NASICON-Structured NaTi2(PO4)3 for Sustainable Energy Storage
Corresponding Author: Jianmin Ma
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 44
Abstract
Several emerging energy storage technologies and systems have been demonstrated that feature low cost, high rate capability, and durability for potential use in large-scale grid and high-power applications. Owing to its outstanding ion conductivity, ultrafast Na-ion insertion kinetics, excellent structural stability, and large theoretical capacity, the sodium superionic conductor (NASICON)-structured insertion material NaTi2(PO4)3 (NTP) has attracted considerable attention as the optimal electrode material for sodium-ion batteries (SIBs) and Na-ion hybrid capacitors (NHCs). On the basis of recent studies, NaTi2(PO4)3 has raised the rate capabilities, cycling stability, and mass loading of rechargeable SIBs and NHCs to commercially acceptable levels. In this comprehensive review, starting with the structures and electrochemical properties of NTP, we present recent progress in the application of NTP to SIBs, including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors. After a thorough discussion of the unique NASICON structure of NTP, various strategies for improving the performance of NTP electrode have been presented and summarized in detail. Further, the major challenges and perspectives regarding the prospects for the use of NTP-based electrodes in energy storage systems have also been summarized to offer a guideline for further improving the performance of NTP-based electrodes.
Highlights:
1 For the first time, we fully presented the recent progress of the application of NaTi2(PO4)3 on sodium-ion batteries including non-aqueous batteries, aqueous batteries, aqueous batteries with desalination, and sodium-ion hybrid capacitors.
2 The unique NASICON structure of NaTi2(PO4)3 and the various strategies on improving the performance of NaTi2(PO4)3 electrode have been presented and summarized in detail.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
- S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
- X. Zhang, X. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage: a review. J. Energy Chem. 25(6), 967–984 (2016). https://doi.org/10.1016/j.jechem.2016.11.003
- S. Qi, D. Wu, Y. Dong, J. Liao, C.W. Foster, C. O’Dwyer, Y. Feng, C. Liu, J. Ma, Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 370, 185–207 (2019). https://doi.org/10.1016/j.cej.2019.03.166
- F. Li, Z. Wei, Y. Feng, J. Ma, L. Mai, Sodium-based batteries: from critical materials to battery systems. J. Mater. Chem. A 7, 9406–9943 (2019). https://doi.org/10.1039/c8ta11999f
- L. Wang, Y. Wang, M. Wu, Z. Wei, C. Cui et al., Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc–air batteries. Small 14(20), 1800737 (2018). https://doi.org/10.1002/smll.201800737
- S. Qi, L. Mi, K. Song, K. Yang, J. Ma, X. Feng, J. Zhang, W. Chen, Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 123(5), 2775–2782 (2019). https://doi.org/10.1021/acs.jpcc.8b11069
- J. Liu, J. Liang, C. Wang, J. Ma, Electrospun CoSe@ N-doped carbon nanofibers with highly capacitive Li storage. J. Energy Chem. 33, 160–166 (2019). https://doi.org/10.1016/j.jechem.2018.09.006
- J. Liao, R. Tan, Z. Kuang, C. Cui, Z. Wei et al., Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chin. Chem. Lett. 29(12), 1785–1790 (2018). https://doi.org/10.1016/j.cclet.2018.11.018
- W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
- R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
- B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
- L. Yu, L.P. Wang, H. Liao, J. Wang, Z. Feng et al., Understanding fundamentals and reaction mechanisms of electrode materials for Na-ion batteries. Small 14(16), 1703338 (2018). https://doi.org/10.1002/smll.201703338
- J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
- J. Cui, S. Yao, J.-K. Kim, Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater. 7, 64–114 (2017). https://doi.org/10.1016/j.ensm.2016.12.005
- A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu, The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 8(17), 1702869 (2018). https://doi.org/10.1002/aenm.201702869
- J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2018). https://doi.org/10.1002/aenm.201701428
- Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo, Y. Huang, L. Hu, Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3(7), 1604–1612 (2018). https://doi.org/10.1021/acsenergylett.8b00609
- Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici, H. Li, X. Huang, L. Chen, Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
- N. Wang, C. Chu, X. Xu, Y. Du, J. Yang, Z. Bai, S. Dou, Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+ , K+) ion batteries. Adv. Energy Mater. 8(27), 1801888 (2018). https://doi.org/10.1002/aenm.201801888
- J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7(11), 3683–3689 (2014). https://doi.org/10.1039/c4ee02378a
- Y. Huang, F. Chen, L. Guo, H.Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5(34), 18157–18165 (2017). https://doi.org/10.1039/c7ta03725b
- M.Á. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 7(20), 1700463 (2017). https://doi.org/10.1002/aenm.201700463
- Y.Q. Luo, Y.J. Tang, S.S. Zheng, Y. Yan, H.Q. Xue, H. Pang, Dual anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 6(10), 4236–4259 (2018). https://doi.org/10.1039/c8ta00107c
- S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29(48), 1700431 (2017). https://doi.org/10.1002/adma.201700431
- J. Mao, T. Zhou, Y. Zheng, H. Gao, H.K. Liu, Z. Guo, Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/C7TA10500B
- Z. Wei, L. Wang, M. Zhuo, W. Ni, H. Wang, J. Ma, Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 6(26), 12185–12214 (2018). https://doi.org/10.1039/C8TA02695E
- L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
- S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 6(7), 2067–2081 (2013). https://doi.org/10.1039/c3ee40811f
- Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c
- P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46(5), 1094–1103 (2013). https://doi.org/10.1021/ar200306b
- R. Thangavel, B. Moorthy, D.K. Kim, Y.S. Lee, Pushing the energy output and cyclability of sodium hybrid capacitors at high power to new limits. Adv. Energy Mater. 7(14), 1602654 (2017). https://doi.org/10.1016/j.jechem.2016.11.003
- Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P. Taberna, M. Salanne, G. Yushin, P. Simon, Materials for supercapacitors: when Li-ion battery power is not enough. Mater. Today 21(4), 419–436 (2018). https://doi.org/10.1016/j.mattod.2018.01.035
- F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/c8ta02416b
- J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5(1), 1700322 (2018). https://doi.org/10.1002/advs.201700322
- Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
- H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
- Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
- Z. Jian, Y.S. Hu, X. Ji, W. Chen, Nasicon-structured materials for energy storage. Adv. Mater. 29(20), 1601925 (2017). https://doi.org/10.1002/adma.201601925
- Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, L. Mai, Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6(14), 1600389 (2016). https://doi.org/10.1002/aenm.201600389
- C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng, L. Huang, L. Zhou, G. Zhang, L. He, L. Mai, Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026
- Q. Ni, Y. Bai, F. Wu, C. Wu, Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 4(3), 1600275 (2017). https://doi.org/10.1002/advs.201600275
- Z. Li, D. Young, K. Xiang, W.C. Carter, Y.M. Chiang, Towards high power high energy aqueous sodium‐ion batteries: the NaTi2(PO4)3/Na0. 44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013). https://doi.org/10.1002/aenm.201200598
- Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6(19), 1502197 (2016). https://doi.org/10.1002/aenm.201502197
- C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier, Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9(6), 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787
- X. Wu, Y. Cao, X. Ai, J. Qian, H. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
- S.I. Park, I. Gocheva, S. Okada, J.-I. Yamaki, Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158(10), A1067–A1070 (2011). https://doi.org/10.1149/1.3611434
- G. Yang, H. Song, M. Wu, C. Wang, Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life. J. Mater. Chem. A 3(36), 18718–18726 (2015). https://doi.org/10.1039/c5ta04491j
- L. Zhang, X. Wang, W. Deng, X. Zang, C. Liu et al., An open holey structure enhanced rate capability in a NaTi2(PO4)3/C nanocomposite and provided ultralong-life sodium-ion storage. Nanoscale 10(3), 958–963 (2018). https://doi.org/10.1039/c7nr07000d
- C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, A nasicon-type phase as intercalation electrode—NaTi2(PO4)3. Mater. Res. Bull. 22(5), 631–639 (1987). https://doi.org/10.1016/0025-5408(87)90112-7
- P. Senguttuvan, G. Rousse, M. Arroyo, Y. De Dompablo, H. Vezin, J.-M. Tarascon, M. Palacín, Low-potential sodium insertion in a nasicon-type structure through the Ti (III)/Ti (II) redox couple. J. Am. Chem. Soc. 135(10), 3897–3903 (2013). https://doi.org/10.1021/ja311044t
- H. Kabbour, D. Coillot, M. Colmont, C. Masquelier, O. Mentré, α-Na3M2 (PO4)3 (M=Ti, Fe): absolute cationic ordering in NASICON-type phases. J. Am. Chem. Soc. 133(31), 11900–11903 (2011). https://doi.org/10.1021/ja204321y
- J. Liu, J. Zhang, S. Cheng, Z. Liu, B. Han, DNA-mediated synthesis of microporous single-crystal-like NaTi2(PO4)3 nanospheres. Small 4(11), 1976–1979 (2008). https://doi.org/10.1002/smll.200800284
- H. Guler, F. Kurtulus, A rapid synthesis of sodium titanium phosphate, NaTi2(PO4)3 by using microwave energy. Mater. Chem. Phys. 99(2–3), 394–397 (2006). https://doi.org/10.1016/j.matchemphys.2005.11.011
- R. Velchuri, B.V. Kumar, V.R. Devi, S.I. Seok, M. Vithal, Low temperature preparation of NaTi2(PO4)3 by sol–gel method. Int. J. Nanotechnol. 7(9–12), 1077–1086 (2010). https://doi.org/10.1504/ijnt.2010.034712
- D. Ribero, K.C. Seymour, W.M. Kriven, Synthesis of NaTi2(PO4)3 by the inorganic-organic steric entrapment method and its thermal expansion behavior. J. Am. Ceram. Soc. 99(11), 3586–3593 (2016). https://doi.org/10.1111/jace.14420
- M. Vujkovic, M. Mitric, S. Mentus, High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions. J. Power Sources 288, 176–186 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.132
- G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, H. Li, C. Zhang, Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries. J. Mater. Chem. A 2(48), 20659–20666 (2014). https://doi.org/10.1039/c4ta04732j
- G. Pang, C. Yuan, P. Nie, B. Ding, J. Zhu, X. Zhang, Synthesis of nasicon-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6(12), 6328–6334 (2014). https://doi.org/10.1039/c3nr06730k
- Y. Jiang, L. Zeng, J. Wang, W. Li, F. Pan, Y. Yu, A carbon coated nasicon structure material embedded in porous carbon enabling superior sodium storage performance: NaTi2(PO4)3 as an example. Nanoscale 7(35), 14723–14729 (2015). https://doi.org/10.1039/c5nr03978a
- J. Song, S. Park, J. Gim, V. Mathew, S. Kim, J. Jo, S. Kim, J. Kim, High rate performance of a NaTi2(PO4)3/rGO composite electrode via pyro synthesis for sodium ion batteries. J. Mater. Chem. A 4(20), 7815–7822 (2016). https://doi.org/10.1039/c6ta02720b
- L. Fu, X. Xue, Y. Tang, D. Sun, H. Xie, H. Wang, Size controlling and surface engineering enable NaTi2(PO4)3/C outstanding sodium storage properties. Electrochim. Acta 289, 21–28 (2018). https://doi.org/10.1016/j.electacta.2018.09.024
- M. Sun, X. Han, S. Chen, NaTi2(PO4)3@C nanoparticles embedded in 2D sulfur-doped graphene sheets as high-performance anode materials for sodium energy storage. Electrochim. Acta 289, 131–138 (2018). https://doi.org/10.1016/j.electacta.2018.08.061
- Y. Niu, M. Xu, Y. Zhang, J. Han, Y. Wang, C.M. Li, Detailed investigation of a NaTi2(PO4)3 anode prepared by pyro-synthesis for Na-ion batteries. RSC Adv. 6(51), 45605–45611 (2016). https://doi.org/10.1039/c6ra06533c
- J.S. Ko, C.S. Choi, B. Dunn, J.W. Long, Electrochemical characterization of Na-ion charge-storage properties for nanostructured NaTi2(PO4)3 as a function of crystalline order. J. Electrochem. Soc. 164(9), A2124–A2130 (2017). https://doi.org/10.1149/2.1391709jes
- X. Yang, K. Wang, X. Wang, G. Chang, S. Sun, Carbon-coated NaTi2(PO4)3 composite: a promising anode material for sodium-ion batteries with superior Na-storage performance. Solid State Ionics 314, 61–65 (2018). https://doi.org/10.1016/j.ssi.2017.11.016
- D. Cai, B. Qu, H. Zhan, Porous NaTi2(PO4)3 nanoparticles coated with a thin carbon layer for sodium-ion batteries with enhanced rate and cycling performance. Mater. Lett. 218, 14–17 (2018). https://doi.org/10.1016/j.matlet.2018.01.131
- D. Xu, P. Wang, R. Yang, Nitrogen-doped carbon decorated NaTi2(PO4)3 composite as an anode for sodium-ion batteries with outstanding electrochemical performance. Ceram. Int. 44(6), 7159–7164 (2018). https://doi.org/10.1016/j.ceramint.2018.01.160
- D. Wang, Q. Liu, C. Chen, M. Li, X. Meng et al., Nasicon-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces. 8(3), 2238–2246 (2016). https://doi.org/10.1021/acsami.5b11003
- L. Chen, J. Liu, Z. Guo, Y. Wang, C. Wang, Y. Xia, Electrochemical profile of LiTi2(PO4)3 and NaTi2(PO4)3 in lithium, sodium or mixed ion aqueous solutions. J. Electrochem. Soc. 163(6), A904–A910 (2016). https://doi.org/10.1149/2.0531606jes
- H. Liu, Y. Liu, 1d mesoporous NaTi2(PO4)3/carbon nanofiber: the promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018). https://doi.org/10.1016/j.ceramint.2017.12.147
- M. Li, L. Liu, P. Wang, J. Li, Q. Leng, G. Cao, Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim. Acta 252, 523–531 (2017). https://doi.org/10.1016/j.electacta.2017.09.020
- Q. Hu, M. Yu, J. Liao, Z. Wen, C. Chen, Porous carbon-coated NaTi2(PO4)3 with superior rate and low-temperature properties. J. Mater. Chem. A 6(5), 2365–2370 (2018). https://doi.org/10.1039/c7ta10207k
- H. Liu, H. Zhang, C. Su, X. Li, Y. Guo, Three-dimensional NaTi2(PO4)3@C microsphere as a high-performance anode material for advanced sodium-ion batteries. Solid State Ionics 322, 79–84 (2018). https://doi.org/10.1016/j.ssi.2018.05.005
- P. Wei, Y. Liu, Z. Wang, Y. Huang, Y. Jin et al., Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl. Mater. Interfaces. 10(32), 27039–27046 (2018). https://doi.org/10.1021/acsami.8b08415
- S. Yu, Y. Wan, C. Shang, Z. Wang, L. Zhou, J. Zou, H. Cheng, Z. Lu, Ultrafine NaTi2(PO4)3 nanoparticles encapsulated in N-CNFs as ultra-stable electrode for sodium storage. Front. Chem. 6, 270 (2018). https://doi.org/10.3389/fchem.2018.00270
- Z. Huang, L. Liu, L. Yi, W. Xiao, M. Li et al., Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries. J. Power Sources 325, 474–481 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.066
- Y. Niu, M. Xu, C. Guo, C.M. Li, Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. J. Colloid Interf. Sci. 474, 88–92 (2016). https://doi.org/10.1016/j.jcis.2016.04.021
- G.B. Xu, L.W. Yang, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes. J. Power Sources 327, 580–590 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.089
- W. Wu, A. Mohamed, J.F. Whitacre, Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160(3), A497–A504 (2013). https://doi.org/10.1149/2.054303jes
- J. Liang, K. Fan, Z. Wei, X. Gao, W. Song, J. Ma, Porous NaTi2(PO4)3@C nanocubes as improved anode for sodium-ion batteries. Mater. Res. Bull. 99, 343–348 (2018). https://doi.org/10.1016/j.materresbull.2017.11.030
- G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi, T. Abe, Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power Sources 318, 41–48 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.013
- N. Hao, R. Hua, S. Chen, Y. Zhang, Z. Zhou, J. Qian, Q. Liu, K.J.B. Wang, Bioelectronics. Multiple signal-amplification via ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens. Bioelectron. 101, 14–20 (2018). https://doi.org/10.1016/j.bios.2017.10.014
- J. Yang, H. Wang, P. Hu, J. Qi, L. Guo, L. Wang, A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small 11(31), 3744–3749 (2015). https://doi.org/10.1002/smll.201500144
- Y. Jiang, J. Shi, M. Wang, L. Zeng, L. Gu, Y. Yu, Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl. Mater. Interfaces. 8(1), 689–695 (2016). https://doi.org/10.1021/acsami.5b09811
- L. Wang, B. Wang, G. Liu, T. Liu, T. Gao, D. Wang, Carbon nanotube decorated NaTi2(PO4)3/C nanocomposite for a high-rate and low-temperature sodium-ion battery anode. RSC Adv. 6(74), 70277–70283 (2016). https://doi.org/10.1039/c6ra11042h
- M. Bian, L. Tian, Design and synthesis of three-dimensional NaTi2(PO4)3@CNT microspheres as advanced anode materials for rechargeable sodium-ion batteries. Ceram. Int. 43(12), 9543–9546 (2017). https://doi.org/10.1016/j.ceramint.2017.04.029
- Z. Zhou, N. Li, C. Zhang, X. Chen, F. Xu, C. Peng, Preparation of carbon layer and carbon nanotube co-decorated NaTi2(PO4)3 anode and its application in sodium-ion batteries. Solid State Ion. 324, 87–91 (2018). https://doi.org/10.1016/j.ssi.2018.06.011
- X. Li, P. Yan, M.H. Engelhard, A.J. Crawford, V.V. Viswanathan, C. Wang, J. Liu, V.L. Sprenkle, The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy 27, 664–672 (2016). https://doi.org/10.1016/j.nanoen.2016.07.030
- B. Zhang, R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, J.-M. Tarascon, Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 7, 10308 (2016). https://doi.org/10.1038/ncomms10308
- S. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang, M. Chen, M. Ishida, H. Zhou, High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 8(4), 1237–1244 (2015). https://doi.org/10.1039/c4ee03361b
- J.-Y. Hwang, S.-T. Myung, J.-H. Lee, A. Abouimrane, I. Belharouak, Y.-K. Sun, Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 16, 218–226 (2015). https://doi.org/10.1016/j.nanoen.2015.06.017
- H. Wang, Y. Xiao, C. Sun, C. Lai, X. Ai, A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. RSC Adv. 5(129), 106519–106522 (2015). https://doi.org/10.1039/c5ra21235a
- D. Yang, X. Sun, K. Lim, R.R. Gaddam, N.A. Kumar, K. Kang, X.S. Zhao, Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. J. Power Sources 362, 358–365 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.053
- H. Zhang, B. Qin, D. Buchholz, S. Passerini, High-efficiency sodium-ion battery based on NASICON electrodes with high power and long lifespan. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.1028b01390
- J. Peng, J. Wang, H. Yi, W. Hu, Y. Yu et al., A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs. Adv. Energy Mater. 8(11), 1702856 (2018). https://doi.org/10.1002/aenm.201702856
- X. Li, X. Zhu, J. Liang, Z. Hou, Y. Wang, N. Lin, Y. Zhu, Y. Qian, Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries. J. Electrochem. Soc. 161(6), A1181–A1187 (2014). https://doi.org/10.1149/2.0081409jes
- F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
- X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/C7CS00871F
- H. Zhang, M. Chhowalla, Z. Liu, 2D nanomaterials: graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47(9), 3015–3017 (2018). https://doi.org/10.1039/C8CS90048E
- J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J. Energy Chem. 33, 100–124 (2018). https://doi.org/10.1016/j.jechem.2018.1009.1001
- G. Nyström, A. Marais, E. Karabulut, L. Wågberg, Y. Cui, M.M. Hamedi, Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun. 6, 7259 (2015). https://doi.org/10.1038/ncomms8259
- P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297
- Y. Hu, X. Ma, P. Guo, F. Jaeger, Z. Wang, Design of NaTi2(PO4)3 nanocrystals embedded in N-doped graphene sheets for sodium-ion battery anode with superior electrochemical performance. Ceram. Int. 43(15), 12338–12342 (2017). https://doi.org/10.1016/j.ceramint.2017.06.098
- Y. Zuo, L. Chen, Z. Zuo, Y. Huang, X. Liu, Rational construction of NaTi2(PO4)3@C nanocrystals embedded in graphene sheets as anode materials for Na-ion batteries. Ceram. Int. 43(15), 12915–12919 (2017). https://doi.org/10.1016/j.ceramint.2017.06.189
- H.-K. Roh, H.-K. Kim, M.-S. Kim, D.-H. Kim, K.Y. Chung, K.C. Roh, K.-B. Kim, In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 9(6), 1844–1855 (2016). https://doi.org/10.1007/s12274-016-1077-y
- Z. Wang, J. Liang, K. Fan, X. Liu, C. Wang, J. Ma, Porous NaTi2(PO4)3 nanocubes anchored on porous carbon nanosheets for high performance sodium-ion batteries. Front. Chem. 6, 396 (2018). https://doi.org/10.3389/fchem.2018.00396
- Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016). https://doi.org/10.1002/advs.201500286
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- Q. Yang, T. Jiao, M. Li, Y. Li, L. Ma et al., In situ formation of NaTi2(PO4)3 cubes on Ti3C2 Mxene for dual-mode sodium storage. J. Mater. Chem. A 6(38), 18525–18532 (2018). https://doi.org/10.1039/C8TA06995F
- C. Yang, X. Sun, Y.R. Zhang, Y. Liu, Q.A. Zhang, C.Z. Yuan, Facile synthesis of hierarchical NaTi2(PO4)3/Ti3C2 nanocomposites with superior sodium storage performance. Mater. Lett. 236, 408–411 (2019). https://doi.org/10.1016/j.matlet.2018.10.147
- D. Guo, J. Qin, C. Zhang, M. Cao, Constructing flexible and binder-free NaTi2(PO4)3 film electrode with a sandwich structure by a two-step graphene hybridizing strategy as an ultrastable anode for long-life sodium-ion batteries. Cryst. Growth Des. 18(6), 3291–3301 (2018). https://doi.org/10.1021/acs.cgd.7b01549
- L. Xu, G. Xu, Z. Chen, X. Wei, J. Cao, L. Yang, 3D nanocomposite archiecture constructed by reduced graphene oxide, thermally-treated protein and mesoporous NaTi2(PO4)3 nanocrystals as free-standing electrodes for advanced sodium ion battery. J. Mater. Sci.-Mater. Electron. 29(11), 9258–9267 (2018). https://doi.org/10.1007/s10854-018-8955-x
- G. Xu, Z. Li, X. Wei, L. Yang, P.K. Chu, Monolithic hierarchical carbon assemblies embedded with mesoporous NaTi2(PO4)3 nanocrystals for flexible high-performance sodium anodes. Electrochim. Acta 254, 328–336 (2017). https://doi.org/10.1016/j.electacta.2017.09.121
- Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan, L. Ma, Q. Yang, D. Wang, C. Zhi, Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018). https://doi.org/10.1002/adfm.201804560
- M.-I. Jamesh, Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. J. Energy Chem. 32, 15–44 (2018). https://doi.org/10.1016/j.jechem.2018.06.011
- Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
- D. Guo, J. Qin, Z. Yin, J. Bai, Y.-K. Sun, M. Cao, Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018). https://doi.org/10.1016/j.nanoen.2017.12.038
- G. Xu, L. Yang, Z. Li, X. Wei, P.K. Chu, Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. J. Mater. Chem. A 5(6), 2749–2758 (2017). https://doi.org/10.1039/c6ta09673e
- L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8(11), 1702657 (2018). https://doi.org/10.1002/aenm.201702657
- C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.S. Hu, L. Chen, Solid-state sodium batteries. Adv. Energy Mater. 8(17), 1703012 (2018). https://doi.org/10.1002/aenm.201703012
- A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012). https://doi.org/10.1038/ncomms1843
- H. Hou, Q. Xu, Y. Pang, L. Li, J. Wang, C. Zhang, C. Sun, Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Adv. Sci. 4(8), 1700072 (2017). https://doi.org/10.1002/advs.201700072
- R. Gao, R. Tan, L. Han, Y. Zhao, Z. Wang, L. Yang, F. Pan, Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J. Mater. Chem. A 5(11), 5273–5277 (2017). https://doi.org/10.1039/c7ta00314e
- K. Vignarooban, R. Kushagra, A. Elango, P. Badami, B.-E. Mellander, X. Xu, T. Tucker, C. Nam, A. Kannan, Current trends and future challenges of electrolytes for sodium-ion batteries. Int. J. Hydrogen Energy 41(4), 2829–2846 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.090
- K. Zhao, Y. Liu, S. Zhang, S. He, N. Zhang, J. Yang, Z. Zhan, A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na–βʺ-Al2O3 electrolyte and NaTi2(PO4)3 cathode. Electrochem. Commun. 69, 59–63 (2016). https://doi.org/10.1016/j.elecom.2016.06.003
- X. Jiang, Z. Zeng, L. Xiao, X. Ai, H. Yang, Y. Cao, An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan. ACS Appl. Mater. Interfaces 9(50), 43733–43738 (2017). https://doi.org/10.1021/acsami.7b14946
- D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang, C. Wang, Y. Xia, Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1703008 (2018). https://doi.org/10.1002/aenm.201703008
- A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M. Palacin, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015). https://doi.org/10.1039/c4ta04428b
- Z. Zeng, X. Jiang, R. Li, D. Yuan, X. Ai, H. Yang, Y. Cao, A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 3(9), 1600066 (2016). https://doi.org/10.1002/advs.201600066
- S. Yu, Z. Liu, H. Tempel, H. Kungl, R.-A. Eichel, Self-standing nasicon-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries. J. Mater. Chem. A 6(37), 18304–18317 (2018). https://doi.org/10.1039/c8ta07313a
- E. Ventosa, D. Buchholz, S. Klink, C. Flox, L.G. Chagas, C. Vaalma, W. Schuhmann, S. Passerini, J.R. Morante, Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type NaxNi0.22Co0.11Mn0.66O2-NaTi2(PO4)3. Chem. Commun. 51(34), 7298–7301 (2015). https://doi.org/10.1039/c4cc09597a
- M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo, J. Zhang, X. Han, J. Ma, Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J. Mater. Chem. A 6(23), 10918–10925 (2018). https://doi.org/10.1039/c8ta02416b
- F.E. Mouahid, M. Bettach, M. Zahir, P. Maldonado-Manso, S. Bruque, E.R. Losilla, M.A.G. Aranda, Crystal chemistry and ion conductivity of the Na 1+x Ti 2−x Alx(PO4)3 (0 ≤ x≤0.9) NASICON series. J. Mater. Chem. 10(12), 2748–2757 (2000). https://doi.org/10.1039/b004837m
- M.J. Aragón, C. Vidal-Abarca, P. Lavela, J.L. Tirado, High reversible sodium insertion into iron substituted Na 1+x Ti 2−x Fex(PO4)3. J. Power Sources 252, 208–213 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.006
- S. Difi, I. Saadoune, M.T. Sougrati, R. Hakkou, K. Edstrom, P.-E. Lippens, Role of iron in Na1.5Fe0.5Ti1.5(PO4)3/C as electrode material for Na-ion batteries studied by operando mössbauer spectroscopy. Hyperfine Interact. 237(1), 61 (2016). https://doi.org/10.1007/s10751-016-1292-7
- S. Difi, I. Saadoune, M.T. Sougrati, R. Hakkou, K. Edstrom, P.-E. Lippens, Mechanisms and performances of Na1.5Fe0.5Ti1.5(PO4)3/C composite as electrode material for Na-ion batteries. J. Phys. Chem. C 119(45), 25220–25234 (2015). https://doi.org/10.1021/acs.jpcc.5b07931
- H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
- Z. Jiang, J. Zhu, Y. Li, Z. He, W. Meng, Y. Jiang, L. Dai, L. Wang, Effect of Sn doping on the electrochemical performance of NaTi2(PO4)3/C composite. Ceram. Intern. 44(13), 15646–15652 (2018). https://doi.org/10.1016/j.ceramint.2018.05.233
- F. Zhang, W. Li, X. Xiang, M. Sun, Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries. Chemistry 23(52), 12944–12948 (2017). https://doi.org/10.1002/chem.201703044
- J.-Y. Luo, W.-J. Cui, P. He, Y.-Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2(9), 760–765 (2010). https://doi.org/10.1038/nchem.763
- H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
- Y. Wang, J. Liu, B. Lee, R. Qiao, Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015). https://doi.org/10.1038/ncomms7401
- H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/C3EE40847G
- Y. You, Z. Sang, J. Liu, Recent developments on aqueous sodium-ion batteries. Mater. Technol. 31(9), 501–509 (2016). https://doi.org/10.1080/10667857.2016.1189709
- F. Sagane, Synthesis of NaTi2(PO4)3 thin-film electrodes by sol–gel method and study on the kinetic behavior of Na+-ion insertion/extraction reaction in aqueous solution. J. Electrochem. Soc. 163(13), A2835–A2839 (2016). https://doi.org/10.1149/2.0161614jes
- K. Nakamoto, Y. Kano, A. Kitajou, S. Okada, Electrolyte dependence of the performance of a Na2FeP2O7/NaTi2(PO4)3 rechargeable aqueous sodium-ion battery. J. Power Sources 327, 327–332 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.052
- A.I. Mohamed, N.J. Sansone, B. Kuei, N.R. Washburn, J.E. Whitacre, Using polypyrrole coating to improve cycling stability of NaTi2(PO4)3 as an aqueous Na-ion anode. J. Electrochem. Soc. 162(10), A2201–A2207 (2015). https://doi.org/10.1149/2.0961510jes
- X. Zhan, M. Shirpour, Evolution of solid/aqueous interface in aqueous sodium-ion batteries. Chem. Commun. 53(1), 204–207 (2017). https://doi.org/10.1039/c6cc08901a
- Y. He, Y. Hua, Y. Wu, C. Chi, Y. Shi, C. Ai, NaTi2(PO4)3/carbon and NaTi2(PO4)3/graphite composites as anode materials for aqueous rechargeable Na-ion batteries. Electrochemistry 84(9), 705–708 (2016). https://doi.org/10.5796/electrochemistry.84.705
- X. Cao, Y. Yang, Facile synthesis of NaTi2(PO4)3-carbon composite through solid state method and its application in aqueous sodium ion battery. Mater. Lett. 231, 183–186 (2018). https://doi.org/10.1016/j.matlet.2018.08.020
- T.-F. Hung, W.-H. Lan, Y.-W. Yeh, W.-S. Chang, C.-C. Yang, J.-C. Lin, Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustain. Chem. Eng. 4(12), 7074–7079 (2016). https://doi.org/10.1021/acssuschemeng.6b01962
- X. Yao, Y. Luo, Y. Li, W. Li, M. Fang, M. Shui, J. Shu, Y. Ren, The investigation of NaTi2(PO4)3@C/Ag as a high-performance anode material for aqueous rechargeable sodium-ion batteries. Mater. Res. Bull. 104, 194–201 (2018). https://doi.org/10.1016/j.materresbull.2018.03.035
- M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J. Phys. Chem. C 120(8), 4276–4286 (2016). https://doi.org/10.1021/acs.jpcc.5b11746
- B. Zhao, Q. Wang, S. Zhang, C. Deng, Self-assembled wafer-like porous NaTi2(PO4)3 decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries. J. Mater. Chem. A 3(22), 12089–12096 (2015). https://doi.org/10.1039/c5ta02568k
- B. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3–C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015). https://doi.org/10.1039/c5nr06505d
- W. Wu, J. Yan, A. Wise, A. Rutt, J.F. Whitacre, Using intimate carbon to enhance the performance of NaTi2(PO4)3 anode materials: carbon nanotubes vs graphite. J. Electrochem. Soc. 161(4), A561–A567 (2014). https://doi.org/10.1149/2.059404jes
- Z. Liu, Y. An, G. Pang, S. Dong, C. Xu, C. Mi, X. Zhang, Tin modified NaTi2(PO4)3 as an anode material for aqueous sodium ion batteries. Chem. Eng. J. 353, 814–823 (2018). https://doi.org/10.1016/j.cej.2018.07.159
- Z. Hou, X. Li, J. Liang, Y. Zhu, Y. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3(4), 1400–1404 (2015). https://doi.org/10.1039/c4ta06018k
- X. Zhang, Z. Hou, X. Li, J. Liang, Y. Zhu, Y. Qian, Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4(3), 856–860 (2016). https://doi.org/10.1039/c5ta08857g
- Y. Liu, Y. Qiao, W. Zhang, H. Wang, K. Chen, H. Zhu, Z. Li, Y. Huang, Nanostructured alkali cation incorporated δ-MnO2 cathode materials for aqueous sodium-ion batteries. J. Mater. Chem. A 3(15), 7780–7785 (2015). https://doi.org/10.1039/c5ta00396b
- Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li, Y. Shen, L. Yuan, X. Hu, X. Dai, Y. Huang, High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014). https://doi.org/10.1016/j.nanoen.2014.02.010
- Y. Liu, Y. Qiao, X. Lou, X. Zhang, W. Zhang, Y. Huang, Hollow K0. 27MnO2 nanospheres as cathode for high-performance aqueous sodium ion batteries. ACS Appl. Mater. Interfaces 8(23), 14564–14571 (2016). https://doi.org/10.1021/acsami.6b03089
- X.-Y. Wu, M.-Y. Sun, Y.-F. Shen, J.-F. Qian, Y.-L. Cao, X.-P. Ai, H.-X. Yang, Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6–NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7(2), 407–411 (2014). https://doi.org/10.1002/cssc.201301036
- G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, J. Zhu, B. Ding, Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014). https://doi.org/10.1002/ente.201402045
- Y. Wang, L. Mu, J. Liu, Z. Yang, X. Yu, L. Gu, Y.S. Hu, H. Li, X.Q. Yang, L. Chen, A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015). https://doi.org/10.1002/aenm.201501005
- Q. Zhang, C. Liao, T. Zhai, H. Li, A high rate 1.2 V aqueous sodium-ion battery based on all nasicon structured NaTi2(PO4)3 and Na3V2(PO4)3. Electrochim. Acta 196, 470–478 (2016). https://doi.org/10.1016/j.electacta.2016.03.007
- C.W. Mason, F. Lange, Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 4(8), A79–A82 (2015). https://doi.org/10.1149/2.0011508eel
- A. Fernández-Ropero, D. Saurel, B. Acebedo, T. Rojo, M. Casas-Cabanas, Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources 291, 40–45 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.006
- W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162(6), A803–A808 (2015). https://doi.org/10.1149/2.0121506jes
- K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85(4), 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
- L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt”electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
- J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
- A.I. Mohamed, J.F. Whitacre, Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: relating pH increases to long term stability. Electrochim. Acta 235, 730–739 (2017). https://doi.org/10.1016/j.electacta.2017.03.106
- H. Zhang, B. Qin, J. Han, S. Passerini, Aqueous/nonaqueous hybrid electrolyte for sodium-ion batteries. ACS Energy Lett. 3(7), 1769–1770 (2018). https://doi.org/10.1021/acsenergylett.8b00919
- J.F. Whitacre, S. Shanbhag, A. Mohamed, A. Polonsky, K. Carlisle et al., A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2(PO4)3/activated carbon negative electrodes. Energy Technol. 3(1), 20–31 (2015). https://doi.org/10.1002/ente.201402127
- P.R. Kumar, Y.H. Jung, B. Moorthy, D.K. Kim, Effect of electrolyte additives on NaTi2(PO4)3–C//Na3V2O2x(PO4)2F3−2x-MWCNT aqueous rechargeable sodium ion battery performance. J. Electrochem. Soc. 163(7), A1484–A1492 (2016). https://doi.org/10.1149/2.0031608jes
- Y. Kong, J. Sun, L. Gai, X. Ma, J. Zhou, NaTi2(PO4)3/C||LiMn2O4 rechargeable battery operating with Li+/Na+-mixed aqueous electrolyte exhibits superior electrochemical performance. Electrochim. Acta 255, 220–229 (2017). https://doi.org/10.1016/j.electacta.2017.10.006
- S.-Y. Tang, C.-H. Mi, J. Wang, A hybrid aqueous full battery based on LiMn2O4cathode and NaTi2(PO4)3 anode. Chin. J. Inorg. Chem. 34(7), 1279–1284 (2018). https://doi.org/10.11862/CJIC.2018.155
- D. Sun, G. Jin, Y. Tang, R. Zhang, X. Xue, X. Huang, H. Chu, H. Wang, NaTi2(PO4)3 nanoparticles embedded in carbon matrix as long-lived anode for aqueous lithium ion battery. J. Electrochem. Soc. 163(7), A1388–A1393 (2016). https://doi.org/10.1149/2.1181607jes
- M. Yao, J. Zhu, W. Meng, C. Li, C. Li et al., Enhanced lithium storage performance of nanostructured NaTi2(PO4)3 decorated by nitrogen-doped carbon. Electrochim. Acta 294, 226–232 (2019). https://doi.org/10.1016/j.electacta.2018.10.116
- Z. Huang, M. Yao, Z. Jiang, W. Meng, B. Li et al., Impact of fe doping on performance of NaTi2(PO4)3/C anode for aqueous lithium ion battery. Solid State Ionics 327, 123–128 (2018). https://doi.org/10.1016/j.ssi.2018.10.013
- Z. Jiang, L. Liu, Y. Li, J. Zhu, C. Li et al., Improved lithium storage performance of NaTi2(PO4)3/C composite connected by carbon nanotubes. Solid State Ionics 325, 189–195 (2018). https://doi.org/10.1016/j.ssi.2018.08.007
- Z. Zhou, S. Gu, Y. Zhang, F. Wu, N. Zhou, Lithium storage performance improvement of NaTi2(PO4)3 with nitrogen-doped carbon derived from polyaniline. J. Alloys Compd. 767, 745–752 (2018). https://doi.org/10.1016/j.jallcom.2018.07.131
- A. Rudola, S.A.B. Azmansah, P. Balaya, Communication-Mg(TFSI)2-based hybrid magnesium-sodium electrolyte: case study with NaTi2(PO4)3//Mg cell. J. Electrochem. Soc. 165(5), A1092–A1094 (2018). https://doi.org/10.1149/2.1091805jes
- C. Liu, X. Wang, W. Deng, C. Li, J. Chen, M. Xue, R. Li, F. Pan, Engineering fast ion conduction and selective cation channels for a high-rate and high-voltage hybrid aqueous battery. Angew. Chem. Int. Ed. 57(24), 7046–7050 (2018). https://doi.org/10.1002/anie.201800479
- X. Cao, L. Wang, J. Chen, J. Zheng, A low-cost Mg2+/Na+ hybrid aqueous battery. J. Mater. Chem. A 6(32), 15762–15770 (2018). https://doi.org/10.1039/c8ta04930k
- L. Niu, L. Chen, J. Zhang, P. Jiang, Z. Liu, Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Sources 380, 135–141 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.083
- F. Yu, S. Zhang, C. Fang, Y. Liu, S. He, J. Xia, J. Yang, N. Zhang, Electrochemical characterization of p2-type layered Na2/3Ni1/4Mn3/4O2 cathode in aqueous hybrid sodium/lithium ion electrolyte. Ceram. Int. 43(13), 9960–9967 (2017). https://doi.org/10.1016/j.ceramint.2017.05.007
- P. Jiang, H. Shao, L. Chen, J. Feng, Z. Liu, Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. J. Mater. Chem. A 5(32), 16740–16747 (2017). https://doi.org/10.1039/c7ta04172a
- L. Chen, H. Shao, X. Zhou, G. Liu, J. Jiang, Z. Liu, Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 7, 11982 (2016). https://doi.org/10.1038/ncomms11982
- L. Chen, L. Zhang, X. Zhou, Z. Liu, Aqueous batteries based on mixed monovalence metal ions: a new battery family. Chemsuschem 7(8), 2295–2302 (2014). https://doi.org/10.1002/cssc.201402084
- C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI)—problems and possibilities: a review. Water Res. 128, 314–330 (2018). https://doi.org/10.1016/j.watres.2017.10.024
- M.A. Ahmed, S. Tewari, Capacitive deionization: processes, materials and state of the technology. J. Electroanal. Chem. 813, 178–192 (2018). https://doi.org/10.1016/j.jelechem.2018.02.024
- S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci. 58(8), 1388–1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
- F.A. Al Marzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review. Desalination 342, 3–15 (2014). https://doi.org/10.1016/j.desal.2014.02.031
- M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta 55(12), 3845–3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
- M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2(1), 10–15 (2018). https://doi.org/10.1016/j.joule.2017.12.010
- S. Shanbhag, Y. Bootwala, J.F. Whitacre, M.S. Mauter, Ion transport and competition effects on NaTi2(PO4)3 and Na4Mn9O18 selective insertion electrode performance. Langmuir 33(44), 12580–12591 (2017). https://doi.org/10.1021/acs.langmuir.7b02861
- T. Ikeshoji, Separation of alkali metal ions by intercalation into a prussian blue electrode. J. Electrochem. Soc. 133(10), 2108–2109 (1986). https://doi.org/10.1149/1.2108350
- S. Kim, J. Lee, C. Kim, J. Yoon, Na2FeP2O7 as a novel material for hybrid capacitive deionization. Electrochim. Acta 203, 265–271 (2016). https://doi.org/10.1016/j.electacta.2016.04.056
- S. Kim, H. Yoon, D. Shin, J. Lee, J. Yoon, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interf. Sci. 506, 644–648 (2017). https://doi.org/10.1016/j.jcis.2017.07.054
- F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang, H.Y. Yang, Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10(10), 2081–2089 (2017). https://doi.org/10.1039/C7EE00855D
- Y. Huang, F. Chen, L. Guo, J. Zhang, T. Chen, H.Y. Yang, Low energy consumption dual-ion electrochemical deionization system using NaTi2(PO4)3–AgNPs electrodes. Desalination 451, 241–247 (2019). https://doi.org/10.1016/j.desal.2018.02.006
- F. Chen, Y. Huang, D. Kong, M. Ding, S. Huang, H.Y. Yang, NaTi2(PO4)3–Ag electrodes based desalination battery and energy recovery. FlatChem 8, 9–16 (2018). https://doi.org/10.1016/j.flatc.2018.02.001
- L. Wang, C. Mu, H. Li, F. Li, A dual-function battery for desalination and energy storage. Inorg. Chem. Front. 5(10), 2522–2526 (2018). https://doi.org/10.1039/C8QI00704G
- D.-H. Nam, K.-S. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139(32), 11055–11063 (2017). https://doi.org/10.1021/jacs.7b01119
- Z. Guo, Y. Ma, X. Dong, M. Hou, Y. Wang, Y. Xia, Integrating desalination and energy storage using a saltwater-based hybrid sodium-ion supercapacitor. ChemSusChem 11(11), 1741–1745 (2018). https://doi.org/10.1002/cssc.201800517
- H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado et al., Understanding the electrochemical mechanisms induced by gradient Mg2+ distribution of Na-rich Na 3+x V2−xMgx(PO4)3/C for sodium ion batteries. Chem. Mat. 30(8), 2498–2505 (2018). https://doi.org/10.1021/acs.chemmater.7b03903
- J. Zeng, Z. Cao, Y. Yang, Y. Wang, Y. Peng, Y. Zhang, J. Wang, J. Zhao, A long cycle-life Na–Mg hybrid battery with a chlorine-free electrolyte based on Mg (TFSI)2. Electrochim. Acta 284, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.07.111
- Y. Xu, W. Cao, Y. Yin, J. Sheng, Q. An, Q. Wei, W. Yang, L. Mai, Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg–Na hybrid-ion batteries. Nano Energy 55, 526–533 (2019). https://doi.org/10.1016/j.nanoen.2018.10.064
- J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
- Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
- H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
- F. Wang, X. Wang, Z. Chang, X. Wu, X. Liu et al., A quasi-solid-state sodium-ion capacitor with high energy density. Adv. Mater. 27(43), 6962–6968 (2015). https://doi.org/10.1002/adma.201503097
- S. Liu, Z. Cai, J. Zhou, A. Pan, S. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278–18283 (2016). https://doi.org/10.1039/c6ta08472a
- E. Lim, H. Kim, C. Jo, J. Chun, K. Ku et al., Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8(9), 8968–8978 (2014). https://doi.org/10.1021/nn501972w
- S. Zhang, Y. Liu, Q. Han, S. He, N. Zhang, J. Yang, Development and characterization of aqueous sodium-ion hybrid supercapacitor based on NaTi2(PO4)3//activated carbon. J. Alloys Compd. 729, 850–857 (2017). https://doi.org/10.1016/j.jallcom.2017.08.256
- C. Wang, F. Qiu, H. Deng, X. Zhang, P. He, H. Zhou, Study on the aqueous hybrid supercapacitor based on carbon-coated NaTi2(PO4)3 and activated carbon electrode materials. Acta Chim. Sin. 75(2), 241–246 (2017). https://doi.org/10.6023/a16100523
- H.-K. Roh, M.-S. Kim, K.Y. Chung, M. Ulaganathan, V. Aravindan, S. Madhavi, K.C. Roh, K.-B. Kim, A chemically bonded NaTi2(PO4)3/rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. J. Mater. Chem. A 5(33), 17506–17516 (2017). https://doi.org/10.1039/c7ta05252a
- T. Wei, G. Yang, C. Wang, Iso-oriented NaTi2(PO4)3 mesocrystals as anode material for high-energy and long-durability sodium-ion capacitor. ACS Appl. Mater. Interfaces 9(37), 31861–31870 (2017). https://doi.org/10.1021/acsami.7b08778
- J.Z. Guo, P.F. Wang, X.L. Wu, X.H. Zhang, Q. Yan, H. Chen, J.P. Zhang, Y.G. Guo, High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv. Mater. 29(33), 1701968 (2017). https://doi.org/10.1002/adma.201701968
References
S. Chu, A. Majumdar, Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012). https://doi.org/10.1038/nature11475
S. Chu, Y. Cui, N. Liu, The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016). https://doi.org/10.1038/nmat4834
X. Zhang, X. Cheng, Q. Zhang, Nanostructured energy materials for electrochemical energy conversion and storage: a review. J. Energy Chem. 25(6), 967–984 (2016). https://doi.org/10.1016/j.jechem.2016.11.003
S. Qi, D. Wu, Y. Dong, J. Liao, C.W. Foster, C. O’Dwyer, Y. Feng, C. Liu, J. Ma, Cobalt-based electrode materials for sodium-ion batteries. Chem. Eng. J. 370, 185–207 (2019). https://doi.org/10.1016/j.cej.2019.03.166
F. Li, Z. Wei, Y. Feng, J. Ma, L. Mai, Sodium-based batteries: from critical materials to battery systems. J. Mater. Chem. A 7, 9406–9943 (2019). https://doi.org/10.1039/c8ta11999f
L. Wang, Y. Wang, M. Wu, Z. Wei, C. Cui et al., Nitrogen, fluorine, and boron ternary doped carbon fibers as cathode electrocatalysts for zinc–air batteries. Small 14(20), 1800737 (2018). https://doi.org/10.1002/smll.201800737
S. Qi, L. Mi, K. Song, K. Yang, J. Ma, X. Feng, J. Zhang, W. Chen, Understanding shuttling effect in sodium ion batteries for the solution of capacity fading: FeS2 as an example. J. Phys. Chem. C 123(5), 2775–2782 (2019). https://doi.org/10.1021/acs.jpcc.8b11069
J. Liu, J. Liang, C. Wang, J. Ma, Electrospun CoSe@ N-doped carbon nanofibers with highly capacitive Li storage. J. Energy Chem. 33, 160–166 (2019). https://doi.org/10.1016/j.jechem.2018.09.006
J. Liao, R. Tan, Z. Kuang, C. Cui, Z. Wei et al., Controlling the morphology, size and phase of Nb2O5 crystals for high electrochemical performance. Chin. Chem. Lett. 29(12), 1785–1790 (2018). https://doi.org/10.1016/j.cclet.2018.11.018
W. Zhang, W.K. Pang, V. Sencadas, Z. Guo, Understanding high-energy-density Sn4P3 anodes for potassium-ion batteries. Joule 2(8), 1534–1547 (2018). https://doi.org/10.1016/j.joule.2018.04.022
R. Schmuch, R. Wagner, G. Hörpel, T. Placke, M. Winter, Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3(4), 267–278 (2018). https://doi.org/10.1038/s41560-018-0107-2
B. Dunn, H. Kamath, J.M. Tarascon, Electrical energy storage for the grid: a battery of choices. Science 334(6058), 928–935 (2011). https://doi.org/10.1126/science.1212741
L. Yu, L.P. Wang, H. Liao, J. Wang, Z. Feng et al., Understanding fundamentals and reaction mechanisms of electrode materials for Na-ion batteries. Small 14(16), 1703338 (2018). https://doi.org/10.1002/smll.201703338
J.-Y. Hwang, S.-T. Myung, Y.-K. Sun, Sodium-ion batteries: present and future. Chem. Soc. Rev. 46(12), 3529–3614 (2017). https://doi.org/10.1039/c6cs00776g
J. Cui, S. Yao, J.-K. Kim, Recent progress in rational design of anode materials for high-performance Na-ion batteries. Energy Storage Mater. 7, 64–114 (2017). https://doi.org/10.1016/j.ensm.2016.12.005
A. Bauer, J. Song, S. Vail, W. Pan, J. Barker, Y. Lu, The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 8(17), 1702869 (2018). https://doi.org/10.1002/aenm.201702869
J. Deng, W.B. Luo, S.L. Chou, H.K. Liu, S.X. Dou, Sodium-ion batteries: from academic research to practical commercialization. Adv. Energy Mater. 8(4), 1701428 (2018). https://doi.org/10.1002/aenm.201701428
Y. Huang, Y. Zheng, X. Li, F. Adams, W. Luo, Y. Huang, L. Hu, Electrode materials of sodium-ion batteries toward practical application. ACS Energy Lett. 3(7), 1604–1612 (2018). https://doi.org/10.1021/acsenergylett.8b00609
Y. Li, Y. Lu, C. Zhao, Y.-S. Hu, M.-M. Titirici, H. Li, X. Huang, L. Chen, Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
N. Wang, C. Chu, X. Xu, Y. Du, J. Yang, Z. Bai, S. Dou, Comprehensive new insights and perspectives into Ti-based anodes for next-generation alkaline metal (Na+ , K+) ion batteries. Adv. Energy Mater. 8(27), 1801888 (2018). https://doi.org/10.1002/aenm.201801888
J. Lee, S. Kim, C. Kim, J. Yoon, Hybrid capacitive deionization to enhance the desalination performance of capacitive techniques. Energy Environ. Sci. 7(11), 3683–3689 (2014). https://doi.org/10.1039/c4ee02378a
Y. Huang, F. Chen, L. Guo, H.Y. Yang, Ultrahigh performance of a novel electrochemical deionization system based on a NaTi2(PO4)3/rGO nanocomposite. J. Mater. Chem. A 5(34), 18157–18165 (2017). https://doi.org/10.1039/c7ta03725b
M.Á. Muñoz-Márquez, D. Saurel, J.L. Gómez-Cámer, M. Casas-Cabanas, E. Castillo-Martínez, T. Rojo, Na-ion batteries for large scale applications: a review on anode materials and solid electrolyte interphase formation. Adv. Energy Mater. 7(20), 1700463 (2017). https://doi.org/10.1002/aenm.201700463
Y.Q. Luo, Y.J. Tang, S.S. Zheng, Y. Yan, H.Q. Xue, H. Pang, Dual anode materials for lithium- and sodium-ion batteries. J. Mater. Chem. A 6(10), 4236–4259 (2018). https://doi.org/10.1039/c8ta00107c
S. Chen, C. Wu, L. Shen, C. Zhu, Y. Huang, K. Xi, J. Maier, Y. Yu, Challenges and perspectives for NASICON-type electrode materials for advanced sodium-ion batteries. Adv. Mater. 29(48), 1700431 (2017). https://doi.org/10.1002/adma.201700431
J. Mao, T. Zhou, Y. Zheng, H. Gao, H.K. Liu, Z. Guo, Two-dimensional nanostructures for sodium-ion battery anodes. J. Mater. Chem. A 6(8), 3284–3303 (2018). https://doi.org/10.1039/C7TA10500B
Z. Wei, L. Wang, M. Zhuo, W. Ni, H. Wang, J. Ma, Layered tin sulfide and selenide anode materials for Li- and Na-ion batteries. J. Mater. Chem. A 6(26), 12185–12214 (2018). https://doi.org/10.1039/C8TA02695E
L. Yu, H. Hu, H.B. Wu, X.W. Lou, Complex hollow nanostructures: synthesis and energy-related applications. Adv. Mater. 29(15), 1604563 (2017). https://doi.org/10.1002/adma.201604563
S.Y. Hong, Y. Kim, Y. Park, A. Choi, N.-S. Choi, K.T. Lee, Charge carriers in rechargeable batteries: Na ions vs. Li ions. Energy Environ. Sci. 6(7), 2067–2081 (2013). https://doi.org/10.1039/c3ee40811f
Y. Jiao, J. Pei, D. Chen, C. Yan, Y. Hu, Q. Zhang, G. Chen, Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. J. Mater. Chem. A 5(3), 1094–1102 (2017). https://doi.org/10.1039/c6ta09805c
P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46(5), 1094–1103 (2013). https://doi.org/10.1021/ar200306b
R. Thangavel, B. Moorthy, D.K. Kim, Y.S. Lee, Pushing the energy output and cyclability of sodium hybrid capacitors at high power to new limits. Adv. Energy Mater. 7(14), 1602654 (2017). https://doi.org/10.1016/j.jechem.2016.11.003
Z. Lin, E. Goikolea, A. Balducci, K. Naoi, P. Taberna, M. Salanne, G. Yushin, P. Simon, Materials for supercapacitors: when Li-ion battery power is not enough. Mater. Today 21(4), 419–436 (2018). https://doi.org/10.1016/j.mattod.2018.01.035
F. Wang, X. Wu, X. Yuan, Z. Liu, Y. Zhang et al., Latest advances in supercapacitors: from new electrode materials to novel device designs. Chem. Soc. Rev. 46(22), 6816–6854 (2017). https://doi.org/10.1039/c8ta02416b
J. Liu, J. Wang, C. Xu, H. Jiang, C. Li, L. Zhang, J. Lin, Z.X. Shen, Advanced energy storage devices: basic principles, analytical methods, and rational materials design. Adv. Sci. 5(1), 1700322 (2018). https://doi.org/10.1002/advs.201700322
Y. Shao, M.F. El-Kady, J. Sun, Y. Li, Q. Zhang, M. Zhu, H. Wang, B. Dunn, R.B. Kaner, Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118(18), 9233–9280 (2018). https://doi.org/10.1021/acs.chemrev.8b00252
H. Wang, C. Zhu, D. Chao, Q. Yan, H.J. Fan, Nonaqueous hybrid lithium-ion and sodium-ion capacitors. Adv. Mater. 29(46), 1702093 (2017). https://doi.org/10.1002/adma.201702093
Q. Yang, S. Cui, Y. Ge, Z. Tang, Z. Liu et al., Porous single-crystal NaTi2(PO4)3 via liquid transformation of TiO2 nanosheets for flexible aqueous Na-ion capacitor. Nano Energy 50, 623–631 (2018). https://doi.org/10.1016/j.nanoen.2018.06.017
Z. Jian, Y.S. Hu, X. Ji, W. Chen, Nasicon-structured materials for energy storage. Adv. Mater. 29(20), 1601925 (2017). https://doi.org/10.1002/adma.201601925
Y. Xu, Q. Wei, C. Xu, Q. Li, Q. An, P. Zhang, J. Sheng, L. Zhou, L. Mai, Layer-by-layer Na3V2(PO4)3 embedded in reduced graphene oxide as superior rate and ultralong-life sodium-ion battery cathode. Adv. Energy Mater. 6(14), 1600389 (2016). https://doi.org/10.1002/aenm.201600389
C. Xu, Y. Xu, C. Tang, Q. Wei, J. Meng, L. Huang, L. Zhou, G. Zhang, L. He, L. Mai, Carbon-coated hierarchical NaTi2(PO4)3 mesoporous microflowers with superior sodium storage performance. Nano Energy 28, 224–231 (2016). https://doi.org/10.1016/j.nanoen.2016.08.026
Q. Ni, Y. Bai, F. Wu, C. Wu, Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 4(3), 1600275 (2017). https://doi.org/10.1002/advs.201600275
Z. Li, D. Young, K. Xiang, W.C. Carter, Y.M. Chiang, Towards high power high energy aqueous sodium‐ion batteries: the NaTi2(PO4)3/Na0. 44MnO2 system. Adv. Energy Mater. 3(3), 290–294 (2013). https://doi.org/10.1002/aenm.201200598
Y. Fang, L. Xiao, J. Qian, Y. Cao, X. Ai, Y. Huang, H. Yang, 3D graphene decorated NaTi2(PO4)3 microspheres as a superior high-rate and ultracycle-stable anode material for sodium ion batteries. Adv. Energy Mater. 6(19), 1502197 (2016). https://doi.org/10.1002/aenm.201502197
C. Wu, P. Kopold, Y.-L. Ding, P.A. van Aken, J. Maier, Y. Yu, Synthesizing porous NaTi2(PO4)3 nanoparticles embedded in 3D graphene networks for high-rate and long cycle-life sodium electrodes. ACS Nano 9(6), 6610–6618 (2015). https://doi.org/10.1021/acsnano.5b02787
X. Wu, Y. Cao, X. Ai, J. Qian, H. Yang, A low-cost and environmentally benign aqueous rechargeable sodium-ion battery based on NaTi2(PO4)3–Na2NiFe(CN)6 intercalation chemistry. Electrochem. Commun. 31, 145–148 (2013). https://doi.org/10.1016/j.elecom.2013.03.013
S.I. Park, I. Gocheva, S. Okada, J.-I. Yamaki, Electrochemical properties of NaTi2(PO4)3 anode for rechargeable aqueous sodium-ion batteries. J. Electrochem. Soc. 158(10), A1067–A1070 (2011). https://doi.org/10.1149/1.3611434
G. Yang, H. Song, M. Wu, C. Wang, Porous NaTi2(PO4)3 nanocubes: a high-rate nonaqueous sodium anode material with more than 10000 cycle life. J. Mater. Chem. A 3(36), 18718–18726 (2015). https://doi.org/10.1039/c5ta04491j
L. Zhang, X. Wang, W. Deng, X. Zang, C. Liu et al., An open holey structure enhanced rate capability in a NaTi2(PO4)3/C nanocomposite and provided ultralong-life sodium-ion storage. Nanoscale 10(3), 958–963 (2018). https://doi.org/10.1039/c7nr07000d
C. Delmas, F. Cherkaoui, A. Nadiri, P. Hagenmuller, A nasicon-type phase as intercalation electrode—NaTi2(PO4)3. Mater. Res. Bull. 22(5), 631–639 (1987). https://doi.org/10.1016/0025-5408(87)90112-7
P. Senguttuvan, G. Rousse, M. Arroyo, Y. De Dompablo, H. Vezin, J.-M. Tarascon, M. Palacín, Low-potential sodium insertion in a nasicon-type structure through the Ti (III)/Ti (II) redox couple. J. Am. Chem. Soc. 135(10), 3897–3903 (2013). https://doi.org/10.1021/ja311044t
H. Kabbour, D. Coillot, M. Colmont, C. Masquelier, O. Mentré, α-Na3M2 (PO4)3 (M=Ti, Fe): absolute cationic ordering in NASICON-type phases. J. Am. Chem. Soc. 133(31), 11900–11903 (2011). https://doi.org/10.1021/ja204321y
J. Liu, J. Zhang, S. Cheng, Z. Liu, B. Han, DNA-mediated synthesis of microporous single-crystal-like NaTi2(PO4)3 nanospheres. Small 4(11), 1976–1979 (2008). https://doi.org/10.1002/smll.200800284
H. Guler, F. Kurtulus, A rapid synthesis of sodium titanium phosphate, NaTi2(PO4)3 by using microwave energy. Mater. Chem. Phys. 99(2–3), 394–397 (2006). https://doi.org/10.1016/j.matchemphys.2005.11.011
R. Velchuri, B.V. Kumar, V.R. Devi, S.I. Seok, M. Vithal, Low temperature preparation of NaTi2(PO4)3 by sol–gel method. Int. J. Nanotechnol. 7(9–12), 1077–1086 (2010). https://doi.org/10.1504/ijnt.2010.034712
D. Ribero, K.C. Seymour, W.M. Kriven, Synthesis of NaTi2(PO4)3 by the inorganic-organic steric entrapment method and its thermal expansion behavior. J. Am. Ceram. Soc. 99(11), 3586–3593 (2016). https://doi.org/10.1111/jace.14420
M. Vujkovic, M. Mitric, S. Mentus, High-rate intercalation capability of NaTi2(PO4)3/C composite in aqueous lithium and sodium nitrate solutions. J. Power Sources 288, 176–186 (2015). https://doi.org/10.1016/j.jpowsour.2015.04.132
G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, H. Li, C. Zhang, Mesoporous NaTi2(PO4)3/CMK-3 nanohybrid as anode for long-life Na-ion batteries. J. Mater. Chem. A 2(48), 20659–20666 (2014). https://doi.org/10.1039/c4ta04732j
G. Pang, C. Yuan, P. Nie, B. Ding, J. Zhu, X. Zhang, Synthesis of nasicon-type structured NaTi2(PO4)3-graphene nanocomposite as an anode for aqueous rechargeable Na-ion batteries. Nanoscale 6(12), 6328–6334 (2014). https://doi.org/10.1039/c3nr06730k
Y. Jiang, L. Zeng, J. Wang, W. Li, F. Pan, Y. Yu, A carbon coated nasicon structure material embedded in porous carbon enabling superior sodium storage performance: NaTi2(PO4)3 as an example. Nanoscale 7(35), 14723–14729 (2015). https://doi.org/10.1039/c5nr03978a
J. Song, S. Park, J. Gim, V. Mathew, S. Kim, J. Jo, S. Kim, J. Kim, High rate performance of a NaTi2(PO4)3/rGO composite electrode via pyro synthesis for sodium ion batteries. J. Mater. Chem. A 4(20), 7815–7822 (2016). https://doi.org/10.1039/c6ta02720b
L. Fu, X. Xue, Y. Tang, D. Sun, H. Xie, H. Wang, Size controlling and surface engineering enable NaTi2(PO4)3/C outstanding sodium storage properties. Electrochim. Acta 289, 21–28 (2018). https://doi.org/10.1016/j.electacta.2018.09.024
M. Sun, X. Han, S. Chen, NaTi2(PO4)3@C nanoparticles embedded in 2D sulfur-doped graphene sheets as high-performance anode materials for sodium energy storage. Electrochim. Acta 289, 131–138 (2018). https://doi.org/10.1016/j.electacta.2018.08.061
Y. Niu, M. Xu, Y. Zhang, J. Han, Y. Wang, C.M. Li, Detailed investigation of a NaTi2(PO4)3 anode prepared by pyro-synthesis for Na-ion batteries. RSC Adv. 6(51), 45605–45611 (2016). https://doi.org/10.1039/c6ra06533c
J.S. Ko, C.S. Choi, B. Dunn, J.W. Long, Electrochemical characterization of Na-ion charge-storage properties for nanostructured NaTi2(PO4)3 as a function of crystalline order. J. Electrochem. Soc. 164(9), A2124–A2130 (2017). https://doi.org/10.1149/2.1391709jes
X. Yang, K. Wang, X. Wang, G. Chang, S. Sun, Carbon-coated NaTi2(PO4)3 composite: a promising anode material for sodium-ion batteries with superior Na-storage performance. Solid State Ionics 314, 61–65 (2018). https://doi.org/10.1016/j.ssi.2017.11.016
D. Cai, B. Qu, H. Zhan, Porous NaTi2(PO4)3 nanoparticles coated with a thin carbon layer for sodium-ion batteries with enhanced rate and cycling performance. Mater. Lett. 218, 14–17 (2018). https://doi.org/10.1016/j.matlet.2018.01.131
D. Xu, P. Wang, R. Yang, Nitrogen-doped carbon decorated NaTi2(PO4)3 composite as an anode for sodium-ion batteries with outstanding electrochemical performance. Ceram. Int. 44(6), 7159–7164 (2018). https://doi.org/10.1016/j.ceramint.2018.01.160
D. Wang, Q. Liu, C. Chen, M. Li, X. Meng et al., Nasicon-structured NaTi2(PO4)3@C nanocomposite as the low operation-voltage anode material for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces. 8(3), 2238–2246 (2016). https://doi.org/10.1021/acsami.5b11003
L. Chen, J. Liu, Z. Guo, Y. Wang, C. Wang, Y. Xia, Electrochemical profile of LiTi2(PO4)3 and NaTi2(PO4)3 in lithium, sodium or mixed ion aqueous solutions. J. Electrochem. Soc. 163(6), A904–A910 (2016). https://doi.org/10.1149/2.0531606jes
H. Liu, Y. Liu, 1d mesoporous NaTi2(PO4)3/carbon nanofiber: the promising anode material for sodium-ion batteries. Ceram. Int. 44(5), 5813–5816 (2018). https://doi.org/10.1016/j.ceramint.2017.12.147
M. Li, L. Liu, P. Wang, J. Li, Q. Leng, G. Cao, Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim. Acta 252, 523–531 (2017). https://doi.org/10.1016/j.electacta.2017.09.020
Q. Hu, M. Yu, J. Liao, Z. Wen, C. Chen, Porous carbon-coated NaTi2(PO4)3 with superior rate and low-temperature properties. J. Mater. Chem. A 6(5), 2365–2370 (2018). https://doi.org/10.1039/c7ta10207k
H. Liu, H. Zhang, C. Su, X. Li, Y. Guo, Three-dimensional NaTi2(PO4)3@C microsphere as a high-performance anode material for advanced sodium-ion batteries. Solid State Ionics 322, 79–84 (2018). https://doi.org/10.1016/j.ssi.2018.05.005
P. Wei, Y. Liu, Z. Wang, Y. Huang, Y. Jin et al., Porous NaTi2(PO4)3/C hierarchical nanofibers for ultrafast electrochemical energy storage. ACS Appl. Mater. Interfaces. 10(32), 27039–27046 (2018). https://doi.org/10.1021/acsami.8b08415
S. Yu, Y. Wan, C. Shang, Z. Wang, L. Zhou, J. Zou, H. Cheng, Z. Lu, Ultrafine NaTi2(PO4)3 nanoparticles encapsulated in N-CNFs as ultra-stable electrode for sodium storage. Front. Chem. 6, 270 (2018). https://doi.org/10.3389/fchem.2018.00270
Z. Huang, L. Liu, L. Yi, W. Xiao, M. Li et al., Facile solvothermal synthesis of NaTi2(PO4)3/C porous plates as electrode materials for high-performance sodium ion batteries. J. Power Sources 325, 474–481 (2016). https://doi.org/10.1016/j.jpowsour.2016.06.066
Y. Niu, M. Xu, C. Guo, C.M. Li, Pyro-synthesis of a nanostructured NaTi2(PO4)3/C with a novel lower voltage plateau for rechargeable sodium-ion batteries. J. Colloid Interf. Sci. 474, 88–92 (2016). https://doi.org/10.1016/j.jcis.2016.04.021
G.B. Xu, L.W. Yang, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes. J. Power Sources 327, 580–590 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.089
W. Wu, A. Mohamed, J.F. Whitacre, Microwave synthesized NaTi2(PO4)3 as an aqueous sodium-ion negative electrode. J. Electrochem. Soc. 160(3), A497–A504 (2013). https://doi.org/10.1149/2.054303jes
J. Liang, K. Fan, Z. Wei, X. Gao, W. Song, J. Ma, Porous NaTi2(PO4)3@C nanocubes as improved anode for sodium-ion batteries. Mater. Res. Bull. 99, 343–348 (2018). https://doi.org/10.1016/j.materresbull.2017.11.030
G. Hasegawa, K. Kanamori, N. Kannari, J.-I. Ozaki, K. Nakanishi, T. Abe, Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J. Power Sources 318, 41–48 (2016). https://doi.org/10.1016/j.jpowsour.2016.04.013
N. Hao, R. Hua, S. Chen, Y. Zhang, Z. Zhou, J. Qian, Q. Liu, K.J.B. Wang, Bioelectronics. Multiple signal-amplification via ag and TiO2 decorated 3D nitrogen doped graphene hydrogel for fabricating sensitive label-free photoelectrochemical thrombin aptasensor. Biosens. Bioelectron. 101, 14–20 (2018). https://doi.org/10.1016/j.bios.2017.10.014
J. Yang, H. Wang, P. Hu, J. Qi, L. Guo, L. Wang, A high-rate and ultralong-life sodium-ion battery based on NaTi2(PO4)3 nanocubes with synergistic coating of carbon and rutile TiO2. Small 11(31), 3744–3749 (2015). https://doi.org/10.1002/smll.201500144
Y. Jiang, J. Shi, M. Wang, L. Zeng, L. Gu, Y. Yu, Highly reversible and ultrafast sodium storage in NaTi2(PO4)3 nanoparticles embedded in nanocarbon networks. ACS Appl. Mater. Interfaces. 8(1), 689–695 (2016). https://doi.org/10.1021/acsami.5b09811
L. Wang, B. Wang, G. Liu, T. Liu, T. Gao, D. Wang, Carbon nanotube decorated NaTi2(PO4)3/C nanocomposite for a high-rate and low-temperature sodium-ion battery anode. RSC Adv. 6(74), 70277–70283 (2016). https://doi.org/10.1039/c6ra11042h
M. Bian, L. Tian, Design and synthesis of three-dimensional NaTi2(PO4)3@CNT microspheres as advanced anode materials for rechargeable sodium-ion batteries. Ceram. Int. 43(12), 9543–9546 (2017). https://doi.org/10.1016/j.ceramint.2017.04.029
Z. Zhou, N. Li, C. Zhang, X. Chen, F. Xu, C. Peng, Preparation of carbon layer and carbon nanotube co-decorated NaTi2(PO4)3 anode and its application in sodium-ion batteries. Solid State Ion. 324, 87–91 (2018). https://doi.org/10.1016/j.ssi.2018.06.011
X. Li, P. Yan, M.H. Engelhard, A.J. Crawford, V.V. Viswanathan, C. Wang, J. Liu, V.L. Sprenkle, The importance of solid electrolyte interphase formation for long cycle stability full-cell Na-ion batteries. Nano Energy 27, 664–672 (2016). https://doi.org/10.1016/j.nanoen.2016.07.030
B. Zhang, R. Dugas, G. Rousse, P. Rozier, A.M. Abakumov, J.-M. Tarascon, Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 7, 10308 (2016). https://doi.org/10.1038/ncomms10308
S. Guo, H. Yu, P. Liu, Y. Ren, T. Zhang, M. Chen, M. Ishida, H. Zhou, High-performance symmetric sodium-ion batteries using a new, bipolar O3-type material, Na0.8Ni0.4Ti0.6O2. Energy Environ. Sci. 8(4), 1237–1244 (2015). https://doi.org/10.1039/c4ee03361b
J.-Y. Hwang, S.-T. Myung, J.-H. Lee, A. Abouimrane, I. Belharouak, Y.-K. Sun, Ultrafast sodium storage in anatase TiO2 nanoparticles embedded on carbon nanotubes. Nano Energy 16, 218–226 (2015). https://doi.org/10.1016/j.nanoen.2015.06.017
H. Wang, Y. Xiao, C. Sun, C. Lai, X. Ai, A type of sodium-ion full-cell with a layered NaNi0.5Ti0.5O2 cathode and a pre-sodiated hard carbon anode. RSC Adv. 5(129), 106519–106522 (2015). https://doi.org/10.1039/c5ra21235a
D. Yang, X. Sun, K. Lim, R.R. Gaddam, N.A. Kumar, K. Kang, X.S. Zhao, Pre-sodiated nickel cobaltite for high-performance sodium-ion capacitors. J. Power Sources 362, 358–365 (2017). https://doi.org/10.1016/j.jpowsour.2017.07.053
H. Zhang, B. Qin, D. Buchholz, S. Passerini, High-efficiency sodium-ion battery based on NASICON electrodes with high power and long lifespan. ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.1028b01390
J. Peng, J. Wang, H. Yi, W. Hu, Y. Yu et al., A dual-insertion type sodium-ion full cell based on high-quality ternary-metal prussian blue analogs. Adv. Energy Mater. 8(11), 1702856 (2018). https://doi.org/10.1002/aenm.201702856
X. Li, X. Zhu, J. Liang, Z. Hou, Y. Wang, N. Lin, Y. Zhu, Y. Qian, Graphene-supported NaTi2(PO4)3 as a high rate anode material for aqueous sodium ion batteries. J. Electrochem. Soc. 161(6), A1181–A1187 (2014). https://doi.org/10.1149/2.0081409jes
F. Bonaccorso, L. Colombo, G. Yu, M. Stoller, V. Tozzini, A.C. Ferrari, R.S. Ruoff, V. Pellegrini, Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage. Science 347(6217), 1246501 (2015). https://doi.org/10.1126/science.1246501
X. Li, L. Zhi, Graphene hybridization for energy storage applications. Chem. Soc. Rev. 47(9), 3189–3216 (2018). https://doi.org/10.1039/C7CS00871F
H. Zhang, M. Chhowalla, Z. Liu, 2D nanomaterials: graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47(9), 3015–3017 (2018). https://doi.org/10.1039/C8CS90048E
J. Huang, Z. Wei, J. Liao, W. Ni, C. Wang, J. Ma, Molybdenum and tungsten chalcogenides for lithium/sodium-ion batteries: beyond MoS2. J. Energy Chem. 33, 100–124 (2018). https://doi.org/10.1016/j.jechem.2018.1009.1001
G. Nyström, A. Marais, E. Karabulut, L. Wågberg, Y. Cui, M.M. Hamedi, Self-assembled three-dimensional and compressible interdigitated thin-film supercapacitors and batteries. Nat. Commun. 6, 7259 (2015). https://doi.org/10.1038/ncomms8259
P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. Mater. 7, 845 (2008). https://doi.org/10.1038/nmat2297
Y. Hu, X. Ma, P. Guo, F. Jaeger, Z. Wang, Design of NaTi2(PO4)3 nanocrystals embedded in N-doped graphene sheets for sodium-ion battery anode with superior electrochemical performance. Ceram. Int. 43(15), 12338–12342 (2017). https://doi.org/10.1016/j.ceramint.2017.06.098
Y. Zuo, L. Chen, Z. Zuo, Y. Huang, X. Liu, Rational construction of NaTi2(PO4)3@C nanocrystals embedded in graphene sheets as anode materials for Na-ion batteries. Ceram. Int. 43(15), 12915–12919 (2017). https://doi.org/10.1016/j.ceramint.2017.06.189
H.-K. Roh, H.-K. Kim, M.-S. Kim, D.-H. Kim, K.Y. Chung, K.C. Roh, K.-B. Kim, In situ synthesis of chemically bonded NaTi2(PO4)3/rGO 2D nanocomposite for high-rate sodium-ion batteries. Nano Res. 9(6), 1844–1855 (2016). https://doi.org/10.1007/s12274-016-1077-y
Z. Wang, J. Liang, K. Fan, X. Liu, C. Wang, J. Ma, Porous NaTi2(PO4)3 nanocubes anchored on porous carbon nanosheets for high performance sodium-ion batteries. Front. Chem. 6, 396 (2018). https://doi.org/10.3389/fchem.2018.00396
Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, H.J. Fan, Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3(5), 1500286 (2016). https://doi.org/10.1002/advs.201500286
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2(2), 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
Q. Yang, T. Jiao, M. Li, Y. Li, L. Ma et al., In situ formation of NaTi2(PO4)3 cubes on Ti3C2 Mxene for dual-mode sodium storage. J. Mater. Chem. A 6(38), 18525–18532 (2018). https://doi.org/10.1039/C8TA06995F
C. Yang, X. Sun, Y.R. Zhang, Y. Liu, Q.A. Zhang, C.Z. Yuan, Facile synthesis of hierarchical NaTi2(PO4)3/Ti3C2 nanocomposites with superior sodium storage performance. Mater. Lett. 236, 408–411 (2019). https://doi.org/10.1016/j.matlet.2018.10.147
D. Guo, J. Qin, C. Zhang, M. Cao, Constructing flexible and binder-free NaTi2(PO4)3 film electrode with a sandwich structure by a two-step graphene hybridizing strategy as an ultrastable anode for long-life sodium-ion batteries. Cryst. Growth Des. 18(6), 3291–3301 (2018). https://doi.org/10.1021/acs.cgd.7b01549
L. Xu, G. Xu, Z. Chen, X. Wei, J. Cao, L. Yang, 3D nanocomposite archiecture constructed by reduced graphene oxide, thermally-treated protein and mesoporous NaTi2(PO4)3 nanocrystals as free-standing electrodes for advanced sodium ion battery. J. Mater. Sci.-Mater. Electron. 29(11), 9258–9267 (2018). https://doi.org/10.1007/s10854-018-8955-x
G. Xu, Z. Li, X. Wei, L. Yang, P.K. Chu, Monolithic hierarchical carbon assemblies embedded with mesoporous NaTi2(PO4)3 nanocrystals for flexible high-performance sodium anodes. Electrochim. Acta 254, 328–336 (2017). https://doi.org/10.1016/j.electacta.2017.09.121
Z. Wang, H. Li, Z. Tang, Z. Liu, Z. Ruan, L. Ma, Q. Yang, D. Wang, C. Zhi, Hydrogel electrolytes for flexible aqueous energy storage devices. Adv. Funct. Mater. 28, 1804560 (2018). https://doi.org/10.1002/adfm.201804560
M.-I. Jamesh, Recent advances on flexible electrodes for Na-ion batteries and Li–S batteries. J. Energy Chem. 32, 15–44 (2018). https://doi.org/10.1016/j.jechem.2018.06.011
Z. Guo, Y. Zhao, Y. Ding, X. Dong, L. Chen et al., Multi-functional flexible aqueous sodium-ion batteries with high safety. Chem 3(2), 348–362 (2017). https://doi.org/10.1016/j.chempr.2017.05.004
D. Guo, J. Qin, Z. Yin, J. Bai, Y.-K. Sun, M. Cao, Achieving high mass loading of Na3V2(PO4)3@carbon on carbon cloth by constructing three-dimensional network between carbon fibers for ultralong cycle-life and ultrahigh rate sodium-ion batteries. Nano Energy 45, 136–147 (2018). https://doi.org/10.1016/j.nanoen.2017.12.038
G. Xu, L. Yang, Z. Li, X. Wei, P.K. Chu, Protein-assisted assembly of mesoporous nanocrystals and carbon nanotubes for self-supporting high-performance sodium electrodes. J. Mater. Chem. A 5(6), 2749–2758 (2017). https://doi.org/10.1039/c6ta09673e
L. Fan, S. Wei, S. Li, Q. Li, Y. Lu, Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8(11), 1702657 (2018). https://doi.org/10.1002/aenm.201702657
C. Zhao, L. Liu, X. Qi, Y. Lu, F. Wu, J. Zhao, Y. Yu, Y.S. Hu, L. Chen, Solid-state sodium batteries. Adv. Energy Mater. 8(17), 1703012 (2018). https://doi.org/10.1002/aenm.201703012
A. Hayashi, K. Noi, A. Sakuda, M. Tatsumisago, Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012). https://doi.org/10.1038/ncomms1843
H. Hou, Q. Xu, Y. Pang, L. Li, J. Wang, C. Zhang, C. Sun, Efficient storing energy harvested by triboelectric nanogenerators using a safe and durable all-solid-state sodium-ion battery. Adv. Sci. 4(8), 1700072 (2017). https://doi.org/10.1002/advs.201700072
R. Gao, R. Tan, L. Han, Y. Zhao, Z. Wang, L. Yang, F. Pan, Nanofiber networks of Na3V2(PO4)3 as a cathode material for high performance all-solid-state sodium-ion batteries. J. Mater. Chem. A 5(11), 5273–5277 (2017). https://doi.org/10.1039/c7ta00314e
K. Vignarooban, R. Kushagra, A. Elango, P. Badami, B.-E. Mellander, X. Xu, T. Tucker, C. Nam, A. Kannan, Current trends and future challenges of electrolytes for sodium-ion batteries. Int. J. Hydrogen Energy 41(4), 2829–2846 (2016). https://doi.org/10.1016/j.ijhydene.2015.12.090
K. Zhao, Y. Liu, S. Zhang, S. He, N. Zhang, J. Yang, Z. Zhan, A room temperature solid-state rechargeable sodium ion cell based on a ceramic Na–βʺ-Al2O3 electrolyte and NaTi2(PO4)3 cathode. Electrochem. Commun. 69, 59–63 (2016). https://doi.org/10.1016/j.elecom.2016.06.003
X. Jiang, Z. Zeng, L. Xiao, X. Ai, H. Yang, Y. Cao, An all-phosphate and zero-strain sodium-ion battery based on Na3V2(PO4)3 cathode, NaTi2(PO4)3 anode, and trimethyl phosphate electrolyte with intrinsic safety and long lifespan. ACS Appl. Mater. Interfaces 9(50), 43733–43738 (2017). https://doi.org/10.1021/acsami.7b14946
D. Bin, F. Wang, A.G. Tamirat, L. Suo, Y. Wang, C. Wang, Y. Xia, Progress in aqueous rechargeable sodium-ion batteries. Adv. Energy Mater. 8, 1703008 (2018). https://doi.org/10.1002/aenm.201703008
A. Ponrouch, D. Monti, A. Boschin, B. Steen, P. Johansson, M. Palacin, Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 3(1), 22–42 (2015). https://doi.org/10.1039/c4ta04428b
Z. Zeng, X. Jiang, R. Li, D. Yuan, X. Ai, H. Yang, Y. Cao, A safer sodium-ion battery based on nonflammable organic phosphate electrolyte. Adv. Sci. 3(9), 1600066 (2016). https://doi.org/10.1002/advs.201600066
S. Yu, Z. Liu, H. Tempel, H. Kungl, R.-A. Eichel, Self-standing nasicon-type electrodes with high mass loading for fast-cycling all-phosphate sodium-ion batteries. J. Mater. Chem. A 6(37), 18304–18317 (2018). https://doi.org/10.1039/c8ta07313a
E. Ventosa, D. Buchholz, S. Klink, C. Flox, L.G. Chagas, C. Vaalma, W. Schuhmann, S. Passerini, J.R. Morante, Non-aqueous semi-solid flow battery based on Na-ion chemistry. P2-type NaxNi0.22Co0.11Mn0.66O2-NaTi2(PO4)3. Chem. Commun. 51(34), 7298–7301 (2015). https://doi.org/10.1039/c4cc09597a
M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo, J. Zhang, X. Han, J. Ma, Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. J. Mater. Chem. A 6(23), 10918–10925 (2018). https://doi.org/10.1039/c8ta02416b
F.E. Mouahid, M. Bettach, M. Zahir, P. Maldonado-Manso, S. Bruque, E.R. Losilla, M.A.G. Aranda, Crystal chemistry and ion conductivity of the Na 1+x Ti 2−x Alx(PO4)3 (0 ≤ x≤0.9) NASICON series. J. Mater. Chem. 10(12), 2748–2757 (2000). https://doi.org/10.1039/b004837m
M.J. Aragón, C. Vidal-Abarca, P. Lavela, J.L. Tirado, High reversible sodium insertion into iron substituted Na 1+x Ti 2−x Fex(PO4)3. J. Power Sources 252, 208–213 (2014). https://doi.org/10.1016/j.jpowsour.2013.12.006
S. Difi, I. Saadoune, M.T. Sougrati, R. Hakkou, K. Edstrom, P.-E. Lippens, Role of iron in Na1.5Fe0.5Ti1.5(PO4)3/C as electrode material for Na-ion batteries studied by operando mössbauer spectroscopy. Hyperfine Interact. 237(1), 61 (2016). https://doi.org/10.1007/s10751-016-1292-7
S. Difi, I. Saadoune, M.T. Sougrati, R. Hakkou, K. Edstrom, P.-E. Lippens, Mechanisms and performances of Na1.5Fe0.5Ti1.5(PO4)3/C composite as electrode material for Na-ion batteries. J. Phys. Chem. C 119(45), 25220–25234 (2015). https://doi.org/10.1021/acs.jpcc.5b07931
H. Gao, J.B. Goodenough, An aqueous symmetric sodium-ion battery with NASICON-structured Na3MnTi(PO4)3. Angew. Chem. Int. Ed. 55(41), 12768–12772 (2016). https://doi.org/10.1002/anie.201606508
Z. Jiang, J. Zhu, Y. Li, Z. He, W. Meng, Y. Jiang, L. Dai, L. Wang, Effect of Sn doping on the electrochemical performance of NaTi2(PO4)3/C composite. Ceram. Intern. 44(13), 15646–15652 (2018). https://doi.org/10.1016/j.ceramint.2018.05.233
F. Zhang, W. Li, X. Xiang, M. Sun, Nanocrystal-assembled porous Na3MgTi(PO4)3 aggregates as highly stable anode for aqueous sodium-ion batteries. Chemistry 23(52), 12944–12948 (2017). https://doi.org/10.1002/chem.201703044
J.-Y. Luo, W.-J. Cui, P. He, Y.-Y. Xia, Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nat. Chem. 2(9), 760–765 (2010). https://doi.org/10.1038/nchem.763
H. Kim, J. Hong, K.-Y. Park, H. Kim, S.-W. Kim, K. Kang, Aqueous rechargeable Li and Na ion batteries. Chem. Rev. 114(23), 11788–11827 (2014). https://doi.org/10.1021/cr500232y
Y. Wang, J. Liu, B. Lee, R. Qiao, Z. Yang et al., Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nat. Commun. 6, 6401 (2015). https://doi.org/10.1038/ncomms7401
H. Pan, Y.-S. Hu, L. Chen, Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 6(8), 2338–2360 (2013). https://doi.org/10.1039/C3EE40847G
Y. You, Z. Sang, J. Liu, Recent developments on aqueous sodium-ion batteries. Mater. Technol. 31(9), 501–509 (2016). https://doi.org/10.1080/10667857.2016.1189709
F. Sagane, Synthesis of NaTi2(PO4)3 thin-film electrodes by sol–gel method and study on the kinetic behavior of Na+-ion insertion/extraction reaction in aqueous solution. J. Electrochem. Soc. 163(13), A2835–A2839 (2016). https://doi.org/10.1149/2.0161614jes
K. Nakamoto, Y. Kano, A. Kitajou, S. Okada, Electrolyte dependence of the performance of a Na2FeP2O7/NaTi2(PO4)3 rechargeable aqueous sodium-ion battery. J. Power Sources 327, 327–332 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.052
A.I. Mohamed, N.J. Sansone, B. Kuei, N.R. Washburn, J.E. Whitacre, Using polypyrrole coating to improve cycling stability of NaTi2(PO4)3 as an aqueous Na-ion anode. J. Electrochem. Soc. 162(10), A2201–A2207 (2015). https://doi.org/10.1149/2.0961510jes
X. Zhan, M. Shirpour, Evolution of solid/aqueous interface in aqueous sodium-ion batteries. Chem. Commun. 53(1), 204–207 (2017). https://doi.org/10.1039/c6cc08901a
Y. He, Y. Hua, Y. Wu, C. Chi, Y. Shi, C. Ai, NaTi2(PO4)3/carbon and NaTi2(PO4)3/graphite composites as anode materials for aqueous rechargeable Na-ion batteries. Electrochemistry 84(9), 705–708 (2016). https://doi.org/10.5796/electrochemistry.84.705
X. Cao, Y. Yang, Facile synthesis of NaTi2(PO4)3-carbon composite through solid state method and its application in aqueous sodium ion battery. Mater. Lett. 231, 183–186 (2018). https://doi.org/10.1016/j.matlet.2018.08.020
T.-F. Hung, W.-H. Lan, Y.-W. Yeh, W.-S. Chang, C.-C. Yang, J.-C. Lin, Hydrothermal synthesis of sodium titanium phosphate nanoparticles as efficient anode materials for aqueous sodium-ion batteries. ACS Sustain. Chem. Eng. 4(12), 7074–7079 (2016). https://doi.org/10.1021/acssuschemeng.6b01962
X. Yao, Y. Luo, Y. Li, W. Li, M. Fang, M. Shui, J. Shu, Y. Ren, The investigation of NaTi2(PO4)3@C/Ag as a high-performance anode material for aqueous rechargeable sodium-ion batteries. Mater. Res. Bull. 104, 194–201 (2018). https://doi.org/10.1016/j.materresbull.2018.03.035
M. Forsyth, H. Yoon, F. Chen, H. Zhu, D.R. MacFarlane, M. Armand, P.C. Howlett, Novel Na+ ion diffusion mechanism in mixed organic–inorganic ionic liquid electrolyte leading to high Na+ transference number and stable, high rate electrochemical cycling of sodium cells. J. Phys. Chem. C 120(8), 4276–4286 (2016). https://doi.org/10.1021/acs.jpcc.5b11746
B. Zhao, Q. Wang, S. Zhang, C. Deng, Self-assembled wafer-like porous NaTi2(PO4)3 decorated with hierarchical carbon as a high-rate anode for aqueous rechargeable sodium batteries. J. Mater. Chem. A 3(22), 12089–12096 (2015). https://doi.org/10.1039/c5ta02568k
B. Zhao, B. Lin, S. Zhang, C. Deng, A frogspawn-inspired hierarchical porous NaTi2(PO4)3–C array for high-rate and long-life aqueous rechargeable sodium batteries. Nanoscale 7(44), 18552–18560 (2015). https://doi.org/10.1039/c5nr06505d
W. Wu, J. Yan, A. Wise, A. Rutt, J.F. Whitacre, Using intimate carbon to enhance the performance of NaTi2(PO4)3 anode materials: carbon nanotubes vs graphite. J. Electrochem. Soc. 161(4), A561–A567 (2014). https://doi.org/10.1149/2.059404jes
Z. Liu, Y. An, G. Pang, S. Dong, C. Xu, C. Mi, X. Zhang, Tin modified NaTi2(PO4)3 as an anode material for aqueous sodium ion batteries. Chem. Eng. J. 353, 814–823 (2018). https://doi.org/10.1016/j.cej.2018.07.159
Z. Hou, X. Li, J. Liang, Y. Zhu, Y. Qian, An aqueous rechargeable sodium ion battery based on a NaMnO2–NaTi2(PO4)3 hybrid system for stationary energy storage. J. Mater. Chem. A 3(4), 1400–1404 (2015). https://doi.org/10.1039/c4ta06018k
X. Zhang, Z. Hou, X. Li, J. Liang, Y. Zhu, Y. Qian, Na-birnessite with high capacity and long cycle life for rechargeable aqueous sodium-ion battery cathode electrodes. J. Mater. Chem. A 4(3), 856–860 (2016). https://doi.org/10.1039/c5ta08857g
Y. Liu, Y. Qiao, W. Zhang, H. Wang, K. Chen, H. Zhu, Z. Li, Y. Huang, Nanostructured alkali cation incorporated δ-MnO2 cathode materials for aqueous sodium-ion batteries. J. Mater. Chem. A 3(15), 7780–7785 (2015). https://doi.org/10.1039/c5ta00396b
Y. Liu, Y. Qiao, W. Zhang, H. Xu, Z. Li, Y. Shen, L. Yuan, X. Hu, X. Dai, Y. Huang, High-performance aqueous sodium-ion batteries with K0.27MnO2 cathode and their sodium storage mechanism. Nano Energy 5, 97–104 (2014). https://doi.org/10.1016/j.nanoen.2014.02.010
Y. Liu, Y. Qiao, X. Lou, X. Zhang, W. Zhang, Y. Huang, Hollow K0. 27MnO2 nanospheres as cathode for high-performance aqueous sodium ion batteries. ACS Appl. Mater. Interfaces 8(23), 14564–14571 (2016). https://doi.org/10.1021/acsami.6b03089
X.-Y. Wu, M.-Y. Sun, Y.-F. Shen, J.-F. Qian, Y.-L. Cao, X.-P. Ai, H.-X. Yang, Energetic aqueous rechargeable sodium-ion battery based on Na2CuFe(CN)6–NaTi2(PO4)3 intercalation chemistry. Chemsuschem 7(2), 407–411 (2014). https://doi.org/10.1002/cssc.201301036
G. Pang, P. Nie, C. Yuan, L. Shen, X. Zhang, J. Zhu, B. Ding, Enhanced performance of aqueous sodium-ion batteries using electrodes based on the NaTi2(PO4)3/MWNTs–Na0.44MnO2 system. Energy Technol. 2(8), 705–712 (2014). https://doi.org/10.1002/ente.201402045
Y. Wang, L. Mu, J. Liu, Z. Yang, X. Yu, L. Gu, Y.S. Hu, H. Li, X.Q. Yang, L. Chen, A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries. Adv. Energy Mater. 5(22), 1501005 (2015). https://doi.org/10.1002/aenm.201501005
Q. Zhang, C. Liao, T. Zhai, H. Li, A high rate 1.2 V aqueous sodium-ion battery based on all nasicon structured NaTi2(PO4)3 and Na3V2(PO4)3. Electrochim. Acta 196, 470–478 (2016). https://doi.org/10.1016/j.electacta.2016.03.007
C.W. Mason, F. Lange, Aqueous ion battery systems using sodium vanadium phosphate stabilized by titanium substitution. ECS Electrochem. Lett. 4(8), A79–A82 (2015). https://doi.org/10.1149/2.0011508eel
A. Fernández-Ropero, D. Saurel, B. Acebedo, T. Rojo, M. Casas-Cabanas, Electrochemical characterization of NaFePO4 as positive electrode in aqueous sodium-ion batteries. J. Power Sources 291, 40–45 (2015). https://doi.org/10.1016/j.jpowsour.2015.05.006
W. Wu, S. Shabhag, J. Chang, A. Rutt, J.F. Whitacre, Relating electrolyte concentration to performance and stability for NaTi2(PO4)3/Na0.44MnO2 aqueous sodium-ion batteries. J. Electrochem. Soc. 162(6), A803–A808 (2015). https://doi.org/10.1149/2.0121506jes
K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, S. Okada, Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode. Electrochemistry 85(4), 179–185 (2017). https://doi.org/10.5796/electrochemistry.85.179
L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt”electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
J. Han, H. Zhang, A. Varzi, S. Passerini, Fluorine-free water-in-salt electrolyte for green and low-cost aqueous sodium-ion batteries. ChemSusChem 11(21), 3704–3707 (2018). https://doi.org/10.1002/cssc.201801930
A.I. Mohamed, J.F. Whitacre, Capacity fade of NaTi2(PO4)3 in aqueous electrolyte solutions: relating pH increases to long term stability. Electrochim. Acta 235, 730–739 (2017). https://doi.org/10.1016/j.electacta.2017.03.106
H. Zhang, B. Qin, J. Han, S. Passerini, Aqueous/nonaqueous hybrid electrolyte for sodium-ion batteries. ACS Energy Lett. 3(7), 1769–1770 (2018). https://doi.org/10.1021/acsenergylett.8b00919
J.F. Whitacre, S. Shanbhag, A. Mohamed, A. Polonsky, K. Carlisle et al., A polyionic, large-format energy storage device using an aqueous electrolyte and thick-format composite NaTi2(PO4)3/activated carbon negative electrodes. Energy Technol. 3(1), 20–31 (2015). https://doi.org/10.1002/ente.201402127
P.R. Kumar, Y.H. Jung, B. Moorthy, D.K. Kim, Effect of electrolyte additives on NaTi2(PO4)3–C//Na3V2O2x(PO4)2F3−2x-MWCNT aqueous rechargeable sodium ion battery performance. J. Electrochem. Soc. 163(7), A1484–A1492 (2016). https://doi.org/10.1149/2.0031608jes
Y. Kong, J. Sun, L. Gai, X. Ma, J. Zhou, NaTi2(PO4)3/C||LiMn2O4 rechargeable battery operating with Li+/Na+-mixed aqueous electrolyte exhibits superior electrochemical performance. Electrochim. Acta 255, 220–229 (2017). https://doi.org/10.1016/j.electacta.2017.10.006
S.-Y. Tang, C.-H. Mi, J. Wang, A hybrid aqueous full battery based on LiMn2O4cathode and NaTi2(PO4)3 anode. Chin. J. Inorg. Chem. 34(7), 1279–1284 (2018). https://doi.org/10.11862/CJIC.2018.155
D. Sun, G. Jin, Y. Tang, R. Zhang, X. Xue, X. Huang, H. Chu, H. Wang, NaTi2(PO4)3 nanoparticles embedded in carbon matrix as long-lived anode for aqueous lithium ion battery. J. Electrochem. Soc. 163(7), A1388–A1393 (2016). https://doi.org/10.1149/2.1181607jes
M. Yao, J. Zhu, W. Meng, C. Li, C. Li et al., Enhanced lithium storage performance of nanostructured NaTi2(PO4)3 decorated by nitrogen-doped carbon. Electrochim. Acta 294, 226–232 (2019). https://doi.org/10.1016/j.electacta.2018.10.116
Z. Huang, M. Yao, Z. Jiang, W. Meng, B. Li et al., Impact of fe doping on performance of NaTi2(PO4)3/C anode for aqueous lithium ion battery. Solid State Ionics 327, 123–128 (2018). https://doi.org/10.1016/j.ssi.2018.10.013
Z. Jiang, L. Liu, Y. Li, J. Zhu, C. Li et al., Improved lithium storage performance of NaTi2(PO4)3/C composite connected by carbon nanotubes. Solid State Ionics 325, 189–195 (2018). https://doi.org/10.1016/j.ssi.2018.08.007
Z. Zhou, S. Gu, Y. Zhang, F. Wu, N. Zhou, Lithium storage performance improvement of NaTi2(PO4)3 with nitrogen-doped carbon derived from polyaniline. J. Alloys Compd. 767, 745–752 (2018). https://doi.org/10.1016/j.jallcom.2018.07.131
A. Rudola, S.A.B. Azmansah, P. Balaya, Communication-Mg(TFSI)2-based hybrid magnesium-sodium electrolyte: case study with NaTi2(PO4)3//Mg cell. J. Electrochem. Soc. 165(5), A1092–A1094 (2018). https://doi.org/10.1149/2.1091805jes
C. Liu, X. Wang, W. Deng, C. Li, J. Chen, M. Xue, R. Li, F. Pan, Engineering fast ion conduction and selective cation channels for a high-rate and high-voltage hybrid aqueous battery. Angew. Chem. Int. Ed. 57(24), 7046–7050 (2018). https://doi.org/10.1002/anie.201800479
X. Cao, L. Wang, J. Chen, J. Zheng, A low-cost Mg2+/Na+ hybrid aqueous battery. J. Mater. Chem. A 6(32), 15762–15770 (2018). https://doi.org/10.1039/c8ta04930k
L. Niu, L. Chen, J. Zhang, P. Jiang, Z. Liu, Revisiting the open-framework zinc hexacyanoferrate: the role of ternary electrolyte and sodium-ion intercalation mechanism. J. Power Sources 380, 135–141 (2018). https://doi.org/10.1016/j.jpowsour.2018.01.083
F. Yu, S. Zhang, C. Fang, Y. Liu, S. He, J. Xia, J. Yang, N. Zhang, Electrochemical characterization of p2-type layered Na2/3Ni1/4Mn3/4O2 cathode in aqueous hybrid sodium/lithium ion electrolyte. Ceram. Int. 43(13), 9960–9967 (2017). https://doi.org/10.1016/j.ceramint.2017.05.007
P. Jiang, H. Shao, L. Chen, J. Feng, Z. Liu, Ion-selective copper hexacyanoferrate with an open-framework structure enables high-voltage aqueous mixed-ion batteries. J. Mater. Chem. A 5(32), 16740–16747 (2017). https://doi.org/10.1039/c7ta04172a
L. Chen, H. Shao, X. Zhou, G. Liu, J. Jiang, Z. Liu, Water-mediated cation intercalation of open-framework indium hexacyanoferrate with high voltage and fast kinetics. Nat. Commun. 7, 11982 (2016). https://doi.org/10.1038/ncomms11982
L. Chen, L. Zhang, X. Zhou, Z. Liu, Aqueous batteries based on mixed monovalence metal ions: a new battery family. Chemsuschem 7(8), 2295–2302 (2014). https://doi.org/10.1002/cssc.201402084
C. Zhang, D. He, J. Ma, W. Tang, T.D. Waite, Faradaic reactions in capacitive deionization (CDI)—problems and possibilities: a review. Water Res. 128, 314–330 (2018). https://doi.org/10.1016/j.watres.2017.10.024
M.A. Ahmed, S. Tewari, Capacitive deionization: processes, materials and state of the technology. J. Electroanal. Chem. 813, 178–192 (2018). https://doi.org/10.1016/j.jelechem.2018.02.024
S. Porada, R. Zhao, A. van der Wal, V. Presser, P.M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization. Prog. Mater Sci. 58(8), 1388–1442 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
F.A. Al Marzooqi, A.A. Al Ghaferi, I. Saadat, N. Hilal, Application of capacitive deionisation in water desalination: a review. Desalination 342, 3–15 (2014). https://doi.org/10.1016/j.desal.2014.02.031
M.A. Anderson, A.L. Cudero, J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: will it compete? Electrochim. Acta 55(12), 3845–3856 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
M.E. Suss, V. Presser, Water desalination with energy storage electrode materials. Joule 2(1), 10–15 (2018). https://doi.org/10.1016/j.joule.2017.12.010
S. Shanbhag, Y. Bootwala, J.F. Whitacre, M.S. Mauter, Ion transport and competition effects on NaTi2(PO4)3 and Na4Mn9O18 selective insertion electrode performance. Langmuir 33(44), 12580–12591 (2017). https://doi.org/10.1021/acs.langmuir.7b02861
T. Ikeshoji, Separation of alkali metal ions by intercalation into a prussian blue electrode. J. Electrochem. Soc. 133(10), 2108–2109 (1986). https://doi.org/10.1149/1.2108350
S. Kim, J. Lee, C. Kim, J. Yoon, Na2FeP2O7 as a novel material for hybrid capacitive deionization. Electrochim. Acta 203, 265–271 (2016). https://doi.org/10.1016/j.electacta.2016.04.056
S. Kim, H. Yoon, D. Shin, J. Lee, J. Yoon, Electrochemical selective ion separation in capacitive deionization with sodium manganese oxide. J. Colloid Interf. Sci. 506, 644–648 (2017). https://doi.org/10.1016/j.jcis.2017.07.054
F. Chen, Y. Huang, L. Guo, L. Sun, Y. Wang, H.Y. Yang, Dual-ions electrochemical deionization: a desalination generator. Energy Environ. Sci. 10(10), 2081–2089 (2017). https://doi.org/10.1039/C7EE00855D
Y. Huang, F. Chen, L. Guo, J. Zhang, T. Chen, H.Y. Yang, Low energy consumption dual-ion electrochemical deionization system using NaTi2(PO4)3–AgNPs electrodes. Desalination 451, 241–247 (2019). https://doi.org/10.1016/j.desal.2018.02.006
F. Chen, Y. Huang, D. Kong, M. Ding, S. Huang, H.Y. Yang, NaTi2(PO4)3–Ag electrodes based desalination battery and energy recovery. FlatChem 8, 9–16 (2018). https://doi.org/10.1016/j.flatc.2018.02.001
L. Wang, C. Mu, H. Li, F. Li, A dual-function battery for desalination and energy storage. Inorg. Chem. Front. 5(10), 2522–2526 (2018). https://doi.org/10.1039/C8QI00704G
D.-H. Nam, K.-S. Choi, Bismuth as a new chloride-storage electrode enabling the construction of a practical high capacity desalination battery. J. Am. Chem. Soc. 139(32), 11055–11063 (2017). https://doi.org/10.1021/jacs.7b01119
Z. Guo, Y. Ma, X. Dong, M. Hou, Y. Wang, Y. Xia, Integrating desalination and energy storage using a saltwater-based hybrid sodium-ion supercapacitor. ChemSusChem 11(11), 1741–1745 (2018). https://doi.org/10.1002/cssc.201800517
H. Li, H. Tang, C. Ma, Y. Bai, J. Alvarado et al., Understanding the electrochemical mechanisms induced by gradient Mg2+ distribution of Na-rich Na 3+x V2−xMgx(PO4)3/C for sodium ion batteries. Chem. Mat. 30(8), 2498–2505 (2018). https://doi.org/10.1021/acs.chemmater.7b03903
J. Zeng, Z. Cao, Y. Yang, Y. Wang, Y. Peng, Y. Zhang, J. Wang, J. Zhao, A long cycle-life Na–Mg hybrid battery with a chlorine-free electrolyte based on Mg (TFSI)2. Electrochim. Acta 284, 1–9 (2018). https://doi.org/10.1016/j.electacta.2018.07.111
Y. Xu, W. Cao, Y. Yin, J. Sheng, Q. An, Q. Wei, W. Yang, L. Mai, Novel NaTi2(PO4)3 nanowire clusters as high performance cathodes for Mg–Na hybrid-ion batteries. Nano Energy 55, 526–533 (2019). https://doi.org/10.1016/j.nanoen.2018.10.064
J. Ding, W. Hu, E. Paek, D. Mitlin, Review of hybrid ion capacitors: from aqueous to lithium to sodium. Chem. Rev. 118(14), 6457–6498 (2018). https://doi.org/10.1021/acs.chemrev.8b00116
Y.E. Zhu, L. Yang, J. Sheng, Y. Chen, H. Gu, J. Wei, Z. Zhou, Fast sodium storage in TiO2@CNT@C nanorods for high-performance Na-ion capacitors. Adv. Energy Mater. 7(22), 1701222 (2017). https://doi.org/10.1002/aenm.201701222
H. Hou, X. Qiu, W. Wei, Y. Zhang, X. Ji, Carbon anode materials for advanced sodium-ion batteries. Adv. Energy Mater. 7(24), 1602898 (2017). https://doi.org/10.1002/aenm.201602898
F. Wang, X. Wang, Z. Chang, X. Wu, X. Liu et al., A quasi-solid-state sodium-ion capacitor with high energy density. Adv. Mater. 27(43), 6962–6968 (2015). https://doi.org/10.1002/adma.201503097
S. Liu, Z. Cai, J. Zhou, A. Pan, S. Liang, Nitrogen-doped TiO2 nanospheres for advanced sodium-ion battery and sodium-ion capacitor applications. J. Mater. Chem. A 4(47), 18278–18283 (2016). https://doi.org/10.1039/c6ta08472a
E. Lim, H. Kim, C. Jo, J. Chun, K. Ku et al., Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance anode. ACS Nano 8(9), 8968–8978 (2014). https://doi.org/10.1021/nn501972w
S. Zhang, Y. Liu, Q. Han, S. He, N. Zhang, J. Yang, Development and characterization of aqueous sodium-ion hybrid supercapacitor based on NaTi2(PO4)3//activated carbon. J. Alloys Compd. 729, 850–857 (2017). https://doi.org/10.1016/j.jallcom.2017.08.256
C. Wang, F. Qiu, H. Deng, X. Zhang, P. He, H. Zhou, Study on the aqueous hybrid supercapacitor based on carbon-coated NaTi2(PO4)3 and activated carbon electrode materials. Acta Chim. Sin. 75(2), 241–246 (2017). https://doi.org/10.6023/a16100523
H.-K. Roh, M.-S. Kim, K.Y. Chung, M. Ulaganathan, V. Aravindan, S. Madhavi, K.C. Roh, K.-B. Kim, A chemically bonded NaTi2(PO4)3/rGO microsphere composite as a high-rate insertion anode for sodium-ion capacitors. J. Mater. Chem. A 5(33), 17506–17516 (2017). https://doi.org/10.1039/c7ta05252a
T. Wei, G. Yang, C. Wang, Iso-oriented NaTi2(PO4)3 mesocrystals as anode material for high-energy and long-durability sodium-ion capacitor. ACS Appl. Mater. Interfaces 9(37), 31861–31870 (2017). https://doi.org/10.1021/acsami.7b08778
J.Z. Guo, P.F. Wang, X.L. Wu, X.H. Zhang, Q. Yan, H. Chen, J.P. Zhang, Y.G. Guo, High-energy/power and low-temperature cathode for sodium-ion batteries: in situ XRD study and superior full-cell performance. Adv. Mater. 29(33), 1701968 (2017). https://doi.org/10.1002/adma.201701968