−1 at 1 A g−1 after 100 cycles in Li-ion battery and 270 mAh g−1 at 100 mA g−1 for 100 cycles in Na-ion battery, respectively.
Highlights:
1 A hybrid structure of SnO2 nanoflowers grown on N-doped carbon nanofibers (NC@SnO2) was successfully constructed.
2 N-doped carbon nanofiber accelerates the migration of Li+/Na+ ions and guides the growth of the SnO2 nanoflowers.
3 NC@SnO2 electrode reveals excellent energy storage performance for Li- and Na-ion batteries.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X=O2, S, Se, Te, I2, Br 2) batteries. Adv. Mater. 29, 1606454 (2017). https://doi.org/10.1002/adma.201606454
- C. Cui, J. Xu, L. Wang, D. Guo, M. Mao, J. Ma, T. Wang, Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl. Mater. Interfaces 8(13), 8568–8575 (2016). https://doi.org/10.1021/acsami.6b02962
- D. Guo, L. Lai, A. Cao, H. Liu, S. Dou, J. Ma, Nanoarrays: design, preparation and supercapacitor applications. RSC Adv. 5(69), 55856–55869 (2015). https://doi.org/10.1039/C5RA09453D
- F. Mao, W. Guo, J. Ma, Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes. RSC Adv. 5(127), 105248–105258 (2015). https://doi.org/10.1039/C5RA21777F
- J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
- L. Wang, B. Ruan, J. Xu, H.K. Liu, J. Ma, Amorphous carbon layer contributing Li storage capacity to Nb2O5@C nanosheets. RSC Adv. 5(45), 36104–36107 (2015). https://doi.org/10.1039/C5RA05935F
- Y. Cai, J. Ma, T. Wang, Hydrothermal synthesis of α-Ni(OH)2 and its conversion to NiO with electrochemical properties. J. Alloys Compd. 582, 328–333 (2014). https://doi.org/10.1016/j.jallcom.2013.07.206
- C. Cui, X. Li, Z. Hu, J. Xu, H. Liu, J. Ma, Growth of MoS2@C nanobowls as a lithium-ion battery anode material. RSC Adv. 5(112), 92506–92514 (2015). https://doi.org/10.1039/C5RA17992K
- V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). https://doi.org/10.1039/c1ee01598b
- P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015). https://doi.org/10.1039/C4TA04980B
- L. Wang, Y.-G. Sun, L.-L. Hu, J.-Y. Piao, J. Guo, A. Manthiram, J. Ma, A.-M. Cao, Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition. J. Mater. Chem. A 5(18), 8752–8761 (2017). https://doi.org/10.1039/C7TA00880E
- V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
- Y. Chen, J. Ma, Q. Li, T. Wang, Gram-scale synthesis of ultrasmall SnO2 nanocrystals with an excellent electrochemical performance. Nanoscale 5(8), 3262–3265 (2013). https://doi.org/10.1039/c3nr00356f
- S.J.R. Prabakar, Y.-H. Hwang, E.-G. Bae, S. Shim, D. Kim, M.S. Lah, K.-S. Sohn, M. Pyo, SnO2/graphene composites with self-assembled alternating oxide and amine layers for high Li-storage and excellent stability. Adv. Mater. 25(24), 3307–3312 (2013). https://doi.org/10.1002/adma.201301264
- J. Deng, Y. Chen, J. Ma, E. Zhang, T. Wang, Solvothermal synthesis of hollow urchin-like SnO2 nanospheres with superior lithium storage behavior. J. Nanosci. Nanotechnol. 13(6), 4297–4301 (2013). https://doi.org/10.1166/jnn.2013.7181
- F. Yan, X. Tang, Y. Wei, L. Chen, G. Cao, M. Zhang, T. Wang, Stannous ions reducing graphene oxide at room temperature to produce SnOx-porous, carbon-nanofiber flexible mats as binder-free anodes for lithium-ion batteries. J. Mater. Chem. A 3(24), 12672–12679 (2015). https://doi.org/10.1039/C5TA02107C
- Y. Zhao, C. Wei, S. Sun, L.P. Wang, Z.J. Xu, Reserving interior void space for volume change accommodation: an example of cable-like mwnts@ SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2(6), 1500097 (2015). https://doi.org/10.1002/advs.201500097
- C. Guan, X. Wang, Q. Zhang, Z. Fan, H. Zhang, H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14(8), 4852–4858 (2014). https://doi.org/10.1021/nl502192p
- X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114(17), 8084–8088 (2010). https://doi.org/10.1021/jp100224x
- L. Chen, X. Yin, L. Mei, C. Li, D. Lei et al., Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries. Nanotechnology 23(3), 035402 (2011). https://doi.org/10.1088/0957-4484/23/3/035402
- L. Fan, X. Li, B. Yan, J. Feng, D. Xiong et al., Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 6(10), 1502057 (2016). https://doi.org/10.1002/aenm.201502057
- M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl. Mater. Interfaces. 7(33), 18387–18396 (2015). https://doi.org/10.1021/acsami.5b04338
- B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R.C. Massé, G. Cao, Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12(14), 1945–1955 (2016). https://doi.org/10.1002/smll.201503419
- J. Xu, G. Jia, W. Mai, H.J. Fan, Energy storage performance enhancement by surface engineering of electrode materials. Adv. Mater. Interfaces 3(20), 1600430 (2016). https://doi.org/10.1002/admi.201600430
- X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
- X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen et al., N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 22(13), 2682–2690 (2012). https://doi.org/10.1002/adfm.201103110
- Y. Liu, C. Zhang, L. Shao, Z. Tian, Z. Deng, C. Gao, A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9, 51 (2017). https://doi.org/10.1007/s40820-017-0151-7
- Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). https://doi.org/10.1021/am405301v
- Z. Lin, X. Xiong, J. Zheng, G. Wang, C. Yang, Three-dimensional N-doped graphene as anode material with superior cycle stability for sodium ion batteries. Mater. Lett. 202, 123–126 (2017). https://doi.org/10.1016/j.matlet.2017.05.046
- Y. Luo, X. Zhou, Y. Zhong, M. Yang, J. Wei, Z. Zhou, Preparation of core-shell porous magnetite@carbon nanospheres through chemical vapor deposition as anode materials for lithium-ion batteries. Electrochim. Acta 154, 136–141 (2015). https://doi.org/10.1016/j.electacta.2014.12.038
- H. Wang, S. Dou, S. Wang, L. Wang, T. Wang, J. Ma, J. Zhang, Y. Yu, Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. Int. J. Hydrogen Energy 42(10), 6472–6481 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.187
- D. Zhou, X. Li, L.-Z. Fan, Y. Deng, Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochim. Acta 230, 212–221 (2017). https://doi.org/10.1016/j.electacta.2017.02.016
- Y. Yan, F. Du, X. Shen, Z. Ji, X. Sheng, H. Zhou, G. Zhu, Large-scale facile synthesis of Fe-doped SnO2 porous hierarchical nanostructures and their enhanced lithium storage properties. J. Mater. Chem. A 2(38), 15875–15882 (2014). https://doi.org/10.1039/C4TA02077D
- X. Hou, Y. Hu, H. Jiang, Y. Li, W. Li, C. Li, One-step synthesis of SnOx nanocrystalline aggregates encapsulated by amorphous TiO2 as an anode in Li-ion battery. J. Mater. Chem. A 3(18), 9982–9988 (2015). https://doi.org/10.1039/C5TA01106J
- J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 50(90), 13971–13974 (2014). https://doi.org/10.1039/C4CC05544F
- B. He, W.-C. Li, A.-H. Lu, High nitrogen-content carbon nanosheets formed using the schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion batteries. J. Mater. Chem. A 3(2), 579–585 (2015). https://doi.org/10.1039/C4TA05056H
- J. Ou, Y. Zhang, L. Chen, Q. Zhao, Y. Meng, Y. Guo, D. Xiao, Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J. Mater. Chem. A 3(12), 6534–6541 (2015). https://doi.org/10.1039/C4TA06614F
- W. Lei, L. Han, C. Xuan, R. Lin, H. Liu, H.L. Xin, D. Wang, Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochim. Acta 210, 130–137 (2016). https://doi.org/10.1016/j.electacta.2016.05.158
- C. Zhu, X. Xia, J. Liu, Z. Fan, D. Chao, H. Zhang, H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode. Nano Energy 4, 105–112 (2014). https://doi.org/10.1016/j.nanoen.2013.12.018
- B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56(7), 1869–1872 (2017). https://doi.org/10.1002/anie.201611160
- M. Zhang, Z. Sun, T. Zhang, D. Sui, Y. Ma, Y. Chen, Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon 102, 32–38 (2016). https://doi.org/10.1016/j.carbon.2016.02.032
- R. Li, B. Wang, S. Ji, P. Jin, Facile synthesis of ultrasmall stannic oxide nanoparticles as anode materials with superior cyclability and rate capability for lithium-ion batteries. RSC Adv. 6(59), 54179–54184 (2016). https://doi.org/10.1039/C6RA00964F
- R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006
- W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui, C. Liu, Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5(20), 10027–10038 (2017). https://doi.org/10.1039/C7TA01634D
- M. Yang, X. Li, B. Yan, L. Fan, Z. Yu, D. Li, Reduced graphene oxide decorated porous SnO2 nanotubes with enhanced sodium storage. J. Alloys Compd. 710, 323–330 (2017). https://doi.org/10.1016/j.jallcom.2017.03.255
- R.S. Kalubarme, J.-Y. Lee, C.-J. Park, Carbon encapsulated tin oxide nanocomposites: an efficient anode for high performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 7(31), 17226–17237 (2015). https://doi.org/10.1021/acsami.5b04178
- S. Li, Y. Wang, J. Qiu, M. Ling, H. Wang, W. Martens, S. Zhang, SnO2 decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries. RSC Adv. 4(91), 50148–50152 (2014). https://doi.org/10.1039/C4RA09699A
References
J. Xu, J. Ma, Q. Fan, S. Guo, S. Dou, Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X=O2, S, Se, Te, I2, Br 2) batteries. Adv. Mater. 29, 1606454 (2017). https://doi.org/10.1002/adma.201606454
C. Cui, J. Xu, L. Wang, D. Guo, M. Mao, J. Ma, T. Wang, Growth of NiCo2O4@MnMoO4 nanocolumn arrays with superior pseudocapacitor properties. ACS Appl. Mater. Interfaces 8(13), 8568–8575 (2016). https://doi.org/10.1021/acsami.6b02962
D. Guo, L. Lai, A. Cao, H. Liu, S. Dou, J. Ma, Nanoarrays: design, preparation and supercapacitor applications. RSC Adv. 5(69), 55856–55869 (2015). https://doi.org/10.1039/C5RA09453D
F. Mao, W. Guo, J. Ma, Research progress on design strategies, synthesis and performance of LiMn2O4-based cathodes. RSC Adv. 5(127), 105248–105258 (2015). https://doi.org/10.1039/C5RA21777F
J. Xu, Y. Dou, Z. Wei, J. Ma, Y. Deng, Y. Li, H. Liu, S. Dou, Recent progress in graphite intercalation compounds for rechargeable metal (Li, Na, K, Al)-ion batteries. Adv. Sci. 4(10), 1700146 (2017). https://doi.org/10.1002/advs.201700146
L. Wang, B. Ruan, J. Xu, H.K. Liu, J. Ma, Amorphous carbon layer contributing Li storage capacity to Nb2O5@C nanosheets. RSC Adv. 5(45), 36104–36107 (2015). https://doi.org/10.1039/C5RA05935F
Y. Cai, J. Ma, T. Wang, Hydrothermal synthesis of α-Ni(OH)2 and its conversion to NiO with electrochemical properties. J. Alloys Compd. 582, 328–333 (2014). https://doi.org/10.1016/j.jallcom.2013.07.206
C. Cui, X. Li, Z. Hu, J. Xu, H. Liu, J. Ma, Growth of MoS2@C nanobowls as a lithium-ion battery anode material. RSC Adv. 5(112), 92506–92514 (2015). https://doi.org/10.1039/C5RA17992K
V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4(9), 3243–3262 (2011). https://doi.org/10.1039/c1ee01598b
P. Roy, S.K. Srivastava, Nanostructured anode materials for lithium ion batteries. J. Mater. Chem. A 3(6), 2454–2484 (2015). https://doi.org/10.1039/C4TA04980B
L. Wang, Y.-G. Sun, L.-L. Hu, J.-Y. Piao, J. Guo, A. Manthiram, J. Ma, A.-M. Cao, Copper-substituted Na0.67Ni0.3-xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition. J. Mater. Chem. A 5(18), 8752–8761 (2017). https://doi.org/10.1039/C7TA00880E
V. Palomares, P. Serras, I. Villaluenga, K.B. Hueso, J. Carretero-Gonzalez, T. Rojo, Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5(3), 5884–5901 (2012). https://doi.org/10.1039/c2ee02781j
Y. Chen, J. Ma, Q. Li, T. Wang, Gram-scale synthesis of ultrasmall SnO2 nanocrystals with an excellent electrochemical performance. Nanoscale 5(8), 3262–3265 (2013). https://doi.org/10.1039/c3nr00356f
S.J.R. Prabakar, Y.-H. Hwang, E.-G. Bae, S. Shim, D. Kim, M.S. Lah, K.-S. Sohn, M. Pyo, SnO2/graphene composites with self-assembled alternating oxide and amine layers for high Li-storage and excellent stability. Adv. Mater. 25(24), 3307–3312 (2013). https://doi.org/10.1002/adma.201301264
J. Deng, Y. Chen, J. Ma, E. Zhang, T. Wang, Solvothermal synthesis of hollow urchin-like SnO2 nanospheres with superior lithium storage behavior. J. Nanosci. Nanotechnol. 13(6), 4297–4301 (2013). https://doi.org/10.1166/jnn.2013.7181
F. Yan, X. Tang, Y. Wei, L. Chen, G. Cao, M. Zhang, T. Wang, Stannous ions reducing graphene oxide at room temperature to produce SnOx-porous, carbon-nanofiber flexible mats as binder-free anodes for lithium-ion batteries. J. Mater. Chem. A 3(24), 12672–12679 (2015). https://doi.org/10.1039/C5TA02107C
Y. Zhao, C. Wei, S. Sun, L.P. Wang, Z.J. Xu, Reserving interior void space for volume change accommodation: an example of cable-like mwnts@ SnO2@C composite for superior lithium and sodium storage. Adv. Sci. 2(6), 1500097 (2015). https://doi.org/10.1002/advs.201500097
C. Guan, X. Wang, Q. Zhang, Z. Fan, H. Zhang, H.J. Fan, Highly stable and reversible lithium storage in SnO2 nanowires surface coated with a uniform hollow shell by atomic layer deposition. Nano Lett. 14(8), 4852–4858 (2014). https://doi.org/10.1021/nl502192p
X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, L.B. Chen, T.H. Wang, One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. J. Phys. Chem. C 114(17), 8084–8088 (2010). https://doi.org/10.1021/jp100224x
L. Chen, X. Yin, L. Mei, C. Li, D. Lei et al., Mesoporous SnO2@carbon core-shell nanostructures with superior electrochemical performance for lithium ion batteries. Nanotechnology 23(3), 035402 (2011). https://doi.org/10.1088/0957-4484/23/3/035402
L. Fan, X. Li, B. Yan, J. Feng, D. Xiong et al., Controlled SnO2 crystallinity effectively dominating sodium storage performance. Adv. Energy Mater. 6(10), 1502057 (2016). https://doi.org/10.1002/aenm.201502057
M. Dirican, Y. Lu, Y. Ge, O. Yildiz, X. Zhang, Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material. ACS Appl. Mater. Interfaces. 7(33), 18387–18396 (2015). https://doi.org/10.1021/acsami.5b04338
B. Huang, X. Li, Y. Pei, S. Li, X. Cao, R.C. Massé, G. Cao, Novel carbon-encapsulated porous SnO2 anode for lithium-ion batteries with much improved cyclic stability. Small 12(14), 1945–1955 (2016). https://doi.org/10.1002/smll.201503419
J. Xu, G. Jia, W. Mai, H.J. Fan, Energy storage performance enhancement by surface engineering of electrode materials. Adv. Mater. Interfaces 3(20), 1600430 (2016). https://doi.org/10.1002/admi.201600430
X. Zhou, L.J. Wan, Y.G. Guo, Binding SnO2 nanocrystals in nitrogen-doped graphene sheets as anode materials for lithium-ion batteries. Adv. Mater. 25(15), 2152–2157 (2013). https://doi.org/10.1002/adma.201300071
X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen et al., N-doped graphene-SnO2 sandwich paper for high-performance lithium-ion batteries. Adv. Funct. Mater. 22(13), 2682–2690 (2012). https://doi.org/10.1002/adfm.201103110
Y. Liu, C. Zhang, L. Shao, Z. Tian, Z. Deng, C. Gao, A mini review on nanocarbon-based 1D macroscopic fibers: assembly strategies and mechanical properties. Nano-Micro Lett. 9, 51 (2017). https://doi.org/10.1007/s40820-017-0151-7
Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interfaces 6(3), 2174–2184 (2014). https://doi.org/10.1021/am405301v
Z. Lin, X. Xiong, J. Zheng, G. Wang, C. Yang, Three-dimensional N-doped graphene as anode material with superior cycle stability for sodium ion batteries. Mater. Lett. 202, 123–126 (2017). https://doi.org/10.1016/j.matlet.2017.05.046
Y. Luo, X. Zhou, Y. Zhong, M. Yang, J. Wei, Z. Zhou, Preparation of core-shell porous magnetite@carbon nanospheres through chemical vapor deposition as anode materials for lithium-ion batteries. Electrochim. Acta 154, 136–141 (2015). https://doi.org/10.1016/j.electacta.2014.12.038
H. Wang, S. Dou, S. Wang, L. Wang, T. Wang, J. Ma, J. Zhang, Y. Yu, Synthesis of electrocatalytically functional carbon honeycombs through cooking with molecule precursors. Int. J. Hydrogen Energy 42(10), 6472–6481 (2017). https://doi.org/10.1016/j.ijhydene.2017.01.187
D. Zhou, X. Li, L.-Z. Fan, Y. Deng, Three-dimensional porous graphene-encapsulated CNT@SnO2 composite for high-performance lithium and sodium storage. Electrochim. Acta 230, 212–221 (2017). https://doi.org/10.1016/j.electacta.2017.02.016
Y. Yan, F. Du, X. Shen, Z. Ji, X. Sheng, H. Zhou, G. Zhu, Large-scale facile synthesis of Fe-doped SnO2 porous hierarchical nanostructures and their enhanced lithium storage properties. J. Mater. Chem. A 2(38), 15875–15882 (2014). https://doi.org/10.1039/C4TA02077D
X. Hou, Y. Hu, H. Jiang, Y. Li, W. Li, C. Li, One-step synthesis of SnOx nanocrystalline aggregates encapsulated by amorphous TiO2 as an anode in Li-ion battery. J. Mater. Chem. A 3(18), 9982–9988 (2015). https://doi.org/10.1039/C5TA01106J
J. Liu, Q. Zhang, J. Yang, H. Ma, M.O. Tade, S. Wang, J. Liu, Facile synthesis of carbon-doped mesoporous anatase TiO2 for the enhanced visible-light driven photocatalysis. Chem. Commun. 50(90), 13971–13974 (2014). https://doi.org/10.1039/C4CC05544F
B. He, W.-C. Li, A.-H. Lu, High nitrogen-content carbon nanosheets formed using the schiff-base reaction in a molten salt medium as efficient anode materials for lithium-ion batteries. J. Mater. Chem. A 3(2), 579–585 (2015). https://doi.org/10.1039/C4TA05056H
J. Ou, Y. Zhang, L. Chen, Q. Zhao, Y. Meng, Y. Guo, D. Xiao, Nitrogen-rich porous carbon derived from biomass as a high performance anode material for lithium ion batteries. J. Mater. Chem. A 3(12), 6534–6541 (2015). https://doi.org/10.1039/C4TA06614F
W. Lei, L. Han, C. Xuan, R. Lin, H. Liu, H.L. Xin, D. Wang, Nitrogen-doped carbon nanofibers derived from polypyrrole coated bacterial cellulose as high-performance electrode materials for supercapacitors and Li-ion batteries. Electrochim. Acta 210, 130–137 (2016). https://doi.org/10.1016/j.electacta.2016.05.158
C. Zhu, X. Xia, J. Liu, Z. Fan, D. Chao, H. Zhang, H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode. Nano Energy 4, 105–112 (2014). https://doi.org/10.1016/j.nanoen.2013.12.018
B. Jiang, Y. He, B. Li, S. Zhao, S. Wang, Y.B. He, Z. Lin, Polymer-templated formation of polydopamine-coated SnO2 nanocrystals: anodes for cyclable lithium-ion batteries. Angew. Chem. Int. Ed. 56(7), 1869–1872 (2017). https://doi.org/10.1002/anie.201611160
M. Zhang, Z. Sun, T. Zhang, D. Sui, Y. Ma, Y. Chen, Excellent cycling stability with high SnO2 loading on a three-dimensional graphene network for lithium ion batteries. Carbon 102, 32–38 (2016). https://doi.org/10.1016/j.carbon.2016.02.032
R. Li, B. Wang, S. Ji, P. Jin, Facile synthesis of ultrasmall stannic oxide nanoparticles as anode materials with superior cyclability and rate capability for lithium-ion batteries. RSC Adv. 6(59), 54179–54184 (2016). https://doi.org/10.1039/C6RA00964F
R. Hu, Y. Ouyang, T. Liang, H. Wang, J. Liu, J. Chen, C. Yang, L. Yang, M. Zhu, Stabilizing the nanostructure of SnO2 anodes by transition metals: a route to achieve high initial coulombic efficiency and stable capacities for lithium storage. Adv. Mater. 29(13), 1605006 (2017). https://doi.org/10.1002/adma.201605006
W. Chen, K. Song, L. Mi, X. Feng, J. Zhang, S. Cui, C. Liu, Synergistic effect induced ultrafine SnO2/graphene nanocomposite as an advanced lithium/sodium-ion batteries anode. J. Mater. Chem. A 5(20), 10027–10038 (2017). https://doi.org/10.1039/C7TA01634D
M. Yang, X. Li, B. Yan, L. Fan, Z. Yu, D. Li, Reduced graphene oxide decorated porous SnO2 nanotubes with enhanced sodium storage. J. Alloys Compd. 710, 323–330 (2017). https://doi.org/10.1016/j.jallcom.2017.03.255
R.S. Kalubarme, J.-Y. Lee, C.-J. Park, Carbon encapsulated tin oxide nanocomposites: an efficient anode for high performance sodium-ion batteries. ACS Appl. Mater. Interfaces. 7(31), 17226–17237 (2015). https://doi.org/10.1021/acsami.5b04178
S. Li, Y. Wang, J. Qiu, M. Ling, H. Wang, W. Martens, S. Zhang, SnO2 decorated graphene nanocomposite anode materials prepared via an up-scalable wet-mechanochemical process for sodium ion batteries. RSC Adv. 4(91), 50148–50152 (2014). https://doi.org/10.1039/C4RA09699A