Microgels for Cell Delivery in Tissue Engineering and Regenerative Medicine
Corresponding Author: Guosheng Tang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 218
Abstract
Microgels prepared from natural or synthetic hydrogel materials have aroused extensive attention as multifunctional cells or drug carriers, that are promising for tissue engineering and regenerative medicine. Microgels can also be aggregated into microporous scaffolds, promoting cell infiltration and proliferation for tissue repair. This review gives an overview of recent developments in the fabrication techniques and applications of microgels. A series of conventional and novel strategies including emulsification, microfluidic, lithography, electrospray, centrifugation, gas-shearing, three-dimensional bioprinting, etc. are discussed in depth. The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy. Additionally, we expound on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering. Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Highlights:
1 This review provides a comprehensive summary associated with recent progress in the preparation and application of microgels.
2 The characteristics and applications of microgels and microgel-based scaffolds for cell culture and delivery are elaborated with an emphasis on the advantages of these carriers in cell therapy.
3 This review expounds on the ongoing and foreseeable applications and current limitations of microgels and their aggregate in the field of biomedical engineering.
4 Through stimulating innovative ideas, the present review paves new avenues for expanding the application of microgels in cell delivery techniques.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
- Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16, 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
- J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
- L. Huang, A.M.E. Abdalla, L. Xiao, G. Yang, Biopolymer-based microcarriers for three-dimensional cell culture and engineered tissue formation. Int. J. Mol. Sci. 21, 1895 (2020). https://doi.org/10.3390/ijms21051895
- M. Mohajeri, M. Eskandari, Z.S. Ghazali, H.S. Ghazali, Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomed. Phys. Eng. Express 8, 022001 (2022). https://doi.org/10.1088/2057-1976/ac4e2d
- Z. Zhao, Z. Wang, G. Li, Z. Cai, J. Wu et al., Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv. Funct. Mater. 31, 2103339 (2021). https://doi.org/10.1002/adfm.202103339
- G. Bao, T. Jiang, H. Ravanbakhsh, A. Reyes, Z. Ma et al., Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater. Horiz. 7, 2336–2347 (2020). https://doi.org/10.1039/d0mh00813c
- J.E. Mealy, J.J. Chung, H.-H. Jeong, D. Issadore, D. Lee et al., Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, 1705912 (2018). https://doi.org/10.1002/adma.201705912
- B.B. Mendes, A.C. Daly, R.L. Reis, R.M.A. Domingues, M.E. Gomes et al., Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomater. 119, 101–113 (2021). https://doi.org/10.1016/j.actbio.2020.10.040
- A.C. Daly, Granular hydrogels in biofabrication: recent advances and future perspectives. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202301388
- A.C. Daly, L. Riley, T. Segura, J.A. Burdick, Hydrogel microps for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2019). https://doi.org/10.1038/s41578-019-0148-6
- M. Asadikorayem, F. Surman, P. Weber, D. Weber, M. Zenobi-Wong, Zwitterionic granular hydrogel for cartilage tissue engineering. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202301831
- D. Sadeghi, A. Solouk, A. Samadikuchaksaraei, A.M. Seifalian, Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr. Polym. 255, 117336 (2021). https://doi.org/10.1016/j.carbpol.2020.117336
- J. Li, Y. Wang, L. Cai, L. Shang, Y. Zhao, High-throughput generation of microgels in centrifugal multi-channel rotating system. Chem. Eng. J. 427, 130750 (2022). https://doi.org/10.1016/j.cej.2021.130750
- Y. Zhi, J. Che, H. Zhu, R. Liu, Y. Zhao, Glycyrrhetinic acid liposomes encapsulated microcapsules from microfluidic electrospray for inflammatory wound healing. Adv. Funct. Mater. 33, 2304353 (2023). https://doi.org/10.1002/adfm.202304353
- G. Tang, R. Xiong, D. Lv, R.X. Xu, K. Braeckmans et al., Gas-shearing fabrication of multicompartmental microspheres: a one-step and oil-free approach. Adv. Sci. 6, 1802342 (2019). https://doi.org/10.1002/advs.201802342
- D. Ribezzi, M. Gueye, S. Florczak, F. Dusi, D. de Vos et al., Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion-volumetric printing of microgels. Adv. Mater. 35, e2301673 (2023). https://doi.org/10.1002/adma.202301673
- I. Gal, R. Edri, N. Noor, M. Rotenberg, M. Namestnikov et al., Injectable cardiac cell microdroplets for tissue regeneration. Small 16, 1802342 (2020). https://doi.org/10.1002/smll.201904806
- R. Wang, F. Wang, S. Lu, B. Gao, Y. Kan et al., Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact. Mater. 27, 394–408 (2023). https://doi.org/10.1016/j.bioactmat.2023.04.006
- J. Hao, B. Bai, Z. Ci, J. Tang, G. Hu et al., Large-sized bone defect repair by combining a decalcified bone matrix framework and bone regeneration units based on photo-crosslinkable osteogenic microgels. Bioact. Mater. 14, 97–109 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.013
- R. Dubay, J.N. Urban, E.M. Darling, Single-cell microgels for diagnostics and therapeutics. Adv. Funct. Mater. 31, 2009946 (2021). https://doi.org/10.1002/adfm.202009946
- D. Lambrechts, E. Wauters, B. Boeckx, S. Aibar, D. Nittner et al., Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018). https://doi.org/10.1038/s41591-018-0096-5
- S.W. Wong, C.R. Tamatam, I.S. Cho, P.T. Toth, R. Bargi et al., Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nat. Biomed. Eng. 6, 54–66 (2022). https://doi.org/10.1038/s41551-021-00740-x
- J. He, C. Chen, L. Chen, R. Cheng, J. Sun et al., Honeycomb-like hydrogel microspheres for 3D bulk construction of tumor models. Research 2022, 9809763 (2022). https://doi.org/10.34133/2022/9809763
- D. Huang, T. Liu, J. Liao, S. Maharjan, X. Xie et al., Reversed-engineered human alveolar lung-on-a-chip model. Proc. Natl. Acad. Sci. U.S.A. 118, e2016146118 (2021). https://doi.org/10.1073/pnas.2016146118
- H. Zhang, Y. Cong, A.R. Osi, Y. Zhou, F. Huang et al., 3D bioprinting microgels: direct 3D printed biomimetic scaffolds based on hydrogel microps for cell spheroid growth. Adv. Funct. Mater. 30, 2070085 (2020). https://doi.org/10.1002/adfm.202070085
- P. Wang, X. Meng, R. Wang, W. Yang, L. Yang et al., Biomaterial scaffolds made of chemically cross-linked gelatin microsphere aggregates (C-GMSs) promote vascularized bone regeneration. Adv. Healthc. Mater. 11, e2102818 (2022). https://doi.org/10.1002/adhm.202102818
- L. Ouyang, Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol. 40, 891–902 (2022). https://doi.org/10.1016/j.tibtech.2022.01.001
- C.L. Franco, J. Price, J.L. West, Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater. 7, 3267–3276 (2011). https://doi.org/10.1016/j.actbio.2011.06.011
- L.D. Zarzar, V. Sresht, E.M. Sletten, J.A. Kalow, D. Blankschtein et al., Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520–524 (2015). https://doi.org/10.1038/nature14168
- J.M. Unagolla, T.E. Alahmadi, A.C. Jayasuriya, Chitosan microps based polyelectrolyte complex scaffolds for bone tissue engineering in vitro and effect of calcium phosphate. Carbohydr. Polym. 199, 426–436 (2018). https://doi.org/10.1016/j.carbpol.2018.07.044
- S. Pradhan, J.M. Clary, D. Seliktar, E.A. Lipke, A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials 115, 141–154 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.052
- Y. Tian, W. Han, K.L. Yeung, Magnetic microsphere scaffold-based soft microbots for targeted mesenchymal stem cell delivery. Small 19, 2300430 (2023). https://doi.org/10.1002/smll.202300430
- P.B. Umbanhowar, V. Prasad, D.A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347–351 (2000). https://doi.org/10.1021/la990101e
- G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006). https://doi.org/10.1038/nature05058
- P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006). https://doi.org/10.1039/B510841A
- T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001). https://doi.org/10.1103/physrevlett.86.4163
- Q. Zhang, G. Kuang, H. Wang, Y. Zhao, J. Wei et al., Multi-bioinspired MOF delivery systems from microfluidics for tumor multimodal therapy. Adv. Sci. 10, 2303818 (2023). https://doi.org/10.1002/advs.202303818
- S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003). https://doi.org/10.1063/1.1537519
- T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Synthesis of monodisperse bicolored janus ps with electrical anisotropy using a microfluidic co-flow system. Adv. Mater. 18, 1152 (2006). https://doi.org/10.1002/adma.200502431
- S. Utech, R. Prodanovic, A.S. Mao, R. Ostafe, D.J. Mooney et al., Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv. Healthc. Mater. 4, 1628–1633 (2015). https://doi.org/10.1002/adhm.201500021
- Z. Toprakcioglu, P.K. Challa, D.B. Morse, T. Knowles, Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. Sci. Adv. 6, 7952 (2020). https://doi.org/10.1126/sciadv.aay7952
- K. Zhu, Y. Yu, Y. Cheng, C. Tian, G. Zhao et al., All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 11, 4826–4832 (2019). https://doi.org/10.1021/acsami.8b19234
- C. Zhang, R. Grossier, L. Lacaria, F. Rico, N. Candoni et al., A microfluidic method generating monodispersed microps with controllable sizes and mechanical properties. Chem. Eng. Sci. 211, 115322 (2020). https://doi.org/10.1016/j.ces.2019.115322
- H.-T. Liu, H. Wang, W.-B. Wei, H. Liu, L. Jiang et al., A microfluidic strategy for controllable generation of water-in-water droplets as biocompatible microcarriers. Small 14, e1801095 (2018). https://doi.org/10.1002/smll.201801095
- J. Wang, S. Hahn, E. Amstad, N. Vogel, Tailored double emulsions made simple. Adv. Mater. 34, 2107338 (2022). https://doi.org/10.1002/adma.202107338
- Q. Zhang, G. Kuang, Y. Yu, X. Ding, H. Ren et al., Hierarchical microps delivering oxaliplatin and NLG919 nanoprodrugs for local chemo-immunotherapy. ACS Appl. Mater. Interfaces 14, 48527–48539 (2022). https://doi.org/10.1021/acsami.2c16564
- L. Sun, T. Li, B. Zhang, M. Zhang, J. Xu et al., An off-the-shelf microfluidic device for the controllable fabrication of multiple-holed hollow ps and their cell culture applications. Mater. Chem. Front. 5, 3149–3158 (2021). https://doi.org/10.1039/D0QM01014F
- T.H. Qazi, J. Wu, V.G. Muir, S. Weintraub, S.E. Gullbrand et al., Anisotropic rod-shaped ps influence injectable granular hydrogel properties and cell invasion. Adv. Mater. 34, e2109194 (2022). https://doi.org/10.1002/adma.202109194
- K.S. Paulsen, D. Di Carlo, A.J. Chung, Optofluidic fabrication for 3D-shaped ps. Nat. Commun. 6, 6976 (2015). https://doi.org/10.1038/ncomms7976
- D. Doan, J. Kulikowski, X.W. Gu, Diffusion of anisotropic colloidal microps fabricated using two-photon lithography. Part. Part. Syst. Charact. 38, 2100033 (2021). https://doi.org/10.1002/ppsc.202100033
- H.U. Kim, Y.J. Lim, H.J. Lee, N.J. Lee, K.W. Bong, Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microps with high-resolution and high uniformity. Lab Chip 20, 74–83 (2020). https://doi.org/10.1039/c9lc00828d
- L. Cai, F. Bian, H. Chen, J. Guo, Y. Wang et al., Anisotropic microps from microfluidics. Chem 7, 93–136 (2021). https://doi.org/10.1016/j.chempr.2020.09.023
- W. Jang, D.Y. Kim, S.J. Mun, J.H. Choi, Y.H. Roh et al., Direct functionalization of cell-adhesion promoters to hydrogel microps synthesized by stop-flow lithography. J. Polym. Sci. 60, 1767–1777 (2022). https://doi.org/10.1002/pol.20210934
- G. Tang, L. Chen, Z. Wang, S. Gao, Q. Qu et al., Faithful fabrication of biocompatible multicompartmental memomicrospheres for digitally color-tunable barcoding. Small 16, e1907586 (2020). https://doi.org/10.1002/smll.201907586
- X. Zhang, Q. Qu, A. Zhou, Y. Wang, J. Zhang et al., Core-shell microps: From rational engineering to diverse applications. Adv. Colloid Interface Sci. 299, 102568 (2022). https://doi.org/10.1016/j.cis.2021.102568
- L. Zhang, K. Chen, H. Zhang, B. Pang, C.-H. Choi et al., Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 14, 1702955 (2018). https://doi.org/10.1002/smll.201702955
- S. Habasaki, W.C. Lee, S. Yoshida, S. Takeuchi, Vertical flow lithography for fabrication of 3D anisotropic ps. Small 11, 6391–6396 (2015). https://doi.org/10.1002/smll.201502968
- F. Huang, J. Zhang, T. Li, R. Duan, F. Xia et al., Two-photon lithographic patterning of DNA-coated single-microp surfaces. Nano Lett. 19, 618–625 (2019). https://doi.org/10.1021/acs.nanolett.8b04975
- A. Lüken, L. Stüwe, S.B. Rauer, J. Oelker, J. Linkhorst et al., Fabrication, flow assembly, and permeation of microscopic any-shape ps. Small 18, 2107508 (2022). https://doi.org/10.1002/smll.202107508
- J. Xie, L.K. Lim, Y. Phua, J. Hua, C.-H. Wang, Electrohydrodynamic atomization for biodegradable polymeric p production. J. Colloid Interface Sci. 302, 103–112 (2006). https://doi.org/10.1016/j.jcis.2006.06.037
- J. Xie, J.C.M. Marijnissen, C.-H. Wang, Microps developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27, 3321–3332 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.034
- A. Tanhaei, M. Mohammadi, H. Hamishehkar, M.R. Hamblin, Electrospraying as a novel method of p engineering for drug delivery vehicles. J. Control. Release 330, 851–865 (2021). https://doi.org/10.1016/j.jconrel.2020.10.059
- A.S. Qayyum, E. Jain, G. Kolar, Y. Kim, S.A. Sell et al., Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication 9, 025019 (2017). https://doi.org/10.1088/1758-5090/aa703c
- J.V. John, A. McCarthy, H. Wang, S. Chen, Y. Su et al., Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble-mediated coaxial electrospray. Small 16, e1907393 (2020). https://doi.org/10.1002/smll.201907393
- T. Song, H. Zhang, Z. Luo, L. Shang, Y. Zhao, Primary human pancreatic cancer cells cultivation in microfluidic hydrogel microcapsules for drug evaluation. Adv. Sci. 10, e2206004 (2023). https://doi.org/10.1002/advs.202206004
- D. Huang, J. Wang, M. Nie, G. Chen, Y. Zhao, Pollen-inspired adhesive multilobe microps from microfluidics for intestinal drug delivery. Adv. Mater. 35, 2301192 (2023). https://doi.org/10.1002/adma.202301192
- H. Wang, Z. Zhao, Y. Liu, C. Shao, F. Bian et al., Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 4, eaat2816 (2018). https://doi.org/10.1126/sciadv.aat2816
- Y. Zhu, L. Sun, X. Fu, J. Liu, Z. Liang et al., Engineering microcapsules to construct vascularized human brain organoids. Chem. Eng. J. 424, 130427 (2021). https://doi.org/10.1016/j.cej.2021.130427
- D. Wu, Y. Yu, C. Zhao, X. Shou, Y. Piao et al., NK-cell-encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy. ACS Appl. Mater. Interfaces 11, 33716–33724 (2019). https://doi.org/10.1021/acsami.9b12816
- C. Zhang, Z.-C. Yao, Q. Ding, J.J. Choi, Z. Ahmad et al., Tri-needle coaxial electrospray engineering of magnetic polymer yolk-shell ps possessing dual-imaging modality, multiagent compartments, and trigger release potential. ACS Appl. Mater. Interfaces 9, 21485–21495 (2017). https://doi.org/10.1021/acsami.7b05580
- M. Xie, Q. Gao, J. Qiu, J. Fu, Z. Chen et al., 3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system. Biomater. Sci. 8, 109–117 (2019). https://doi.org/10.1039/c9bm01189g
- Q. Zhang, X. Wang, G. Kuang, Y. Zhao, Pt(IV) prodrug initiated microps from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact. Mater. 24, 185–196 (2022). https://doi.org/10.1016/j.bioactmat.2022.12.020
- G. Kuang, Q. Zhang, Y. Yu, L. Shang, Y. Zhao, Cryo-shocked cancer cell microgels for tumor postoperative combination immunotherapy and tissue regeneration. Bioact. Mater. 28, 326–336 (2023). https://doi.org/10.1016/j.bioactmat.2023.05.021
- L. Yang, X. Wang, Y. Yu, L. Shang, W. Xu et al., Bio-inspired dual-adhesive ps from microfluidic electrospray for bone regeneration. Nano Res. 16, 5292–5299 (2023). https://doi.org/10.1007/s12274-022-5202-9
- Q. Zhang, T. Yang, R. Zhang, X. Liang, G. Wang et al., Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater. 136, 441–455 (2021). https://doi.org/10.1016/j.actbio.2021.09.024
- J. Xue, C. Zhu, J. Li, H. Li, Y. Xia, Integration of phase-change materials with electrospun fibers for promoting neurite outgrowth under controlled release. Adv. Funct. Mater. 28, 1705563 (2018). https://doi.org/10.1002/adfm.201705563
- Z. Pan, L. Bui, V. Yadav, F. Fan, H.-C. Chang et al., Conformal single cell hydrogel coating with electrically induced tip streaming of an AC cone. Biomater. Sci. 9, 3284–3292 (2021). https://doi.org/10.1039/d0bm02100h
- K. Maeda, H. Onoe, M. Takinoue, S. Takeuchi, Controlled synthesis of 3D multi-compartmental ps with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater. 24, 1340–1346 (2012). https://doi.org/10.1002/adma.201102560
- Y. Morimoto, M. Onuki, S. Takeuchi Mass production of cell-laden calcium alginate ps with centrifugal force. Adv. Healthc. Mater. 6, 1601375 (2017). Doi: https://doi.org/10.1002/adhm.201601375
- Y. Cheng, X. Zhang, Y. Cao, C. Tian, Y. Li et al., Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers. Appl. Mater. Today 13, 116–125 (2018). https://doi.org/10.1016/j.apmt.2018.08.012
- M. Madadelahi, M.J. Madou, Y.D. Nokoorani, A. Shamloo, S.O. Martinez-Chapa, Fluidic barriers in droplet-based centrifugal microfluidics: generation of multiple emulsions and microspheres. Sens. Actuat. B Chem. 311, 127833 (2020). https://doi.org/10.1016/j.snb.2020.127833
- S. Yoshida, M. Takinoue, H. Onoe, Compartmentalized spherical collagen microps for anisotropic cell culture microenvironments. Adv. Healthc. Mater. 6, 1601463 (2017). https://doi.org/10.1002/adhm.201601463
- O. Hasturk, J.A. Smiley, M. Arnett, J.K. Sahoo, C. Staii et al., Cytoprotection of human progenitor and stem cells through encapsulation in alginate templated, dual crosslinked silk and silk-gelatin composite hydrogel microbeads. Adv. Healthc. Mater. 11, e2200293 (2022). https://doi.org/10.1002/adhm.202200293
- T. Kubota, Y. Kurashina, J. Zhao, K. Ando, H. Onoe, Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater. Des. 203, 109580 (2021). https://doi.org/10.1016/j.matdes.2021.109580
- E.P. Herrero, E.M. Martín Del Valle, M.A. Galán, Development of a new technology for the production of microcapsules based in atomization processes. Chem. Eng. J. 117, 137–142 (2006). https://doi.org/10.1016/j.cej.2005.12.022
- Q. Qu, W. Cheng, X. Zhang, H. Ravanbakhsh, G. Tang et al., Glucose-responsive enzymatic cascade microreactors in gas-shearing microfluidics microcapsules. Adv. Mater. Technol. 8, 2201559 (2023). https://doi.org/10.1002/admt.202201559
- Q. Qu, X. Zhang, H. Ravanbakhsh, G. Tang, J. Zhang et al., Gas-shearing synthesis of core–shell multicompartmental microps as cell-like system for enzymatic cascade reaction. Chem. Eng. J. 428, 132607 (2022). https://doi.org/10.1016/j.cej.2021.132607
- X. Zhang, Q. Qu, W. Cheng, A. Zhou, Y. Deng et al., A Prussian blue alginate microps platform based on gas-shearing strategy for antitumor and antibacterial therapy. Int. J. Biol. Macromol. 209, 794–800 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.064
- H. Liu, Z. Cai, F. Wang, L. Hong, L. Deng et al., Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora. Adv. Sci. 8, e2101619 (2021). https://doi.org/10.1002/advs.202101619
- R. Ghaffarian, E.P. Herrero, H. Oh, S.R. Raghavan, S. Muro, Chitosan-alginate microcapsules provide gastric protection and intestinal release of ICAM-1-targeting nanocarriers, enabling GI targeting in vivo. Adv. Funct. Mater. 26, 3382–3393 (2016). https://doi.org/10.1002/adfm.201600084
- M. Wang, W. Li, L.S. Mille, T. Ching, Z. Luo et al., Digital light processing based bioprinting with composable gradients. Adv. Mater. 34, e2107038 (2022). https://doi.org/10.1002/adma.202107038
- M. Wang, W. Li, Z. Luo, G. Tang, X. Mu et al., A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication (2022). https://doi.org/10.1088/1758-5090/ac5936
- K. Zub, S. Hoeppener, U.S. Schubert, Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv. Mater. 34, e2105015 (2022). https://doi.org/10.1002/adma.202105015
- W. Li, M. Wang, S. Wang, X. Wang, A. Avila et al., An adhesive bioink toward biofabrication under wet conditions. Small 19, e2205078 (2023). https://doi.org/10.1002/smll.202205078
- G. Tang, Z. Luo, L. Lian, J. Guo, S. Maharjan et al., Liquid-embedded (bio)printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proc. Natl. Acad. Sci. U.S.A. 120, e2206762120 (2023). https://doi.org/10.1073/pnas.2206762120
- Y.S. Zhang, G. Haghiashtiani, T. Hübscher, D.J. Kelly, J.M. Lee et al., 3D extrusion bioprinting. Nat. Rev. Meth. Primers 1, 75 (2021). https://doi.org/10.1038/s43586-021-00073-8
- N. Armon, E. Greenberg, E. Edri, O. Nagler-Avramovitz, Y. Elias et al., Laser-based printing: from liquids to microstructures. Adv. Funct. Mater. 31, 2008547 (2021). https://doi.org/10.1002/adfm.202008547
- J.T. Toombs, M. Luitz, C.C. Cook, S. Jenne, C.C. Li et al., Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308–312 (2022). https://doi.org/10.1126/science.abm6459
- Q. He, Y. Liao, J. Zhang, X. Yao, W. Zhou et al., “All-in-one” gel system for whole procedure of stem-cell amplification and tissue engineering. Small 16, 1906539 (2020). https://doi.org/10.1002/smll.201906539
- Y. Qian, J. Gong, K. Lu, Y. Hong, Z. Zhu et al., DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord. Biomaterials 299, 122137 (2023). https://doi.org/10.1016/j.biomaterials.2023.122137
- S. Wu, X. Wu, X. Wang, J. Su, Hydrogels for bone organoid construction: From a materiobiological perspective. J. Mater. Sci. Technol. 136, 21–31 (2023). https://doi.org/10.1016/j.jmst.2022.07.008
- C. Mota, S. Camarero-Espinosa, M.B. Baker, P. Wieringa, L. Moroni, Bioprinting: From tissue and organ development to in vitro models. Chem. Rev. 120, 10547–10607 (2020). https://doi.org/10.1021/acs.chemrev.9b00789
- C. Xie, R. Liang, J. Ye, Z. Peng, H. Sun et al., High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials 288, 121741 (2022). https://doi.org/10.1016/j.biomaterials.2022.121741
- R. Rizzo, D. Ruetsche, H. Liu, M. Zenobi-Wong, Optimized photoclick (bio)resins for fast volumetric bioprinting. Adv. Mater. 33, 2102900 (2021). https://doi.org/10.1002/adma.202102900
- P. Chansoria, D. Rütsche, A. Wang, H. Liu, D. D’Angella et al., Synergizing algorithmic design, photoclick chemistry and multi-material volumetric printing for accelerating complex shape engineering. Adv. Sci. 10, e2300912 (2023). https://doi.org/10.1002/advs.202300912
- M. Xie, L. Lian, X. Mu, Z. Luo, C.E. Garciamendez-Mijares et al., Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat. Commun. 14, 210 (2023). https://doi.org/10.1038/s41467-023-35807-7
- P.N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda et al., Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019). https://doi.org/10.1002/adma.201904209
- P.N. Bernal, M. Bouwmeester, J. Madrid-Wolff, M. Falandt, S. Florczak et al., Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2270112 (2022). https://doi.org/10.1002/adma.202270112
- H. Zhao, Y. Chen, L. Shao, M. Xie, J. Nie et al., Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14, e1802630 (2018). https://doi.org/10.1002/smll.201802630
- C. Motter Catarino, D. Cigaran Schuck, L. Dechiario, P. Karande, Incorporation of hair follicles in 3D bioprinted models of human skin. Sci. Adv. 9, eadg0297 (2023). https://doi.org/10.1126/sciadv.adg0297
- A.C. Daly, M.E. Prendergast, A.J. Hughes, J.A. Burdick, Bioprinting for the biologist. Cell 184, 18–32 (2021). https://doi.org/10.1016/j.cell.2020.12.002
- M.J. Whitaker, J. Hao, O.R. Davies, G. Serhatkulu, S. Stolnik-Trenkic et al., The production of protein-loaded microps by supercritical fluid enhanced mixing and spraying. J. Control. Release 101, 85–92 (2005). https://doi.org/10.1016/j.jconrel.2004.07.017
- R. Luo, Y. Cao, P. Shi, C.-H. Chen, Near-infrared light responsive multi-compartmental hydrogel ps synthesized through droplets assembly induced by superhydrophobic surface. Small 10, 4886–4894 (2014). https://doi.org/10.1002/smll.201401312
- M. Pan, H. Shao, Y. Fan, J. Yang, J. Liu et al., Superhydrophobic surface-assisted preparation of microspheres and supraps and their applications. Nano-Micro Lett. 16, 68 (2024). https://doi.org/10.1007/s40820-023-01284-2
- Y. Cui, H. Zhu, J. Cai, H. Qiu, Self-regulated co-assembly of soft and hard nanops. Nat. Commun. 12, 5682 (2021). https://doi.org/10.1038/s41467-021-25995-5
- H.-Y. Lin, L.-Y. Zhou, F. Mei, W.-T. Dou, L. Hu et al., Highly efficient self-assembly of metallacages and their supramolecular catalysis behaviors in microdroplets. Angew. Chem. Int. Ed. Engl. 62, e202301900 (2023). https://doi.org/10.1002/anie.202301900
- R.M. Parker, J. Zhang, Y. Zheng, R.J. Coulston, C.A. Smith et al., Electrostatically directed self-assembly of ultrathin supramolecular polymer microcapsules. Adv. Funct. Mater. 25, 4091–4100 (2015). https://doi.org/10.1002/adfm.201501079
- J. Hu, R. Chen, Z. Li, F. Wu, Y. Yang et al., Polyphenol-coordinated supramolecular hydrogel as a promising “one-stop-shop” strategy for acute infected wound treatment. Appl. Mater. Today 29, 101586 (2022). https://doi.org/10.1016/j.apmt.2022.101586
- H. Zhang, X. Feng, X. Xia, J. Zhu, H. Wang et al., Shape-dictated self-assembly of photoresponsive hybrid colloids. Small Methods 7, e2300383 (2023). https://doi.org/10.1002/smtd.202300383
- J. Zeng, W. Fu, Z. Qi, Q. Zhu, H. He et al., Self-assembly of microps by supramolecular homopolymerization of one component DNA molecule. Small 15, 1805552 (2019). https://doi.org/10.1002/smll.201805552
- M.A. Bochenek, O. Veiseh, A.J. Vegas, J.J. McGarrigle, M. Qi et al., Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018). https://doi.org/10.1038/s41551-018-0275-1
- S. Deng, X. Zhao, Y. Zhu, N. Tang, R. Wang et al., Efficient hepatic differentiation of hydrogel microsphere-encapsulated human pluripotent stem cells for engineering prevascularized liver tissue. Biofabrication 15, 015016 (2022). https://doi.org/10.1088/1758-5090/aca79b
- Z. Jin, Y. Zhai, Y. Zhou, P. Guo, M. Chai et al., Regulation of mesenchymal stem cell osteogenic potential via microfluidic manipulation of microcarrier surface curvature. Chem. Eng. J. 448, 137739 (2022). https://doi.org/10.1016/j.cej.2022.137739
- Z. Wang, L. Xiang, F. Lin, Z. Cai, H. Ruan et al., Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter 5, 336–362 (2022). https://doi.org/10.1016/j.matt.2021.09.022
- A.E. Widener, S. Duraivel, T.E. Angelini, E.A. Phelps, Injectable microporous annealed p hydrogel based on guest-host-interlinked polyethylene glycol maleimide microgels. Adv. Nanobiomed. Res. 2, 2200030 (2022). https://doi.org/10.1002/anbr.202200030
- Y.-C. Lu, W. Song, D. An, B.J. Kim, R. Schwartz et al., Designing compartmentalized hydrogel microps for cell encapsulation and scalable 3D cell culture. J. Mater. Chem. B 3, 353–360 (2015). https://doi.org/10.1039/c4tb01735h
- R. Wieduwild, S. Krishnan, K. Chwalek, A. Boden, M. Nowak et al., Noncovalent hydrogel beads as microcarriers for cell culture. Angew. Chem. Int. Ed. 54, 3962–3966 (2015). https://doi.org/10.1002/anie.201411400
- X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding et al., Microfluidics-assisted osteogenesis: injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26, 2976 (2016). https://doi.org/10.1002/adfm.201670110
- L. Yang, Y. Liu, L. Sun, C. Zhao, G. Chen et al., Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 14, 4 (2021). https://doi.org/10.1007/s40820-021-00747-8
- X. Cui, C.R. Alcala-Orozco, K. Baer, J. Li, C.A. Murphy et al., 3D bioassembly of cell-instructive chondrogenic and osteogenic hydrogel microspheres containing allogeneic stem cells for hybrid biofabrication of osteochondral constructs. Biofabrication 14, 034101 (2022). https://doi.org/10.1088/1758-5090/ac61a3
- F.B. Finklea, Y. Tian, P. Kerscher, W.J. Seeto, M.E. Ellis et al., Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 274, 120818 (2021). https://doi.org/10.1016/j.biomaterials.2021.120818
- J. Shen, Y. Ji, M. Xie, H. Zhao, W. Xuan et al., Cell-modified bioprinted microspheres for vascular regeneration. Mater. Sci. Eng. C 112, 110896 (2020). https://doi.org/10.1016/j.msec.2020.110896
- J. Huang, D. Fu, X. Wu, Y. Li, B. Zheng et al., One-step generation of core-shell biomimetic microspheres encapsulating double-layer cells using microfluidics for hair regeneration. Biofabrication 15, 025007 (2023). https://doi.org/10.1088/1758-5090/acb107
- J. Wang, D. Huang, H. Yu, H. Ren, L. Shang, Biohybrid response microps decorated with trained-MSCs for acute liver failure recovery. Adv. Healthc. Mater. 11, e2201085 (2022). https://doi.org/10.1002/adhm.202201085
- H. Xu, M. Sun, C. Wang, K. Xia, S. Xiao et al., Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 13, 015010 (2020). https://doi.org/10.1088/1758-5090/abc4d3
- Y. Sun, Q. Zhou, Y. Du, J. Sun, W. Bi et al., Dual biosignal-functional injectable microspheres for remodeling osteogenic microenvironment. Small 18, 2270190 (2022). https://doi.org/10.1002/smll.202270190
- Y. Lei, Y. Wang, J. Shen, Z. Cai, Y. Zeng et al., Stem cell-recruiting injectable microgels for repairing osteoarthritis. Adv. Funct. Mater. 31, 2170357 (2021). https://doi.org/10.1002/adfm.202170357
- H. Sun, Q. Guo, C. Shi, R.H. McWilliam, J. Chen et al., CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials 280, 121243 (2022). https://doi.org/10.1016/j.biomaterials.2021.121243
- J. Sun, J. Li, Z. Huan, S.J. Pandol, D. Liu et al., Mesenchymal stem cell-laden composite β cell porous microgel for diabetes treatment. Adv. Funct. Mater. 33, 2211897 (2023). https://doi.org/10.1002/adfm.202211897
- M. Nie, G. Chen, C. Zhao, J. Gan, M. Alip et al., Bio-inspired adhesive porous ps with human MSCs encapsulation for systemic lupus erythematosus treatment. Bioact. Mater. 6, 84–90 (2020). https://doi.org/10.1016/j.bioactmat.2020.07.018
- Y. Liu, T. Zhang, M. Li, Z. Ouyang, F. Gao et al., PLGA hybrid porous microspheres as human periodontal ligament stem cell delivery carriers for periodontal regeneration. Chem. Eng. J. 420, 129703 (2021). https://doi.org/10.1016/j.cej.2021.129703
- J. Yang, Y. Zhu, F. Wang, L. Deng, X. Xu et al., Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chem. Eng. J. 400, 126004 (2020). https://doi.org/10.1016/j.cej.2020.126004
- J. Gan, L. Sun, G. Chen, W. Ma, Y. Zhao et al., Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment. Adv. Healthc. Mater. 11, 2201105 (2022). https://doi.org/10.1002/adhm.202201105
- S. Tarafder, J.A. Brito, S. Minhas, L. Effiong, S. Thomopoulos et al., In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication 12, 015008 (2019). https://doi.org/10.1088/1758-5090/ab48ca
- S. Dutta, S. Noh, R.S. Gual, X. Chen, S. Pané et al., Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano-Micro Lett. 16, 41 (2023). https://doi.org/10.1007/s40820-023-01259-3
- Z. Wan, Z. Yuan, Y. Li, Y. Zhang, Y. Wang et al., Hierarchical therapeutic ion-based microspheres with precise ratio-controlled delivery as microscaffolds for in situ vascularized bone regeneration. Adv. Funct. Mater. 32, 2113280 (2022). https://doi.org/10.1002/adfm.202113280
- Z. Xiong, L. Sun, H. Yang, Z. Xiao, Z. Deng et al., Ni-alginate hydrogel microspheres with sustained interleukin 2 release to boost cytokine-based cancer immunotherapy. Adv. Funct. Mater. 33, 2211423 (2023). https://doi.org/10.1002/adfm.202211423
- C. An, W. Liu, Y. Zhang, B. Pang, H. Liu et al., Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomater. 111, 181–196 (2020). https://doi.org/10.1016/j.actbio.2020.05.024
- J. Sun, H.T.J. Lo, L. Fan, T.L. Yiu, A. Shakoor et al., High-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Sci. Adv. 8, eabp9245 (2022). https://doi.org/10.1126/sciadv.abp9245
- A.S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun et al., Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017). https://doi.org/10.1038/nmat4781
- L. Zhang, G. Liu, K. Lv, J. Xin, Y. Wang et al., Surface-anchored nanogel coating endows stem cells with stress resistance and reparative potency via turning down the cytokine-receptor binding pathways. Adv. Sci. 8, 2003348 (2021). https://doi.org/10.1002/advs.202003348
- H. Kim, K. Shin, O.K. Park, D. Choi, H.D. Kim et al., General and facile coating of single cells via mild reduction. J. Am. Chem. Soc. 140, 1199–1202 (2018). https://doi.org/10.1021/jacs.7b08440
- J. Yang, Y. Yang, N. Kawazoe, G. Chen, Encapsulation of individual living cells with enzyme responsive polymer nanoshell. Biomaterials 197, 317–326 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.029
- A. Puiggalí-Jou, M. Asadikorayem, K. Maniura-Weber, M. Zenobi-Wong, Growth factor-loaded sulfated microislands in granular hydrogels promote hMSCs migration and chondrogenic differentiation. Acta Biomater. 166, 69–84 (2023). https://doi.org/10.1016/j.actbio.2023.03.045
- F. Li, V.X. Truong, P. Fisch, C. Levinson, V. Glattauer et al., Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 77, 48–62 (2018). https://doi.org/10.1016/j.actbio.2018.07.015
- D.-X. Wei, J.-W. Dao, G.-Q. Chen, A micro-ark for cells: highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater. 30, e1802273 (2018). https://doi.org/10.1002/adma.201802273
- J. Bian, F. Cai, H. Chen, Z. Tang, K. Xi et al., Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 21, 2690–2698 (2021). https://doi.org/10.1021/acs.nanolett.0c04713
- J. Koh, D.R. Griffin, M.M. Archang, A.-C. Feng, T. Horn et al., Enhanced in vivo delivery of stem cells using microporous annealed p scaffolds. Small 15, 1903147 (2019). https://doi.org/10.1002/smll.201903147
- J.M. de Rutte, J. Koh, D. Di Carlo, Hydrogels: scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29, 1970174 (2019). https://doi.org/10.1002/adfm.201970174
- D.R. Griffin, W.M. Weaver, P.O. Scumpia, D. Di Carlo, T. Segura, Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015). https://doi.org/10.1038/nmat4294
- J. Fang, J. Koh, Q. Fang, H. Qiu, M.M. Archang et al., Drug delivery: injectable drug-releasing microporous annealed p scaffolds for treating myocardial infarction. Adv. Funct. Mater. 30, 2070289 (2020). https://doi.org/10.1002/adfm.202070289
- D.R. Griffin, M.M. Archang, C.H. Kuan, W.M. Weaver, J.S. Weinstein et al., Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021). https://doi.org/10.1038/s41563-020-00844-w
- Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang et al., Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 20, 561–573 (2022). https://doi.org/10.1016/j.bioactmat.2022.06.018
- L. Pruett, C. Jenkins, N. Singh, K. Catallo, D. Griffin, Heparin microislands in microporous annealed p scaffolds for accelerated diabetic wound healing. Adv. Funct. Mater. 31, 2104337 (2021). https://doi.org/10.1002/adfm.202104337
- C.A. Roosa, M. Ma, P. Chhabra, K. Brayman, D. Griffin, Delivery of dissociated islets cells within microporous annealed p scaffold to treat type 1 diabetes. Adv. Ther. 5, 2200064 (2022). https://doi.org/10.1002/adtp.202200064
- S. Xin, O.M. Wyman, D.L. Alge, Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Adv. Healthc. Mater. 7, 1800160 (2018). https://doi.org/10.1002/adhm.201800160
- N.J. Darling, W. Xi, E. Sideris, A.R. Anderson, C. Pong et al., Click by click microporous annealed p (MAP) scaffolds. Adv. Healthc. Mater. 9, 1901391 (2020). https://doi.org/10.1002/adhm.201901391
- A. Sheikhi, J. de Rutte, R. Haghniaz, O. Akouissi, A. Sohrabi et al., Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials 192, 560–568 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.040
- R.-S. Hsu, P.-Y. Chen, J.-H. Fang, Y.-Y. Chen, C.-W. Chang et al., Adaptable microporous hydrogels of propagating NGF-gradient by injectable building blocks for accelerated axonal outgrowth. Adv. Sci. 6, 1900520 (2019). https://doi.org/10.1002/advs.201900520
- X. Luo, L. Zhang, Y. Luo, Z. Cai, H. Zeng et al., Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv. Funct. Mater. 33, 2214036 (2023). https://doi.org/10.1002/adfm.202214036
- C. Shao, Y. Liu, J. Chi, J. Wang, Z. Zhao et al., Responsive inverse opal scaffolds with biomimetic enrichment capability for cell culture. Research 2019, 9783793 (2019). https://doi.org/10.34133/2019/9783793
- J. Liu, F. Zhou, Q. Zhou, S. Hu, H. Chen et al., A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology. Biomater. Adv. 136, 212777 (2022). https://doi.org/10.1016/j.bioadv.2022.212777
- L. Yuan, X. Li, L. Ge, X. Jia, J. Lei et al., Emulsion template method for the fabrication of gelatin-based scaffold with a controllable pore structure. ACS Appl. Mater. Interfaces 11, 269–277 (2019). https://doi.org/10.1021/acsami.8b17555
- C. Shao, Y. Liu, J. Chi, F. Ye, Y. Zhao, Hierarchically inverse opal porous scaffolds from droplet microfluidics for biomimetic 3D cell co-culture. Engineering 7, 1778–1785 (2021). https://doi.org/10.1016/j.eng.2020.06.031
- L. Wang, L. Sun, F. Bian, Y. Wang, Y. Zhao, Self-bonded hydrogel inverse opal ps as sprayed flexible patch for wound healing. ACS Nano 16, 2640–2650 (2022). https://doi.org/10.1021/acsnano.1c09388
- Y. Fang, Y. Guo, M. Ji, B. Li, Y. Guo et al., 3D printing of cell-laden microgel-based biphasic bioink with heterogeneous microenvironment for biomedical applications. Adv. Funct. Mater. 32, 2109810 (2022). https://doi.org/10.1002/adfm.202109810
- K. Flégeau, A. Puiggali-Jou, M. Zenobi-Wong, Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication 14, 034105 (2022). https://doi.org/10.1088/1758-5090/ac6b58
- Z. Ataie, S. Kheirabadi, J.W. Zhang, A. Kedzierski, C. Petrosky et al., Nanoengineered granular hydrogel bioinks with preserved interconnected microporosity for extrusion bioprinting. Small 18, e2202390 (2022). https://doi.org/10.1002/smll.202202390
- A.J. Seymour, S. Shin, S.C. Heilshorn, 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Adv. Healthc. Mater. 10, e2100644 (2021). https://doi.org/10.1002/adhm.202100644
- Y. Cai, F. Wu, Y. Yu, Y. Liu, C. Shao et al., Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomater. 84, 222–230 (2019). https://doi.org/10.1016/j.actbio.2018.11.016
- I. Singh, C.S. Lacko, Z. Zhao, C.E. Schmidt, C. Rinaldi, Preparation and evaluation of microfluidic magnetic alginate microps for magnetically templated hydrogels. J. Colloid Interface Sci. 561, 647–658 (2020). https://doi.org/10.1016/j.jcis.2019.11.040
- L. Moroni, J.A. Burdick, C. Highley, S.J. Lee, Y. Morimoto et al., Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018). https://doi.org/10.1038/s41578-018-0006-y
- H. Ravanbakhsh, V. Karamzadeh, G. Bao, L. Mongeau, D. Juncker et al., Emerging technologies in multi-material bioprinting. Adv. Mater. 33, 2104730 (2021). https://doi.org/10.1002/adma.202104730
- J. Groll, J.A. Burdick, D.-W. Cho, B. Derby, M. Gelinsky et al., A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11, 013001 (2018). https://doi.org/10.1088/1758-5090/aaec52
- Y. Luo, T. Zhang, X. Lin, 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem. Eng. J. 430, 132926 (2022). https://doi.org/10.1016/j.cej.2021.132926
- X. Wang, Y. Yu, C. Yang, L. Shang, Y. Zhao et al., Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration. Adv. Sci. 9, e2201155 (2022). https://doi.org/10.1002/advs.202201155
- H. Ravanbakhsh, G. Bao, Z. Luo, L.G. Mongeau, Y.S. Zhang, Composite inks for extrusion printing of biological and biomedical constructs. ACS Biomater. Sci. Eng. 7, 4009–4026 (2021). https://doi.org/10.1021/acsbiomaterials.0c01158
- H. Ravanbakhsh, G. Bao, N. Latifi, L.G. Mongeau, Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity. Mater. Sci. Eng. C Mater. Biol. Appl. 103, 109861 (2019). https://doi.org/10.1016/j.msec.2019.109861
- S. Xin, K.A. Deo, J. Dai, N.K.R. Pandian, D. Chimene et al., Generalizing hydrogel microps into a new class of bioinks for extrusion bioprinting. Sci. Adv. 7, eabk3087 (2021). https://doi.org/10.1126/sciadv.abk3087
- C.B. Highley, K.H. Song, A.C. Daly, J.A. Burdick, Jammed microgel inks for 3D printing applications. Adv. Sci. 6, 1801076 (2019). https://doi.org/10.1002/advs.201801076
- Y. Ou, S. Cao, Y. Zhang, H. Zhu, C. Guo et al., Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat. Commun. 14, 322 (2023). https://doi.org/10.1038/s41467-022-35140-5
- L. Ouyang, J.P. Wojciechowski, J. Tang, Y. Guo, M.M. Stevens, Tunable microgel-templated porogel (MTP) bioink for 3D bioprinting applications. Adv. Healthc. Mater. 11, 2270039 (2022). https://doi.org/10.1002/adhm.202270039
- Q. Feng, D. Li, Q. Li, H. Li, Z. Wang et al., Assembling microgels via dynamic cross-linking reaction improves printability, microporosity, tissue-adhesion, and self-healing of microgel bioink for extrusion bioprinting. ACS Appl. Mater. Interfaces 14, 15653–15666 (2022). https://doi.org/10.1021/acsami.2c01295
- Y. Cao, J. Tan, H. Zhao, T. Deng, Y. Hu et al., Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat. Commun. 13, 7463 (2022). https://doi.org/10.1038/s41467-022-35183-8
- X. Gu, Y. Zha, Y. Li, J. Chen, S. Liu et al., Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 141, 190–197 (2022). https://doi.org/10.1016/j.actbio.2022.01.021
- N. Zoratto, D. Di Lisa, J. de Rutte, M.N. Sakib, A.R. Alves E Silva et al., In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioeng. Transl. Med. 5, e10180 (2020). https://doi.org/10.1002/btm2.10180
- H. Ke, H. Yang, Y. Zhao, T. Li, D. Xin et al., 3D gelatin microsphere scaffolds promote functional recovery after spinal cord hemisection in rats. Adv. Sci. 10, 2204528 (2023). https://doi.org/10.1002/advs.202204528
- C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng et al., Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 108, 110399 (2020). https://doi.org/10.1016/j.msec.2019.110399
- X. Han, M. Sun, B. Chen, Q. Saiding, J. Zhang et al., Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact. Mater. 6, 1639–1652 (2020). https://doi.org/10.1016/j.bioactmat.2020.11.019
- L. Guo, H. Chen, Y. Li, J. Zhou, J. Chen, Biocompatible scaffolds constructed by chondroitin sulfate microspheres conjugated 3D-printed frameworks for bone repair. Carbohydr. Polym. 299, 120188 (2023). https://doi.org/10.1016/j.carbpol.2022.120188
- D. Park, E. Wershof, S. Boeing, A. Labernadie, R.P. Jenkins et al., Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19, 227–238 (2020). https://doi.org/10.1038/s41563-019-0504-3
- L. Wang, T. Li, Z. Wang, J. Hou, S. Liu et al., Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 285, 121537 (2022). https://doi.org/10.1016/j.biomaterials.2022.121537
- Z. Luo, G. Tang, H. Ravanbakhsh, W. Li, M. Wang et al., Vertical extrusion Cryo(bio)printing for anisotropic tissue manufacturing. Adv. Mater. 34, 2108931 (2022). https://doi.org/10.1002/adma.202108931
- X. Liu, X. Mao, G. Ye, M. Wang, K. Xue et al., Bioinspired Andrias davidianus-Derived wound dressings for localized drug-elution. Bioact. Mater. 15, 482–494 (2022). https://doi.org/10.1016/j.bioactmat.2021.11.030
- H. Zhu, X. Wu, R. Liu, Y. Zhao, L. Sun, ECM-inspired hydrogels with ADSCs encapsulation for rheumatoid arthritis treatment. Adv. Sci. 10, 2206253 (2023). https://doi.org/10.1002/advs.202206253
- Q. Wei, D. Liu, G. Chu, Q. Yu, Z. Liu et al., TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact. Mater. 19, 581–593 (2023). https://doi.org/10.1016/j.bioactmat.2022.04.025
- J. Lou, D.J. Mooney, Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022). https://doi.org/10.1038/s41570-022-00420-7
- N. Huebsch, E. Lippens, K. Lee, M. Mehta, S. Koshy et al., Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneformation. Nat. Mater. 14, 1269–1277 (2015). https://doi.org/10.1038/nmat4407
- L. Koivusalo, M. Kauppila, S. Samanta, V.S. Parihar, T. Ilmarinen et al., Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials 225, 119516 (2019). https://doi.org/10.1016/j.biomaterials.2019.119516
- X. Liu, F. Li, Z. Dong, C. Gu, D. Mao et al., Metal-polyDNA nanops reconstruct osteoporotic microenvironment for enhanced osteoporosis treatment. Sci. Adv. 9, eadf3329 (2023). https://doi.org/10.1126/sciadv.adf3329
- M. Ojansivu, A. Rashad, A. Ahlinder, J. Massera, A. Mishra et al., Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication 11, 035010 (2019). https://doi.org/10.1088/1758-5090/ab0692
- L. Ouyang, J.P.K. Armstrong, Y. Lin, J.P. Wojciechowski, C. Lee-Reeves et al., Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv. 6, eabc5529 (2020). https://doi.org/10.1126/sciadv.abc5529
- G. Eke, N. Mangir, N. Hasirci, S. MacNeil, V. Hasirci, Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129, 188–198 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.021
- Y. Kang, J. Xu, L.-A. Meng, Y. Su, H. Fang et al., 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication 15, 024103 (2023). https://doi.org/10.1088/1758-5090/acb6b8
- A.G. Kurian, R.K. Singh, K.D. Patel, J.-H. Lee, H.-W. Kim, Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 8, 267–295 (2022). https://doi.org/10.1016/j.bioactmat.2021.06.027
- N. Kulkarni, P. Jain, A. Shindikar, P. Suryawanshi, N. Thorat, Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease. Carbohydr. Polym. 288, 119351 (2022). https://doi.org/10.1016/j.carbpol.2022.119351
- K.J. Wolf, J.D. Weiss, S.G.M. Uzel, M.A. Skylar-Scott, J.A. Lewis, Biomanufacturing human tissues via organ building blocks. Cell Stem Cell 29, 667–677 (2022). https://doi.org/10.1016/j.stem.2022.04.012
- B. Ayan, D.N. Heo, Z. Zhang, M. Dey, A. Povilianskas et al., Aspiration-assisted bioprinting for precise positioning of biologics. Sci. Adv. 6, eaaw5111 (2020). https://doi.org/10.1126/sciadv.aaw5111
- C. Yang, X. Ma, P. Wu, L. Shang, Y. Zhao et al., Adhesive composite microspheres with dual antibacterial strategies for infected wound healing. Small 19, 2301092 (2023). https://doi.org/10.1002/smll.202301092
- L. Cui, J. Li, S. Guan, K. Zhang, K. Zhang et al., Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater. Today Bio 14, 100257 (2022). https://doi.org/10.1016/j.mtbio.2022.100257
- V. Kanikireddy, K. Varaprasad, T. Jayaramudu, C. Karthikeyan, R. Sadiku, Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int. J. Biol. Macromol. 164, 963–975 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.160
- F. Mushtaq, Z. Ali Raza, S.R. Batool, M. Zahid, O.C. Onder et al., Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int. J. Biol. Macromol. 218, 601–633 (2022). https://doi.org/10.1016/j.ijbiomac.2022.07.168
- J. Li, G. Wei, G. Liu, Y. Du, R. Zhang et al., Regulating type H vessel formation and bone metabolism via bone-targeting oral micro/nano-hydrogel microspheres to prevent bone loss. Adv. Sci. 10, e2207381 (2023). https://doi.org/10.1002/advs.202207381
- H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao et al., A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 1903739 (2020). https://doi.org/10.1002/advs.201903739
- Z. Zhou, J. Cui, S. Wu, Z. Geng, J. Su, Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics 12, 5103–5124 (2022). https://doi.org/10.7150/thno.74548
- G. Guan, Q. Zhang, Z. Jiang, J. Liu, J. Wan et al., Multifunctional silk fibroin methacryloyl microneedle for diabetic wound healing. Small 18, 2203064 (2022). https://doi.org/10.1002/smll.202203064
- Z. Yang, Y. He, Y. Ma, L. Li, Y. Wang, A reversible adhesive hydrogel tape. Adv. Funct. Mater. 33, 2213150 (2023). https://doi.org/10.1002/adfm.202213150
- S. Hu, Y. Fang, C. Liang, M. Turunen, O. Ikkala et al., Thermally trainable dual network hydrogels. Nat. Commun. 14, 3717 (2023). https://doi.org/10.1038/s41467-023-39446-w
- J. Gu, R. Fu, S. Kang, X. Yang, Q. Song et al., Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating. Constr. Build. Mater. 341, 127722 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127722
- G.G. Giobbe, C. Crowley, C. Luni, S. Campinoti, M. Khedr et al., Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat. Commun. 10, 5658 (2019). https://doi.org/10.1038/s41467-019-13605-4
- R. Curvello, G. Kerr, D.J. Micati, W.H. Chan, V.S. Raghuwanshi et al., Engineered plant-based nanocellulose hydrogel for small intestinal organoid growth. Adv. Sci. 8, 2002135 (2021). https://doi.org/10.1002/advs.202002135
- S. Mohammadi, H. Ravanbakhsh, S. Taheri, G. Bao, L. Mongeau, Immunomodulatory microgels support proregenerative macrophage activation and attenuate fibroblast collagen synthesis. Adv. Healthc. Mater. 11, e2102366 (2022). https://doi.org/10.1002/adhm.202102366
- S. Bian, L. Hao, X. Qiu, J. Wu, H. Chang et al., An injectable rapid-adhesion and anti-swelling adhesive hydrogel for hemostasis and wound sealing. Adv. Funct. Mater. 32, 2270260 (2022). https://doi.org/10.1002/adfm.202270260
- C. Song, D. Huang, C. Zhao, Y. Zhao, Abalone-inspired adhesive and photo-responsive microp delivery systems for periodontal drug therapy. Adv. Sci. 9, e2202829 (2022). https://doi.org/10.1002/advs.202202829
- H. Madry, L. Gao, A. Rey-Rico, J.K. Venkatesan, K. Müller-Brandt et al., Thermosensitive hydrogel based on PEO-PPO-PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Adv. Mater. 32, e1906508 (2020). https://doi.org/10.1002/adma.201906508
- M. Fu, Z. Sun, X. Liu, Z. Huang, G. Luan et al., Highly stretchable, resilient, adhesive, and self-healing ionic hydrogels for thermoelectric application. Adv. Funct. Mater. 33, 2306086 (2023). https://doi.org/10.1002/adfm.202306086
- Q. Zhang, Y. Jiang, L. Chen, W. Chen, J. Li et al., Ultra-compliant and tough thermochromic polymer for self-regulated smart windows. Adv. Funct. Mater. 31, 2100686 (2021). https://doi.org/10.1002/adfm.202100686
- X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021). https://doi.org/10.1002/adfm.202104928
- M.-K. Zhang, X.-H. Zhang, G.-Z. Han, Magnetic alginate/PVA hydrogel microspheres with selective adsorption performance for aromatic compounds. Sep. Purif. Technol. 278, 119547 (2021). https://doi.org/10.1016/j.seppur.2021.119547
- H. Wu, L. Shen, Z. Zhu, X. Luo, Y. Zhai et al., A cell-free therapy for articular cartilage repair based on synergistic delivery of SDF-1 & KGN with HA injectable scaffold. Chem. Eng. J. 393, 124649 (2020). https://doi.org/10.1016/j.cej.2020.124649
- Y. Hong, J. Chen, H. Fang, G. Li, S. Yan et al., All-in-one hydrogel realizing adipose-derived stem cell spheroid production and in vivo injection via “gel-sol” transition for angiogenesis in hind limb ischemia. ACS Appl. Mater. Interfaces 12, 11375–11387 (2020). https://doi.org/10.1021/acsami.9b23534
References
Y. Liang, H. Xu, Z. Li, A. Zhangji, B. Guo, Bioinspired injectable self-healing hydrogel sealant with fault-tolerant and repeated thermo-responsive adhesion for sutureless post-wound-closure and wound healing. Nano-Micro Lett. 14, 185 (2022). https://doi.org/10.1007/s40820-022-00928-z
Y. Chen, Y. Zhou, Z. Hu, W. Lu, Z. Li et al., Gelatin-based metamaterial hydrogel films with high conformality for ultra-soft tissue monitoring. Nano-Micro Lett. 16, 34 (2023). https://doi.org/10.1007/s40820-023-01225-z
J. Li, Q. Ding, H. Wang, Z. Wu, X. Gui et al., Engineering smart composite hydrogels for wearable disease monitoring. Nano-Micro Lett. 15, 105 (2023). https://doi.org/10.1007/s40820-023-01079-5
L. Huang, A.M.E. Abdalla, L. Xiao, G. Yang, Biopolymer-based microcarriers for three-dimensional cell culture and engineered tissue formation. Int. J. Mol. Sci. 21, 1895 (2020). https://doi.org/10.3390/ijms21051895
M. Mohajeri, M. Eskandari, Z.S. Ghazali, H.S. Ghazali, Cell encapsulation in alginate-based microgels using droplet microfluidics; a review on gelation methods and applications. Biomed. Phys. Eng. Express 8, 022001 (2022). https://doi.org/10.1088/2057-1976/ac4e2d
Z. Zhao, Z. Wang, G. Li, Z. Cai, J. Wu et al., Injectable microfluidic hydrogel microspheres for cell and drug delivery. Adv. Funct. Mater. 31, 2103339 (2021). https://doi.org/10.1002/adfm.202103339
G. Bao, T. Jiang, H. Ravanbakhsh, A. Reyes, Z. Ma et al., Triggered micropore-forming bioprinting of porous viscoelastic hydrogels. Mater. Horiz. 7, 2336–2347 (2020). https://doi.org/10.1039/d0mh00813c
J.E. Mealy, J.J. Chung, H.-H. Jeong, D. Issadore, D. Lee et al., Injectable granular hydrogels with multifunctional properties for biomedical applications. Adv. Mater. 30, 1705912 (2018). https://doi.org/10.1002/adma.201705912
B.B. Mendes, A.C. Daly, R.L. Reis, R.M.A. Domingues, M.E. Gomes et al., Injectable hyaluronic acid and platelet lysate-derived granular hydrogels for biomedical applications. Acta Biomater. 119, 101–113 (2021). https://doi.org/10.1016/j.actbio.2020.10.040
A.C. Daly, Granular hydrogels in biofabrication: recent advances and future perspectives. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202301388
A.C. Daly, L. Riley, T. Segura, J.A. Burdick, Hydrogel microps for biomedical applications. Nat. Rev. Mater. 5, 20–43 (2019). https://doi.org/10.1038/s41578-019-0148-6
M. Asadikorayem, F. Surman, P. Weber, D. Weber, M. Zenobi-Wong, Zwitterionic granular hydrogel for cartilage tissue engineering. Adv. Healthc. Mater. (2023). https://doi.org/10.1002/adhm.202301831
D. Sadeghi, A. Solouk, A. Samadikuchaksaraei, A.M. Seifalian, Preparation of internally-crosslinked alginate microspheres: Optimization of process parameters and study of pH-responsive behaviors. Carbohydr. Polym. 255, 117336 (2021). https://doi.org/10.1016/j.carbpol.2020.117336
J. Li, Y. Wang, L. Cai, L. Shang, Y. Zhao, High-throughput generation of microgels in centrifugal multi-channel rotating system. Chem. Eng. J. 427, 130750 (2022). https://doi.org/10.1016/j.cej.2021.130750
Y. Zhi, J. Che, H. Zhu, R. Liu, Y. Zhao, Glycyrrhetinic acid liposomes encapsulated microcapsules from microfluidic electrospray for inflammatory wound healing. Adv. Funct. Mater. 33, 2304353 (2023). https://doi.org/10.1002/adfm.202304353
G. Tang, R. Xiong, D. Lv, R.X. Xu, K. Braeckmans et al., Gas-shearing fabrication of multicompartmental microspheres: a one-step and oil-free approach. Adv. Sci. 6, 1802342 (2019). https://doi.org/10.1002/advs.201802342
D. Ribezzi, M. Gueye, S. Florczak, F. Dusi, D. de Vos et al., Shaping synthetic multicellular and complex multimaterial tissues via embedded extrusion-volumetric printing of microgels. Adv. Mater. 35, e2301673 (2023). https://doi.org/10.1002/adma.202301673
I. Gal, R. Edri, N. Noor, M. Rotenberg, M. Namestnikov et al., Injectable cardiac cell microdroplets for tissue regeneration. Small 16, 1802342 (2020). https://doi.org/10.1002/smll.201904806
R. Wang, F. Wang, S. Lu, B. Gao, Y. Kan et al., Adipose-derived stem cell/FGF19-loaded microfluidic hydrogel microspheres for synergistic restoration of critical ischemic limb. Bioact. Mater. 27, 394–408 (2023). https://doi.org/10.1016/j.bioactmat.2023.04.006
J. Hao, B. Bai, Z. Ci, J. Tang, G. Hu et al., Large-sized bone defect repair by combining a decalcified bone matrix framework and bone regeneration units based on photo-crosslinkable osteogenic microgels. Bioact. Mater. 14, 97–109 (2022). https://doi.org/10.1016/j.bioactmat.2021.12.013
R. Dubay, J.N. Urban, E.M. Darling, Single-cell microgels for diagnostics and therapeutics. Adv. Funct. Mater. 31, 2009946 (2021). https://doi.org/10.1002/adfm.202009946
D. Lambrechts, E. Wauters, B. Boeckx, S. Aibar, D. Nittner et al., Phenotype molding of stromal cells in the lung tumor microenvironment. Nat. Med. 24, 1277–1289 (2018). https://doi.org/10.1038/s41591-018-0096-5
S.W. Wong, C.R. Tamatam, I.S. Cho, P.T. Toth, R. Bargi et al., Inhibition of aberrant tissue remodelling by mesenchymal stromal cells singly coated with soft gels presenting defined chemomechanical cues. Nat. Biomed. Eng. 6, 54–66 (2022). https://doi.org/10.1038/s41551-021-00740-x
J. He, C. Chen, L. Chen, R. Cheng, J. Sun et al., Honeycomb-like hydrogel microspheres for 3D bulk construction of tumor models. Research 2022, 9809763 (2022). https://doi.org/10.34133/2022/9809763
D. Huang, T. Liu, J. Liao, S. Maharjan, X. Xie et al., Reversed-engineered human alveolar lung-on-a-chip model. Proc. Natl. Acad. Sci. U.S.A. 118, e2016146118 (2021). https://doi.org/10.1073/pnas.2016146118
H. Zhang, Y. Cong, A.R. Osi, Y. Zhou, F. Huang et al., 3D bioprinting microgels: direct 3D printed biomimetic scaffolds based on hydrogel microps for cell spheroid growth. Adv. Funct. Mater. 30, 2070085 (2020). https://doi.org/10.1002/adfm.202070085
P. Wang, X. Meng, R. Wang, W. Yang, L. Yang et al., Biomaterial scaffolds made of chemically cross-linked gelatin microsphere aggregates (C-GMSs) promote vascularized bone regeneration. Adv. Healthc. Mater. 11, e2102818 (2022). https://doi.org/10.1002/adhm.202102818
L. Ouyang, Pushing the rheological and mechanical boundaries of extrusion-based 3D bioprinting. Trends Biotechnol. 40, 891–902 (2022). https://doi.org/10.1016/j.tibtech.2022.01.001
C.L. Franco, J. Price, J.L. West, Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres. Acta Biomater. 7, 3267–3276 (2011). https://doi.org/10.1016/j.actbio.2011.06.011
L.D. Zarzar, V. Sresht, E.M. Sletten, J.A. Kalow, D. Blankschtein et al., Dynamically reconfigurable complex emulsions via tunable interfacial tensions. Nature 518, 520–524 (2015). https://doi.org/10.1038/nature14168
J.M. Unagolla, T.E. Alahmadi, A.C. Jayasuriya, Chitosan microps based polyelectrolyte complex scaffolds for bone tissue engineering in vitro and effect of calcium phosphate. Carbohydr. Polym. 199, 426–436 (2018). https://doi.org/10.1016/j.carbpol.2018.07.044
S. Pradhan, J.M. Clary, D. Seliktar, E.A. Lipke, A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Biomaterials 115, 141–154 (2017). https://doi.org/10.1016/j.biomaterials.2016.10.052
Y. Tian, W. Han, K.L. Yeung, Magnetic microsphere scaffold-based soft microbots for targeted mesenchymal stem cell delivery. Small 19, 2300430 (2023). https://doi.org/10.1002/smll.202300430
P.B. Umbanhowar, V. Prasad, D.A. Weitz, Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347–351 (2000). https://doi.org/10.1021/la990101e
G.M. Whitesides, The origins and the future of microfluidics. Nature 442, 368–373 (2006). https://doi.org/10.1038/nature05058
P. Garstecki, M.J. Fuerstman, H.A. Stone, G.M. Whitesides, Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6, 437–446 (2006). https://doi.org/10.1039/B510841A
T. Thorsen, R.W. Roberts, F.H. Arnold, S.R. Quake, Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86, 4163–4166 (2001). https://doi.org/10.1103/physrevlett.86.4163
Q. Zhang, G. Kuang, H. Wang, Y. Zhao, J. Wei et al., Multi-bioinspired MOF delivery systems from microfluidics for tumor multimodal therapy. Adv. Sci. 10, 2303818 (2023). https://doi.org/10.1002/advs.202303818
S.L. Anna, N. Bontoux, H.A. Stone, Formation of dispersions using “flow focusing” in microchannels. Appl. Phys. Lett. 82, 364–366 (2003). https://doi.org/10.1063/1.1537519
T. Nisisako, T. Torii, T. Takahashi, Y. Takizawa, Synthesis of monodisperse bicolored janus ps with electrical anisotropy using a microfluidic co-flow system. Adv. Mater. 18, 1152 (2006). https://doi.org/10.1002/adma.200502431
S. Utech, R. Prodanovic, A.S. Mao, R. Ostafe, D.J. Mooney et al., Microfluidic generation of monodisperse, structurally homogeneous alginate microgels for cell encapsulation and 3D cell culture. Adv. Healthc. Mater. 4, 1628–1633 (2015). https://doi.org/10.1002/adhm.201500021
Z. Toprakcioglu, P.K. Challa, D.B. Morse, T. Knowles, Attoliter protein nanogels from droplet nanofluidics for intracellular delivery. Sci. Adv. 6, 7952 (2020). https://doi.org/10.1126/sciadv.aay7952
K. Zhu, Y. Yu, Y. Cheng, C. Tian, G. Zhao et al., All-aqueous-phase microfluidics for cell encapsulation. ACS Appl. Mater. Interfaces 11, 4826–4832 (2019). https://doi.org/10.1021/acsami.8b19234
C. Zhang, R. Grossier, L. Lacaria, F. Rico, N. Candoni et al., A microfluidic method generating monodispersed microps with controllable sizes and mechanical properties. Chem. Eng. Sci. 211, 115322 (2020). https://doi.org/10.1016/j.ces.2019.115322
H.-T. Liu, H. Wang, W.-B. Wei, H. Liu, L. Jiang et al., A microfluidic strategy for controllable generation of water-in-water droplets as biocompatible microcarriers. Small 14, e1801095 (2018). https://doi.org/10.1002/smll.201801095
J. Wang, S. Hahn, E. Amstad, N. Vogel, Tailored double emulsions made simple. Adv. Mater. 34, 2107338 (2022). https://doi.org/10.1002/adma.202107338
Q. Zhang, G. Kuang, Y. Yu, X. Ding, H. Ren et al., Hierarchical microps delivering oxaliplatin and NLG919 nanoprodrugs for local chemo-immunotherapy. ACS Appl. Mater. Interfaces 14, 48527–48539 (2022). https://doi.org/10.1021/acsami.2c16564
L. Sun, T. Li, B. Zhang, M. Zhang, J. Xu et al., An off-the-shelf microfluidic device for the controllable fabrication of multiple-holed hollow ps and their cell culture applications. Mater. Chem. Front. 5, 3149–3158 (2021). https://doi.org/10.1039/D0QM01014F
T.H. Qazi, J. Wu, V.G. Muir, S. Weintraub, S.E. Gullbrand et al., Anisotropic rod-shaped ps influence injectable granular hydrogel properties and cell invasion. Adv. Mater. 34, e2109194 (2022). https://doi.org/10.1002/adma.202109194
K.S. Paulsen, D. Di Carlo, A.J. Chung, Optofluidic fabrication for 3D-shaped ps. Nat. Commun. 6, 6976 (2015). https://doi.org/10.1038/ncomms7976
D. Doan, J. Kulikowski, X.W. Gu, Diffusion of anisotropic colloidal microps fabricated using two-photon lithography. Part. Part. Syst. Charact. 38, 2100033 (2021). https://doi.org/10.1002/ppsc.202100033
H.U. Kim, Y.J. Lim, H.J. Lee, N.J. Lee, K.W. Bong, Degassed micromolding lithography for rapid fabrication of anisotropic hydrogel microps with high-resolution and high uniformity. Lab Chip 20, 74–83 (2020). https://doi.org/10.1039/c9lc00828d
L. Cai, F. Bian, H. Chen, J. Guo, Y. Wang et al., Anisotropic microps from microfluidics. Chem 7, 93–136 (2021). https://doi.org/10.1016/j.chempr.2020.09.023
W. Jang, D.Y. Kim, S.J. Mun, J.H. Choi, Y.H. Roh et al., Direct functionalization of cell-adhesion promoters to hydrogel microps synthesized by stop-flow lithography. J. Polym. Sci. 60, 1767–1777 (2022). https://doi.org/10.1002/pol.20210934
G. Tang, L. Chen, Z. Wang, S. Gao, Q. Qu et al., Faithful fabrication of biocompatible multicompartmental memomicrospheres for digitally color-tunable barcoding. Small 16, e1907586 (2020). https://doi.org/10.1002/smll.201907586
X. Zhang, Q. Qu, A. Zhou, Y. Wang, J. Zhang et al., Core-shell microps: From rational engineering to diverse applications. Adv. Colloid Interface Sci. 299, 102568 (2022). https://doi.org/10.1016/j.cis.2021.102568
L. Zhang, K. Chen, H. Zhang, B. Pang, C.-H. Choi et al., Microfluidic templated multicompartment microgels for 3D encapsulation and pairing of single cells. Small 14, 1702955 (2018). https://doi.org/10.1002/smll.201702955
S. Habasaki, W.C. Lee, S. Yoshida, S. Takeuchi, Vertical flow lithography for fabrication of 3D anisotropic ps. Small 11, 6391–6396 (2015). https://doi.org/10.1002/smll.201502968
F. Huang, J. Zhang, T. Li, R. Duan, F. Xia et al., Two-photon lithographic patterning of DNA-coated single-microp surfaces. Nano Lett. 19, 618–625 (2019). https://doi.org/10.1021/acs.nanolett.8b04975
A. Lüken, L. Stüwe, S.B. Rauer, J. Oelker, J. Linkhorst et al., Fabrication, flow assembly, and permeation of microscopic any-shape ps. Small 18, 2107508 (2022). https://doi.org/10.1002/smll.202107508
J. Xie, L.K. Lim, Y. Phua, J. Hua, C.-H. Wang, Electrohydrodynamic atomization for biodegradable polymeric p production. J. Colloid Interface Sci. 302, 103–112 (2006). https://doi.org/10.1016/j.jcis.2006.06.037
J. Xie, J.C.M. Marijnissen, C.-H. Wang, Microps developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. Biomaterials 27, 3321–3332 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.034
A. Tanhaei, M. Mohammadi, H. Hamishehkar, M.R. Hamblin, Electrospraying as a novel method of p engineering for drug delivery vehicles. J. Control. Release 330, 851–865 (2021). https://doi.org/10.1016/j.jconrel.2020.10.059
A.S. Qayyum, E. Jain, G. Kolar, Y. Kim, S.A. Sell et al., Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication 9, 025019 (2017). https://doi.org/10.1088/1758-5090/aa703c
J.V. John, A. McCarthy, H. Wang, S. Chen, Y. Su et al., Engineering biomimetic nanofiber microspheres with tailored size, predesigned structure, and desired composition via gas bubble-mediated coaxial electrospray. Small 16, e1907393 (2020). https://doi.org/10.1002/smll.201907393
T. Song, H. Zhang, Z. Luo, L. Shang, Y. Zhao, Primary human pancreatic cancer cells cultivation in microfluidic hydrogel microcapsules for drug evaluation. Adv. Sci. 10, e2206004 (2023). https://doi.org/10.1002/advs.202206004
D. Huang, J. Wang, M. Nie, G. Chen, Y. Zhao, Pollen-inspired adhesive multilobe microps from microfluidics for intestinal drug delivery. Adv. Mater. 35, 2301192 (2023). https://doi.org/10.1002/adma.202301192
H. Wang, Z. Zhao, Y. Liu, C. Shao, F. Bian et al., Biomimetic enzyme cascade reaction system in microfluidic electrospray microcapsules. Sci. Adv. 4, eaat2816 (2018). https://doi.org/10.1126/sciadv.aat2816
Y. Zhu, L. Sun, X. Fu, J. Liu, Z. Liang et al., Engineering microcapsules to construct vascularized human brain organoids. Chem. Eng. J. 424, 130427 (2021). https://doi.org/10.1016/j.cej.2021.130427
D. Wu, Y. Yu, C. Zhao, X. Shou, Y. Piao et al., NK-cell-encapsulated porous microspheres via microfluidic electrospray for tumor immunotherapy. ACS Appl. Mater. Interfaces 11, 33716–33724 (2019). https://doi.org/10.1021/acsami.9b12816
C. Zhang, Z.-C. Yao, Q. Ding, J.J. Choi, Z. Ahmad et al., Tri-needle coaxial electrospray engineering of magnetic polymer yolk-shell ps possessing dual-imaging modality, multiagent compartments, and trigger release potential. ACS Appl. Mater. Interfaces 9, 21485–21495 (2017). https://doi.org/10.1021/acsami.7b05580
M. Xie, Q. Gao, J. Qiu, J. Fu, Z. Chen et al., 3D biofabrication of microfiber-laden minispheroids: a facile 3D cell co-culturing system. Biomater. Sci. 8, 109–117 (2019). https://doi.org/10.1039/c9bm01189g
Q. Zhang, X. Wang, G. Kuang, Y. Zhao, Pt(IV) prodrug initiated microps from microfluidics for tumor chemo-, photothermal and photodynamic combination therapy. Bioact. Mater. 24, 185–196 (2022). https://doi.org/10.1016/j.bioactmat.2022.12.020
G. Kuang, Q. Zhang, Y. Yu, L. Shang, Y. Zhao, Cryo-shocked cancer cell microgels for tumor postoperative combination immunotherapy and tissue regeneration. Bioact. Mater. 28, 326–336 (2023). https://doi.org/10.1016/j.bioactmat.2023.05.021
L. Yang, X. Wang, Y. Yu, L. Shang, W. Xu et al., Bio-inspired dual-adhesive ps from microfluidic electrospray for bone regeneration. Nano Res. 16, 5292–5299 (2023). https://doi.org/10.1007/s12274-022-5202-9
Q. Zhang, T. Yang, R. Zhang, X. Liang, G. Wang et al., Platelet lysate functionalized gelatin methacrylate microspheres for improving angiogenesis in endodontic regeneration. Acta Biomater. 136, 441–455 (2021). https://doi.org/10.1016/j.actbio.2021.09.024
J. Xue, C. Zhu, J. Li, H. Li, Y. Xia, Integration of phase-change materials with electrospun fibers for promoting neurite outgrowth under controlled release. Adv. Funct. Mater. 28, 1705563 (2018). https://doi.org/10.1002/adfm.201705563
Z. Pan, L. Bui, V. Yadav, F. Fan, H.-C. Chang et al., Conformal single cell hydrogel coating with electrically induced tip streaming of an AC cone. Biomater. Sci. 9, 3284–3292 (2021). https://doi.org/10.1039/d0bm02100h
K. Maeda, H. Onoe, M. Takinoue, S. Takeuchi, Controlled synthesis of 3D multi-compartmental ps with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater. 24, 1340–1346 (2012). https://doi.org/10.1002/adma.201102560
Y. Morimoto, M. Onuki, S. Takeuchi Mass production of cell-laden calcium alginate ps with centrifugal force. Adv. Healthc. Mater. 6, 1601375 (2017). Doi: https://doi.org/10.1002/adhm.201601375
Y. Cheng, X. Zhang, Y. Cao, C. Tian, Y. Li et al., Centrifugal microfluidics for ultra-rapid fabrication of versatile hydrogel microcarriers. Appl. Mater. Today 13, 116–125 (2018). https://doi.org/10.1016/j.apmt.2018.08.012
M. Madadelahi, M.J. Madou, Y.D. Nokoorani, A. Shamloo, S.O. Martinez-Chapa, Fluidic barriers in droplet-based centrifugal microfluidics: generation of multiple emulsions and microspheres. Sens. Actuat. B Chem. 311, 127833 (2020). https://doi.org/10.1016/j.snb.2020.127833
S. Yoshida, M. Takinoue, H. Onoe, Compartmentalized spherical collagen microps for anisotropic cell culture microenvironments. Adv. Healthc. Mater. 6, 1601463 (2017). https://doi.org/10.1002/adhm.201601463
O. Hasturk, J.A. Smiley, M. Arnett, J.K. Sahoo, C. Staii et al., Cytoprotection of human progenitor and stem cells through encapsulation in alginate templated, dual crosslinked silk and silk-gelatin composite hydrogel microbeads. Adv. Healthc. Mater. 11, e2200293 (2022). https://doi.org/10.1002/adhm.202200293
T. Kubota, Y. Kurashina, J. Zhao, K. Ando, H. Onoe, Ultrasound-triggered on-demand drug delivery using hydrogel microbeads with release enhancer. Mater. Des. 203, 109580 (2021). https://doi.org/10.1016/j.matdes.2021.109580
E.P. Herrero, E.M. Martín Del Valle, M.A. Galán, Development of a new technology for the production of microcapsules based in atomization processes. Chem. Eng. J. 117, 137–142 (2006). https://doi.org/10.1016/j.cej.2005.12.022
Q. Qu, W. Cheng, X. Zhang, H. Ravanbakhsh, G. Tang et al., Glucose-responsive enzymatic cascade microreactors in gas-shearing microfluidics microcapsules. Adv. Mater. Technol. 8, 2201559 (2023). https://doi.org/10.1002/admt.202201559
Q. Qu, X. Zhang, H. Ravanbakhsh, G. Tang, J. Zhang et al., Gas-shearing synthesis of core–shell multicompartmental microps as cell-like system for enzymatic cascade reaction. Chem. Eng. J. 428, 132607 (2022). https://doi.org/10.1016/j.cej.2021.132607
X. Zhang, Q. Qu, W. Cheng, A. Zhou, Y. Deng et al., A Prussian blue alginate microps platform based on gas-shearing strategy for antitumor and antibacterial therapy. Int. J. Biol. Macromol. 209, 794–800 (2022). https://doi.org/10.1016/j.ijbiomac.2022.04.064
H. Liu, Z. Cai, F. Wang, L. Hong, L. Deng et al., Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora. Adv. Sci. 8, e2101619 (2021). https://doi.org/10.1002/advs.202101619
R. Ghaffarian, E.P. Herrero, H. Oh, S.R. Raghavan, S. Muro, Chitosan-alginate microcapsules provide gastric protection and intestinal release of ICAM-1-targeting nanocarriers, enabling GI targeting in vivo. Adv. Funct. Mater. 26, 3382–3393 (2016). https://doi.org/10.1002/adfm.201600084
M. Wang, W. Li, L.S. Mille, T. Ching, Z. Luo et al., Digital light processing based bioprinting with composable gradients. Adv. Mater. 34, e2107038 (2022). https://doi.org/10.1002/adma.202107038
M. Wang, W. Li, Z. Luo, G. Tang, X. Mu et al., A multifunctional micropore-forming bioink with enhanced anti-bacterial and anti-inflammatory properties. Biofabrication (2022). https://doi.org/10.1088/1758-5090/ac5936
K. Zub, S. Hoeppener, U.S. Schubert, Inkjet printing and 3D printing strategies for biosensing, analytical, and diagnostic applications. Adv. Mater. 34, e2105015 (2022). https://doi.org/10.1002/adma.202105015
W. Li, M. Wang, S. Wang, X. Wang, A. Avila et al., An adhesive bioink toward biofabrication under wet conditions. Small 19, e2205078 (2023). https://doi.org/10.1002/smll.202205078
G. Tang, Z. Luo, L. Lian, J. Guo, S. Maharjan et al., Liquid-embedded (bio)printing of alginate-free, standalone, ultrafine, and ultrathin-walled cannular structures. Proc. Natl. Acad. Sci. U.S.A. 120, e2206762120 (2023). https://doi.org/10.1073/pnas.2206762120
Y.S. Zhang, G. Haghiashtiani, T. Hübscher, D.J. Kelly, J.M. Lee et al., 3D extrusion bioprinting. Nat. Rev. Meth. Primers 1, 75 (2021). https://doi.org/10.1038/s43586-021-00073-8
N. Armon, E. Greenberg, E. Edri, O. Nagler-Avramovitz, Y. Elias et al., Laser-based printing: from liquids to microstructures. Adv. Funct. Mater. 31, 2008547 (2021). https://doi.org/10.1002/adfm.202008547
J.T. Toombs, M. Luitz, C.C. Cook, S. Jenne, C.C. Li et al., Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 376, 308–312 (2022). https://doi.org/10.1126/science.abm6459
Q. He, Y. Liao, J. Zhang, X. Yao, W. Zhou et al., “All-in-one” gel system for whole procedure of stem-cell amplification and tissue engineering. Small 16, 1906539 (2020). https://doi.org/10.1002/smll.201906539
Y. Qian, J. Gong, K. Lu, Y. Hong, Z. Zhu et al., DLP printed hDPSC-loaded GelMA microsphere regenerates dental pulp and repairs spinal cord. Biomaterials 299, 122137 (2023). https://doi.org/10.1016/j.biomaterials.2023.122137
S. Wu, X. Wu, X. Wang, J. Su, Hydrogels for bone organoid construction: From a materiobiological perspective. J. Mater. Sci. Technol. 136, 21–31 (2023). https://doi.org/10.1016/j.jmst.2022.07.008
C. Mota, S. Camarero-Espinosa, M.B. Baker, P. Wieringa, L. Moroni, Bioprinting: From tissue and organ development to in vitro models. Chem. Rev. 120, 10547–10607 (2020). https://doi.org/10.1021/acs.chemrev.9b00789
C. Xie, R. Liang, J. Ye, Z. Peng, H. Sun et al., High-efficient engineering of osteo-callus organoids for rapid bone regeneration within one month. Biomaterials 288, 121741 (2022). https://doi.org/10.1016/j.biomaterials.2022.121741
R. Rizzo, D. Ruetsche, H. Liu, M. Zenobi-Wong, Optimized photoclick (bio)resins for fast volumetric bioprinting. Adv. Mater. 33, 2102900 (2021). https://doi.org/10.1002/adma.202102900
P. Chansoria, D. Rütsche, A. Wang, H. Liu, D. D’Angella et al., Synergizing algorithmic design, photoclick chemistry and multi-material volumetric printing for accelerating complex shape engineering. Adv. Sci. 10, e2300912 (2023). https://doi.org/10.1002/advs.202300912
M. Xie, L. Lian, X. Mu, Z. Luo, C.E. Garciamendez-Mijares et al., Volumetric additive manufacturing of pristine silk-based (bio)inks. Nat. Commun. 14, 210 (2023). https://doi.org/10.1038/s41467-023-35807-7
P.N. Bernal, P. Delrot, D. Loterie, Y. Li, J. Malda et al., Volumetric bioprinting of complex living-tissue constructs within seconds. Adv. Mater. 31, 1904209 (2019). https://doi.org/10.1002/adma.201904209
P.N. Bernal, M. Bouwmeester, J. Madrid-Wolff, M. Falandt, S. Florczak et al., Volumetric bioprinting of organoids and optically tuned hydrogels to build liver-like metabolic biofactories. Adv. Mater. 34, 2270112 (2022). https://doi.org/10.1002/adma.202270112
H. Zhao, Y. Chen, L. Shao, M. Xie, J. Nie et al., Airflow-assisted 3D bioprinting of human heterogeneous microspheroidal organoids with microfluidic nozzle. Small 14, e1802630 (2018). https://doi.org/10.1002/smll.201802630
C. Motter Catarino, D. Cigaran Schuck, L. Dechiario, P. Karande, Incorporation of hair follicles in 3D bioprinted models of human skin. Sci. Adv. 9, eadg0297 (2023). https://doi.org/10.1126/sciadv.adg0297
A.C. Daly, M.E. Prendergast, A.J. Hughes, J.A. Burdick, Bioprinting for the biologist. Cell 184, 18–32 (2021). https://doi.org/10.1016/j.cell.2020.12.002
M.J. Whitaker, J. Hao, O.R. Davies, G. Serhatkulu, S. Stolnik-Trenkic et al., The production of protein-loaded microps by supercritical fluid enhanced mixing and spraying. J. Control. Release 101, 85–92 (2005). https://doi.org/10.1016/j.jconrel.2004.07.017
R. Luo, Y. Cao, P. Shi, C.-H. Chen, Near-infrared light responsive multi-compartmental hydrogel ps synthesized through droplets assembly induced by superhydrophobic surface. Small 10, 4886–4894 (2014). https://doi.org/10.1002/smll.201401312
M. Pan, H. Shao, Y. Fan, J. Yang, J. Liu et al., Superhydrophobic surface-assisted preparation of microspheres and supraps and their applications. Nano-Micro Lett. 16, 68 (2024). https://doi.org/10.1007/s40820-023-01284-2
Y. Cui, H. Zhu, J. Cai, H. Qiu, Self-regulated co-assembly of soft and hard nanops. Nat. Commun. 12, 5682 (2021). https://doi.org/10.1038/s41467-021-25995-5
H.-Y. Lin, L.-Y. Zhou, F. Mei, W.-T. Dou, L. Hu et al., Highly efficient self-assembly of metallacages and their supramolecular catalysis behaviors in microdroplets. Angew. Chem. Int. Ed. Engl. 62, e202301900 (2023). https://doi.org/10.1002/anie.202301900
R.M. Parker, J. Zhang, Y. Zheng, R.J. Coulston, C.A. Smith et al., Electrostatically directed self-assembly of ultrathin supramolecular polymer microcapsules. Adv. Funct. Mater. 25, 4091–4100 (2015). https://doi.org/10.1002/adfm.201501079
J. Hu, R. Chen, Z. Li, F. Wu, Y. Yang et al., Polyphenol-coordinated supramolecular hydrogel as a promising “one-stop-shop” strategy for acute infected wound treatment. Appl. Mater. Today 29, 101586 (2022). https://doi.org/10.1016/j.apmt.2022.101586
H. Zhang, X. Feng, X. Xia, J. Zhu, H. Wang et al., Shape-dictated self-assembly of photoresponsive hybrid colloids. Small Methods 7, e2300383 (2023). https://doi.org/10.1002/smtd.202300383
J. Zeng, W. Fu, Z. Qi, Q. Zhu, H. He et al., Self-assembly of microps by supramolecular homopolymerization of one component DNA molecule. Small 15, 1805552 (2019). https://doi.org/10.1002/smll.201805552
M.A. Bochenek, O. Veiseh, A.J. Vegas, J.J. McGarrigle, M. Qi et al., Alginate encapsulation as long-term immune protection of allogeneic pancreatic islet cells transplanted into the omental bursa of macaques. Nat. Biomed. Eng. 2, 810–821 (2018). https://doi.org/10.1038/s41551-018-0275-1
S. Deng, X. Zhao, Y. Zhu, N. Tang, R. Wang et al., Efficient hepatic differentiation of hydrogel microsphere-encapsulated human pluripotent stem cells for engineering prevascularized liver tissue. Biofabrication 15, 015016 (2022). https://doi.org/10.1088/1758-5090/aca79b
Z. Jin, Y. Zhai, Y. Zhou, P. Guo, M. Chai et al., Regulation of mesenchymal stem cell osteogenic potential via microfluidic manipulation of microcarrier surface curvature. Chem. Eng. J. 448, 137739 (2022). https://doi.org/10.1016/j.cej.2022.137739
Z. Wang, L. Xiang, F. Lin, Z. Cai, H. Ruan et al., Inhaled ACE2-engineered microfluidic microsphere for intratracheal neutralization of COVID-19 and calming of the cytokine storm. Matter 5, 336–362 (2022). https://doi.org/10.1016/j.matt.2021.09.022
A.E. Widener, S. Duraivel, T.E. Angelini, E.A. Phelps, Injectable microporous annealed p hydrogel based on guest-host-interlinked polyethylene glycol maleimide microgels. Adv. Nanobiomed. Res. 2, 2200030 (2022). https://doi.org/10.1002/anbr.202200030
Y.-C. Lu, W. Song, D. An, B.J. Kim, R. Schwartz et al., Designing compartmentalized hydrogel microps for cell encapsulation and scalable 3D cell culture. J. Mater. Chem. B 3, 353–360 (2015). https://doi.org/10.1039/c4tb01735h
R. Wieduwild, S. Krishnan, K. Chwalek, A. Boden, M. Nowak et al., Noncovalent hydrogel beads as microcarriers for cell culture. Angew. Chem. Int. Ed. 54, 3962–3966 (2015). https://doi.org/10.1002/anie.201411400
X. Zhao, S. Liu, L. Yildirimer, H. Zhao, R. Ding et al., Microfluidics-assisted osteogenesis: injectable stem cell-laden photocrosslinkable microspheres fabricated using microfluidics for rapid generation of osteogenic tissue constructs. Adv. Funct. Mater. 26, 2976 (2016). https://doi.org/10.1002/adfm.201670110
L. Yang, Y. Liu, L. Sun, C. Zhao, G. Chen et al., Biomass microcapsules with stem cell encapsulation for bone repair. Nano-Micro Lett. 14, 4 (2021). https://doi.org/10.1007/s40820-021-00747-8
X. Cui, C.R. Alcala-Orozco, K. Baer, J. Li, C.A. Murphy et al., 3D bioassembly of cell-instructive chondrogenic and osteogenic hydrogel microspheres containing allogeneic stem cells for hybrid biofabrication of osteochondral constructs. Biofabrication 14, 034101 (2022). https://doi.org/10.1088/1758-5090/ac61a3
F.B. Finklea, Y. Tian, P. Kerscher, W.J. Seeto, M.E. Ellis et al., Engineered cardiac tissue microsphere production through direct differentiation of hydrogel-encapsulated human pluripotent stem cells. Biomaterials 274, 120818 (2021). https://doi.org/10.1016/j.biomaterials.2021.120818
J. Shen, Y. Ji, M. Xie, H. Zhao, W. Xuan et al., Cell-modified bioprinted microspheres for vascular regeneration. Mater. Sci. Eng. C 112, 110896 (2020). https://doi.org/10.1016/j.msec.2020.110896
J. Huang, D. Fu, X. Wu, Y. Li, B. Zheng et al., One-step generation of core-shell biomimetic microspheres encapsulating double-layer cells using microfluidics for hair regeneration. Biofabrication 15, 025007 (2023). https://doi.org/10.1088/1758-5090/acb107
J. Wang, D. Huang, H. Yu, H. Ren, L. Shang, Biohybrid response microps decorated with trained-MSCs for acute liver failure recovery. Adv. Healthc. Mater. 11, e2201085 (2022). https://doi.org/10.1002/adhm.202201085
H. Xu, M. Sun, C. Wang, K. Xia, S. Xiao et al., Growth differentiation factor-5-gelatin methacryloyl injectable microspheres laden with adipose-derived stem cells for repair of disc degeneration. Biofabrication 13, 015010 (2020). https://doi.org/10.1088/1758-5090/abc4d3
Y. Sun, Q. Zhou, Y. Du, J. Sun, W. Bi et al., Dual biosignal-functional injectable microspheres for remodeling osteogenic microenvironment. Small 18, 2270190 (2022). https://doi.org/10.1002/smll.202270190
Y. Lei, Y. Wang, J. Shen, Z. Cai, Y. Zeng et al., Stem cell-recruiting injectable microgels for repairing osteoarthritis. Adv. Funct. Mater. 31, 2170357 (2021). https://doi.org/10.1002/adfm.202170357
H. Sun, Q. Guo, C. Shi, R.H. McWilliam, J. Chen et al., CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials 280, 121243 (2022). https://doi.org/10.1016/j.biomaterials.2021.121243
J. Sun, J. Li, Z. Huan, S.J. Pandol, D. Liu et al., Mesenchymal stem cell-laden composite β cell porous microgel for diabetes treatment. Adv. Funct. Mater. 33, 2211897 (2023). https://doi.org/10.1002/adfm.202211897
M. Nie, G. Chen, C. Zhao, J. Gan, M. Alip et al., Bio-inspired adhesive porous ps with human MSCs encapsulation for systemic lupus erythematosus treatment. Bioact. Mater. 6, 84–90 (2020). https://doi.org/10.1016/j.bioactmat.2020.07.018
Y. Liu, T. Zhang, M. Li, Z. Ouyang, F. Gao et al., PLGA hybrid porous microspheres as human periodontal ligament stem cell delivery carriers for periodontal regeneration. Chem. Eng. J. 420, 129703 (2021). https://doi.org/10.1016/j.cej.2021.129703
J. Yang, Y. Zhu, F. Wang, L. Deng, X. Xu et al., Microfluidic liposomes-anchored microgels as extended delivery platform for treatment of osteoarthritis. Chem. Eng. J. 400, 126004 (2020). https://doi.org/10.1016/j.cej.2020.126004
J. Gan, L. Sun, G. Chen, W. Ma, Y. Zhao et al., Mesenchymal stem cell exosomes encapsulated oral microcapsules for acute colitis treatment. Adv. Healthc. Mater. 11, 2201105 (2022). https://doi.org/10.1002/adhm.202201105
S. Tarafder, J.A. Brito, S. Minhas, L. Effiong, S. Thomopoulos et al., In situ tissue engineering of the tendon-to-bone interface by endogenous stem/progenitor cells. Biofabrication 12, 015008 (2019). https://doi.org/10.1088/1758-5090/ab48ca
S. Dutta, S. Noh, R.S. Gual, X. Chen, S. Pané et al., Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano-Micro Lett. 16, 41 (2023). https://doi.org/10.1007/s40820-023-01259-3
Z. Wan, Z. Yuan, Y. Li, Y. Zhang, Y. Wang et al., Hierarchical therapeutic ion-based microspheres with precise ratio-controlled delivery as microscaffolds for in situ vascularized bone regeneration. Adv. Funct. Mater. 32, 2113280 (2022). https://doi.org/10.1002/adfm.202113280
Z. Xiong, L. Sun, H. Yang, Z. Xiao, Z. Deng et al., Ni-alginate hydrogel microspheres with sustained interleukin 2 release to boost cytokine-based cancer immunotherapy. Adv. Funct. Mater. 33, 2211423 (2023). https://doi.org/10.1002/adfm.202211423
C. An, W. Liu, Y. Zhang, B. Pang, H. Liu et al., Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration. Acta Biomater. 111, 181–196 (2020). https://doi.org/10.1016/j.actbio.2020.05.024
J. Sun, H.T.J. Lo, L. Fan, T.L. Yiu, A. Shakoor et al., High-efficiency quantitative control of mitochondrial transfer based on droplet microfluidics and its application on muscle regeneration. Sci. Adv. 8, eabp9245 (2022). https://doi.org/10.1126/sciadv.abp9245
A.S. Mao, J.-W. Shin, S. Utech, H. Wang, O. Uzun et al., Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat. Mater. 16, 236–243 (2017). https://doi.org/10.1038/nmat4781
L. Zhang, G. Liu, K. Lv, J. Xin, Y. Wang et al., Surface-anchored nanogel coating endows stem cells with stress resistance and reparative potency via turning down the cytokine-receptor binding pathways. Adv. Sci. 8, 2003348 (2021). https://doi.org/10.1002/advs.202003348
H. Kim, K. Shin, O.K. Park, D. Choi, H.D. Kim et al., General and facile coating of single cells via mild reduction. J. Am. Chem. Soc. 140, 1199–1202 (2018). https://doi.org/10.1021/jacs.7b08440
J. Yang, Y. Yang, N. Kawazoe, G. Chen, Encapsulation of individual living cells with enzyme responsive polymer nanoshell. Biomaterials 197, 317–326 (2019). https://doi.org/10.1016/j.biomaterials.2019.01.029
A. Puiggalí-Jou, M. Asadikorayem, K. Maniura-Weber, M. Zenobi-Wong, Growth factor-loaded sulfated microislands in granular hydrogels promote hMSCs migration and chondrogenic differentiation. Acta Biomater. 166, 69–84 (2023). https://doi.org/10.1016/j.actbio.2023.03.045
F. Li, V.X. Truong, P. Fisch, C. Levinson, V. Glattauer et al., Cartilage tissue formation through assembly of microgels containing mesenchymal stem cells. Acta Biomater. 77, 48–62 (2018). https://doi.org/10.1016/j.actbio.2018.07.015
D.-X. Wei, J.-W. Dao, G.-Q. Chen, A micro-ark for cells: highly open porous polyhydroxyalkanoate microspheres as injectable scaffolds for tissue regeneration. Adv. Mater. 30, e1802273 (2018). https://doi.org/10.1002/adma.201802273
J. Bian, F. Cai, H. Chen, Z. Tang, K. Xi et al., Modulation of local overactive inflammation via injectable hydrogel microspheres. Nano Lett. 21, 2690–2698 (2021). https://doi.org/10.1021/acs.nanolett.0c04713
J. Koh, D.R. Griffin, M.M. Archang, A.-C. Feng, T. Horn et al., Enhanced in vivo delivery of stem cells using microporous annealed p scaffolds. Small 15, 1903147 (2019). https://doi.org/10.1002/smll.201903147
J.M. de Rutte, J. Koh, D. Di Carlo, Hydrogels: scalable high-throughput production of modular microgels for in situ assembly of microporous tissue scaffolds. Adv. Funct. Mater. 29, 1970174 (2019). https://doi.org/10.1002/adfm.201970174
D.R. Griffin, W.M. Weaver, P.O. Scumpia, D. Di Carlo, T. Segura, Accelerated wound healing by injectable microporous gel scaffolds assembled from annealed building blocks. Nat. Mater. 14, 737–744 (2015). https://doi.org/10.1038/nmat4294
J. Fang, J. Koh, Q. Fang, H. Qiu, M.M. Archang et al., Drug delivery: injectable drug-releasing microporous annealed p scaffolds for treating myocardial infarction. Adv. Funct. Mater. 30, 2070289 (2020). https://doi.org/10.1002/adfm.202070289
D.R. Griffin, M.M. Archang, C.H. Kuan, W.M. Weaver, J.S. Weinstein et al., Activating an adaptive immune response from a hydrogel scaffold imparts regenerative wound healing. Nat. Mater. 20, 560–569 (2021). https://doi.org/10.1038/s41563-020-00844-w
Z. Shao, T. Yin, J. Jiang, Y. He, T. Xiang et al., Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing. Bioact. Mater. 20, 561–573 (2022). https://doi.org/10.1016/j.bioactmat.2022.06.018
L. Pruett, C. Jenkins, N. Singh, K. Catallo, D. Griffin, Heparin microislands in microporous annealed p scaffolds for accelerated diabetic wound healing. Adv. Funct. Mater. 31, 2104337 (2021). https://doi.org/10.1002/adfm.202104337
C.A. Roosa, M. Ma, P. Chhabra, K. Brayman, D. Griffin, Delivery of dissociated islets cells within microporous annealed p scaffold to treat type 1 diabetes. Adv. Ther. 5, 2200064 (2022). https://doi.org/10.1002/adtp.202200064
S. Xin, O.M. Wyman, D.L. Alge, Assembly of PEG microgels into porous cell-instructive 3D scaffolds via thiol-ene click chemistry. Adv. Healthc. Mater. 7, 1800160 (2018). https://doi.org/10.1002/adhm.201800160
N.J. Darling, W. Xi, E. Sideris, A.R. Anderson, C. Pong et al., Click by click microporous annealed p (MAP) scaffolds. Adv. Healthc. Mater. 9, 1901391 (2020). https://doi.org/10.1002/adhm.201901391
A. Sheikhi, J. de Rutte, R. Haghniaz, O. Akouissi, A. Sohrabi et al., Microfluidic-enabled bottom-up hydrogels from annealable naturally-derived protein microbeads. Biomaterials 192, 560–568 (2019). https://doi.org/10.1016/j.biomaterials.2018.10.040
R.-S. Hsu, P.-Y. Chen, J.-H. Fang, Y.-Y. Chen, C.-W. Chang et al., Adaptable microporous hydrogels of propagating NGF-gradient by injectable building blocks for accelerated axonal outgrowth. Adv. Sci. 6, 1900520 (2019). https://doi.org/10.1002/advs.201900520
X. Luo, L. Zhang, Y. Luo, Z. Cai, H. Zeng et al., Charge-driven self-assembled microspheres hydrogel scaffolds for combined drug delivery and photothermal therapy of diabetic wounds. Adv. Funct. Mater. 33, 2214036 (2023). https://doi.org/10.1002/adfm.202214036
C. Shao, Y. Liu, J. Chi, J. Wang, Z. Zhao et al., Responsive inverse opal scaffolds with biomimetic enrichment capability for cell culture. Research 2019, 9783793 (2019). https://doi.org/10.34133/2019/9783793
J. Liu, F. Zhou, Q. Zhou, S. Hu, H. Chen et al., A novel porous granular scaffold for the promotion of trabecular bone repair by time-dependent alteration of morphology. Biomater. Adv. 136, 212777 (2022). https://doi.org/10.1016/j.bioadv.2022.212777
L. Yuan, X. Li, L. Ge, X. Jia, J. Lei et al., Emulsion template method for the fabrication of gelatin-based scaffold with a controllable pore structure. ACS Appl. Mater. Interfaces 11, 269–277 (2019). https://doi.org/10.1021/acsami.8b17555
C. Shao, Y. Liu, J. Chi, F. Ye, Y. Zhao, Hierarchically inverse opal porous scaffolds from droplet microfluidics for biomimetic 3D cell co-culture. Engineering 7, 1778–1785 (2021). https://doi.org/10.1016/j.eng.2020.06.031
L. Wang, L. Sun, F. Bian, Y. Wang, Y. Zhao, Self-bonded hydrogel inverse opal ps as sprayed flexible patch for wound healing. ACS Nano 16, 2640–2650 (2022). https://doi.org/10.1021/acsnano.1c09388
Y. Fang, Y. Guo, M. Ji, B. Li, Y. Guo et al., 3D printing of cell-laden microgel-based biphasic bioink with heterogeneous microenvironment for biomedical applications. Adv. Funct. Mater. 32, 2109810 (2022). https://doi.org/10.1002/adfm.202109810
K. Flégeau, A. Puiggali-Jou, M. Zenobi-Wong, Cartilage tissue engineering by extrusion bioprinting utilizing porous hyaluronic acid microgel bioinks. Biofabrication 14, 034105 (2022). https://doi.org/10.1088/1758-5090/ac6b58
Z. Ataie, S. Kheirabadi, J.W. Zhang, A. Kedzierski, C. Petrosky et al., Nanoengineered granular hydrogel bioinks with preserved interconnected microporosity for extrusion bioprinting. Small 18, e2202390 (2022). https://doi.org/10.1002/smll.202202390
A.J. Seymour, S. Shin, S.C. Heilshorn, 3D printing of microgel scaffolds with tunable void fraction to promote cell infiltration. Adv. Healthc. Mater. 10, e2100644 (2021). https://doi.org/10.1002/adhm.202100644
Y. Cai, F. Wu, Y. Yu, Y. Liu, C. Shao et al., Porous scaffolds from droplet microfluidics for prevention of intrauterine adhesion. Acta Biomater. 84, 222–230 (2019). https://doi.org/10.1016/j.actbio.2018.11.016
I. Singh, C.S. Lacko, Z. Zhao, C.E. Schmidt, C. Rinaldi, Preparation and evaluation of microfluidic magnetic alginate microps for magnetically templated hydrogels. J. Colloid Interface Sci. 561, 647–658 (2020). https://doi.org/10.1016/j.jcis.2019.11.040
L. Moroni, J.A. Burdick, C. Highley, S.J. Lee, Y. Morimoto et al., Biofabrication strategies for 3D in vitro models and regenerative medicine. Nat. Rev. Mater. 3, 21–37 (2018). https://doi.org/10.1038/s41578-018-0006-y
H. Ravanbakhsh, V. Karamzadeh, G. Bao, L. Mongeau, D. Juncker et al., Emerging technologies in multi-material bioprinting. Adv. Mater. 33, 2104730 (2021). https://doi.org/10.1002/adma.202104730
J. Groll, J.A. Burdick, D.-W. Cho, B. Derby, M. Gelinsky et al., A definition of bioinks and their distinction from biomaterial inks. Biofabrication 11, 013001 (2018). https://doi.org/10.1088/1758-5090/aaec52
Y. Luo, T. Zhang, X. Lin, 3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization. Chem. Eng. J. 430, 132926 (2022). https://doi.org/10.1016/j.cej.2021.132926
X. Wang, Y. Yu, C. Yang, L. Shang, Y. Zhao et al., Dynamically responsive scaffolds from microfluidic 3D printing for skin flap regeneration. Adv. Sci. 9, e2201155 (2022). https://doi.org/10.1002/advs.202201155
H. Ravanbakhsh, G. Bao, Z. Luo, L.G. Mongeau, Y.S. Zhang, Composite inks for extrusion printing of biological and biomedical constructs. ACS Biomater. Sci. Eng. 7, 4009–4026 (2021). https://doi.org/10.1021/acsbiomaterials.0c01158
H. Ravanbakhsh, G. Bao, N. Latifi, L.G. Mongeau, Carbon nanotube composite hydrogels for vocal fold tissue engineering: biocompatibility, rheology, and porosity. Mater. Sci. Eng. C Mater. Biol. Appl. 103, 109861 (2019). https://doi.org/10.1016/j.msec.2019.109861
S. Xin, K.A. Deo, J. Dai, N.K.R. Pandian, D. Chimene et al., Generalizing hydrogel microps into a new class of bioinks for extrusion bioprinting. Sci. Adv. 7, eabk3087 (2021). https://doi.org/10.1126/sciadv.abk3087
C.B. Highley, K.H. Song, A.C. Daly, J.A. Burdick, Jammed microgel inks for 3D printing applications. Adv. Sci. 6, 1801076 (2019). https://doi.org/10.1002/advs.201801076
Y. Ou, S. Cao, Y. Zhang, H. Zhu, C. Guo et al., Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat. Commun. 14, 322 (2023). https://doi.org/10.1038/s41467-022-35140-5
L. Ouyang, J.P. Wojciechowski, J. Tang, Y. Guo, M.M. Stevens, Tunable microgel-templated porogel (MTP) bioink for 3D bioprinting applications. Adv. Healthc. Mater. 11, 2270039 (2022). https://doi.org/10.1002/adhm.202270039
Q. Feng, D. Li, Q. Li, H. Li, Z. Wang et al., Assembling microgels via dynamic cross-linking reaction improves printability, microporosity, tissue-adhesion, and self-healing of microgel bioink for extrusion bioprinting. ACS Appl. Mater. Interfaces 14, 15653–15666 (2022). https://doi.org/10.1021/acsami.2c01295
Y. Cao, J. Tan, H. Zhao, T. Deng, Y. Hu et al., Bead-jet printing enabled sparse mesenchymal stem cell patterning augments skeletal muscle and hair follicle regeneration. Nat. Commun. 13, 7463 (2022). https://doi.org/10.1038/s41467-022-35183-8
X. Gu, Y. Zha, Y. Li, J. Chen, S. Liu et al., Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Acta Biomater. 141, 190–197 (2022). https://doi.org/10.1016/j.actbio.2022.01.021
N. Zoratto, D. Di Lisa, J. de Rutte, M.N. Sakib, A.R. Alves E Silva et al., In situ forming microporous gelatin methacryloyl hydrogel scaffolds from thermostable microgels for tissue engineering. Bioeng. Transl. Med. 5, e10180 (2020). https://doi.org/10.1002/btm2.10180
H. Ke, H. Yang, Y. Zhao, T. Li, D. Xin et al., 3D gelatin microsphere scaffolds promote functional recovery after spinal cord hemisection in rats. Adv. Sci. 10, 2204528 (2023). https://doi.org/10.1002/advs.202204528
C. Fan, S.-H. Zhan, Z.-X. Dong, W. Yang, W.-S. Deng et al., Cross-linked gelatin microsphere-based scaffolds as a delivery vehicle of MC3T3-E1 cells: in vitro and in vivo evaluation. Mater. Sci. Eng. C Mater. Biol. Appl. 108, 110399 (2020). https://doi.org/10.1016/j.msec.2019.110399
X. Han, M. Sun, B. Chen, Q. Saiding, J. Zhang et al., Lotus seedpod-inspired internal vascularized 3D printed scaffold for bone tissue repair. Bioact. Mater. 6, 1639–1652 (2020). https://doi.org/10.1016/j.bioactmat.2020.11.019
L. Guo, H. Chen, Y. Li, J. Zhou, J. Chen, Biocompatible scaffolds constructed by chondroitin sulfate microspheres conjugated 3D-printed frameworks for bone repair. Carbohydr. Polym. 299, 120188 (2023). https://doi.org/10.1016/j.carbpol.2022.120188
D. Park, E. Wershof, S. Boeing, A. Labernadie, R.P. Jenkins et al., Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions. Nat. Mater. 19, 227–238 (2020). https://doi.org/10.1038/s41563-019-0504-3
L. Wang, T. Li, Z. Wang, J. Hou, S. Liu et al., Injectable remote magnetic nanofiber/hydrogel multiscale scaffold for functional anisotropic skeletal muscle regeneration. Biomaterials 285, 121537 (2022). https://doi.org/10.1016/j.biomaterials.2022.121537
Z. Luo, G. Tang, H. Ravanbakhsh, W. Li, M. Wang et al., Vertical extrusion Cryo(bio)printing for anisotropic tissue manufacturing. Adv. Mater. 34, 2108931 (2022). https://doi.org/10.1002/adma.202108931
X. Liu, X. Mao, G. Ye, M. Wang, K. Xue et al., Bioinspired Andrias davidianus-Derived wound dressings for localized drug-elution. Bioact. Mater. 15, 482–494 (2022). https://doi.org/10.1016/j.bioactmat.2021.11.030
H. Zhu, X. Wu, R. Liu, Y. Zhao, L. Sun, ECM-inspired hydrogels with ADSCs encapsulation for rheumatoid arthritis treatment. Adv. Sci. 10, 2206253 (2023). https://doi.org/10.1002/advs.202206253
Q. Wei, D. Liu, G. Chu, Q. Yu, Z. Liu et al., TGF-β1-supplemented decellularized annulus fibrosus matrix hydrogels promote annulus fibrosus repair. Bioact. Mater. 19, 581–593 (2023). https://doi.org/10.1016/j.bioactmat.2022.04.025
J. Lou, D.J. Mooney, Chemical strategies to engineer hydrogels for cell culture. Nat. Rev. Chem. 6, 726–744 (2022). https://doi.org/10.1038/s41570-022-00420-7
N. Huebsch, E. Lippens, K. Lee, M. Mehta, S. Koshy et al., Matrix elasticity of void-forming hydrogels controls transplanted-stem-cell-mediated boneformation. Nat. Mater. 14, 1269–1277 (2015). https://doi.org/10.1038/nmat4407
L. Koivusalo, M. Kauppila, S. Samanta, V.S. Parihar, T. Ilmarinen et al., Tissue adhesive hyaluronic acid hydrogels for sutureless stem cell delivery and regeneration of corneal epithelium and stroma. Biomaterials 225, 119516 (2019). https://doi.org/10.1016/j.biomaterials.2019.119516
X. Liu, F. Li, Z. Dong, C. Gu, D. Mao et al., Metal-polyDNA nanops reconstruct osteoporotic microenvironment for enhanced osteoporosis treatment. Sci. Adv. 9, eadf3329 (2023). https://doi.org/10.1126/sciadv.adf3329
M. Ojansivu, A. Rashad, A. Ahlinder, J. Massera, A. Mishra et al., Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells. Biofabrication 11, 035010 (2019). https://doi.org/10.1088/1758-5090/ab0692
L. Ouyang, J.P.K. Armstrong, Y. Lin, J.P. Wojciechowski, C. Lee-Reeves et al., Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. Sci. Adv. 6, eabc5529 (2020). https://doi.org/10.1126/sciadv.abc5529
G. Eke, N. Mangir, N. Hasirci, S. MacNeil, V. Hasirci, Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering. Biomaterials 129, 188–198 (2017). https://doi.org/10.1016/j.biomaterials.2017.03.021
Y. Kang, J. Xu, L.-A. Meng, Y. Su, H. Fang et al., 3D bioprinting of dECM/Gel/QCS/nHAp hybrid scaffolds laden with mesenchymal stem cell-derived exosomes to improve angiogenesis and osteogenesis. Biofabrication 15, 024103 (2023). https://doi.org/10.1088/1758-5090/acb6b8
A.G. Kurian, R.K. Singh, K.D. Patel, J.-H. Lee, H.-W. Kim, Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact. Mater. 8, 267–295 (2022). https://doi.org/10.1016/j.bioactmat.2021.06.027
N. Kulkarni, P. Jain, A. Shindikar, P. Suryawanshi, N. Thorat, Advances in the colon-targeted chitosan based multiunit drug delivery systems for the treatment of inflammatory bowel disease. Carbohydr. Polym. 288, 119351 (2022). https://doi.org/10.1016/j.carbpol.2022.119351
K.J. Wolf, J.D. Weiss, S.G.M. Uzel, M.A. Skylar-Scott, J.A. Lewis, Biomanufacturing human tissues via organ building blocks. Cell Stem Cell 29, 667–677 (2022). https://doi.org/10.1016/j.stem.2022.04.012
B. Ayan, D.N. Heo, Z. Zhang, M. Dey, A. Povilianskas et al., Aspiration-assisted bioprinting for precise positioning of biologics. Sci. Adv. 6, eaaw5111 (2020). https://doi.org/10.1126/sciadv.aaw5111
C. Yang, X. Ma, P. Wu, L. Shang, Y. Zhao et al., Adhesive composite microspheres with dual antibacterial strategies for infected wound healing. Small 19, 2301092 (2023). https://doi.org/10.1002/smll.202301092
L. Cui, J. Li, S. Guan, K. Zhang, K. Zhang et al., Injectable multifunctional CMC/HA-DA hydrogel for repairing skin injury. Mater. Today Bio 14, 100257 (2022). https://doi.org/10.1016/j.mtbio.2022.100257
V. Kanikireddy, K. Varaprasad, T. Jayaramudu, C. Karthikeyan, R. Sadiku, Carboxymethyl cellulose-based materials for infection control and wound healing: A review. Int. J. Biol. Macromol. 164, 963–975 (2020). https://doi.org/10.1016/j.ijbiomac.2020.07.160
F. Mushtaq, Z. Ali Raza, S.R. Batool, M. Zahid, O.C. Onder et al., Preparation, properties, and applications of gelatin-based hydrogels (GHs) in the environmental, technological, and biomedical sectors. Int. J. Biol. Macromol. 218, 601–633 (2022). https://doi.org/10.1016/j.ijbiomac.2022.07.168
J. Li, G. Wei, G. Liu, Y. Du, R. Zhang et al., Regulating type H vessel formation and bone metabolism via bone-targeting oral micro/nano-hydrogel microspheres to prevent bone loss. Adv. Sci. 10, e2207381 (2023). https://doi.org/10.1002/advs.202207381
H. Liu, Y. Wang, H. Wang, M. Zhao, T. Tao et al., A droplet microfluidic system to fabricate hybrid capsules enabling stem cell organoid engineering. Adv. Sci. 7, 1903739 (2020). https://doi.org/10.1002/advs.201903739
Z. Zhou, J. Cui, S. Wu, Z. Geng, J. Su, Silk fibroin-based biomaterials for cartilage/osteochondral repair. Theranostics 12, 5103–5124 (2022). https://doi.org/10.7150/thno.74548
G. Guan, Q. Zhang, Z. Jiang, J. Liu, J. Wan et al., Multifunctional silk fibroin methacryloyl microneedle for diabetic wound healing. Small 18, 2203064 (2022). https://doi.org/10.1002/smll.202203064
Z. Yang, Y. He, Y. Ma, L. Li, Y. Wang, A reversible adhesive hydrogel tape. Adv. Funct. Mater. 33, 2213150 (2023). https://doi.org/10.1002/adfm.202213150
S. Hu, Y. Fang, C. Liang, M. Turunen, O. Ikkala et al., Thermally trainable dual network hydrogels. Nat. Commun. 14, 3717 (2023). https://doi.org/10.1038/s41467-023-39446-w
J. Gu, R. Fu, S. Kang, X. Yang, Q. Song et al., Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating. Constr. Build. Mater. 341, 127722 (2022). https://doi.org/10.1016/j.conbuildmat.2022.127722
G.G. Giobbe, C. Crowley, C. Luni, S. Campinoti, M. Khedr et al., Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture. Nat. Commun. 10, 5658 (2019). https://doi.org/10.1038/s41467-019-13605-4
R. Curvello, G. Kerr, D.J. Micati, W.H. Chan, V.S. Raghuwanshi et al., Engineered plant-based nanocellulose hydrogel for small intestinal organoid growth. Adv. Sci. 8, 2002135 (2021). https://doi.org/10.1002/advs.202002135
S. Mohammadi, H. Ravanbakhsh, S. Taheri, G. Bao, L. Mongeau, Immunomodulatory microgels support proregenerative macrophage activation and attenuate fibroblast collagen synthesis. Adv. Healthc. Mater. 11, e2102366 (2022). https://doi.org/10.1002/adhm.202102366
S. Bian, L. Hao, X. Qiu, J. Wu, H. Chang et al., An injectable rapid-adhesion and anti-swelling adhesive hydrogel for hemostasis and wound sealing. Adv. Funct. Mater. 32, 2270260 (2022). https://doi.org/10.1002/adfm.202270260
C. Song, D. Huang, C. Zhao, Y. Zhao, Abalone-inspired adhesive and photo-responsive microp delivery systems for periodontal drug therapy. Adv. Sci. 9, e2202829 (2022). https://doi.org/10.1002/advs.202202829
H. Madry, L. Gao, A. Rey-Rico, J.K. Venkatesan, K. Müller-Brandt et al., Thermosensitive hydrogel based on PEO-PPO-PEO poloxamers for a controlled in situ release of recombinant adeno-associated viral vectors for effective gene therapy of cartilage defects. Adv. Mater. 32, e1906508 (2020). https://doi.org/10.1002/adma.201906508
M. Fu, Z. Sun, X. Liu, Z. Huang, G. Luan et al., Highly stretchable, resilient, adhesive, and self-healing ionic hydrogels for thermoelectric application. Adv. Funct. Mater. 33, 2306086 (2023). https://doi.org/10.1002/adfm.202306086
Q. Zhang, Y. Jiang, L. Chen, W. Chen, J. Li et al., Ultra-compliant and tough thermochromic polymer for self-regulated smart windows. Adv. Funct. Mater. 31, 2100686 (2021). https://doi.org/10.1002/adfm.202100686
X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31, 2104928 (2021). https://doi.org/10.1002/adfm.202104928
M.-K. Zhang, X.-H. Zhang, G.-Z. Han, Magnetic alginate/PVA hydrogel microspheres with selective adsorption performance for aromatic compounds. Sep. Purif. Technol. 278, 119547 (2021). https://doi.org/10.1016/j.seppur.2021.119547
H. Wu, L. Shen, Z. Zhu, X. Luo, Y. Zhai et al., A cell-free therapy for articular cartilage repair based on synergistic delivery of SDF-1 & KGN with HA injectable scaffold. Chem. Eng. J. 393, 124649 (2020). https://doi.org/10.1016/j.cej.2020.124649
Y. Hong, J. Chen, H. Fang, G. Li, S. Yan et al., All-in-one hydrogel realizing adipose-derived stem cell spheroid production and in vivo injection via “gel-sol” transition for angiogenesis in hind limb ischemia. ACS Appl. Mater. Interfaces 12, 11375–11387 (2020). https://doi.org/10.1021/acsami.9b23534