Enhancing π-Delocalization and Suppressing Traps via Doping in Electron Transport Materials for Efficient Semitransparent Organic Photovoltaics
Corresponding Author: Pei Cheng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 247
Abstract
The ultrathin metal electrode in semitransparent organic photovoltaics (STOPVs) usually suffers from limited charge collection capability and conductivity and thus hinders the power conversion efficiency (PCE). Herein, a new strategy of enhancing the π-delocalization of electron transport layer (ETL) via lithium bis(trifluoromethanesulfonyl)imide doping is developed. The enhanced π-delocalization in ETL benefits sizeable intermolecular π–π overlap, prone to harvesting electrons and thereby improving charge collection range. Doping also improves the conductivity of both ETL and ultrathin silver electrode. Furthermore, the trap densities in ETL and STOPV devices are reduced after doping, contributing to suppressed recombination and higher PCE. Consequently, ETL doping maintains an average visible transmittance of ~ 30% while promotes the PCE of STOPVs from 13.0% to 14.3% and light utilization efficiency from 3.74% to 4.15%, which is among the highest values of optical structure-free STOPVs. This work provides a new insight of π-delocalization manipulation in ETL for efficient STOPVs.
Highlights:
1 High-performance semitransparent organic photovoltaics (STOPVs) with decreased electrical loss were fabricated via introducing lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) to electron transport layer (ETL).
2 LiTFSI interacts with ETL material PDINN and enhanced π-delocalization in PDINN, which is beneficial to conductivity and thereby electron collection range.
3 LiTFSI-doped PDINN-based STOPVs show an improved power conversion efficiency of 14.3%, average visible transmittance of 29.0%, and light utilization energy of 4.15%, which is among the highest values of optical structure-free STOPVs.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S.-Y. Chang, P. Cheng, G. Li, Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2(6), 1039–1054 (2018). https://doi.org/10.1016/j.joule.2018.04.005
- Y. Hu, J. Wang, C. Yan, P. Cheng, The multifaceted potential applications of organic photovoltaics. Nat. Rev. Mater. 7(11), 836–838 (2022). https://doi.org/10.1038/s41578-022-00497-y
- V.V. Brus, J. Lee, B.R. Luginbuhl, S.-J. Ko, G.C. Bazan et al., Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019). https://doi.org/10.1002/adma.201900904
- H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang et al., Semi-transparent organic photovoltaics. Chem. Soc. Rev. 52(13), 4132–4148 (2023). https://doi.org/10.1039/d3cs00233k
- T. Liu, M.M.S. Almutairi, J. Ma, A. Stewart, Z. Xing et al., Solution-processed thin film transparent photovoltaics: present challenges and future development. Nano-Micro Lett. 17(1), 49 (2024). https://doi.org/10.1007/s40820-024-01547-6
- E. Ravishankar, R.E. Booth, C. Saravitz, H. Sederoff, H.W. Ade et al., Achieving net zero energy greenhouses by integrating semitransparent organic solar cells. Joule 4(2), 490–506 (2020). https://doi.org/10.1016/j.joule.2019.12.018
- D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan et al., High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 5(4), 945–957 (2021). https://doi.org/10.1016/j.joule.2021.02.010
- N.C. Davy, M. Sezen-Edmonds, J. Gao, X. Lin, A. Liu et al., Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat. Energy 2, 17104 (2017). https://doi.org/10.1038/nenergy.2017.104
- D. Wang, Y. Li, G. Zhou, E. Gu, R. Xia et al., High-performance see-through power windows. Energy Environ. Sci. 15(6), 2629–2637 (2022). https://doi.org/10.1039/d2ee00977c
- N. Zhang, T. Jiang, C. Guo, L. Qiao, Q. Ji et al., High-performance semitransparent polymer solar cells floating on water: rational analysis of power generation, water evaporation and algal growth. Nano Energy 77, 105111 (2020). https://doi.org/10.1016/j.nanoen.2020.105111
- Z. Chen, J. Ge, W. Song, X. Tong, H. Liu et al., 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 36(33), 2406690 (2024). https://doi.org/10.1002/adma.202406690
- Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
- J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang et al., Isomerism effect of 3D dimeric acceptors for non-halogenated solvent-processed organic solar cells with 20% efficiency. Angew. Chem. Int. Ed. 64(12), e202423562 (2025). https://doi.org/10.1002/anie.202423562
- X. Li, X. Kong, G. Sun, Y. Li, Organic small molecule acceptor materials for organic solar cells. eScience 3(5), 100171 (2023). https://doi.org/10.1016/j.esci.2023.100171
- J. Wang, Y. Xie, K. Chen, H. Wu, J.M. Hodgkiss et al., Physical insights into non-fullerene organic photovoltaics. Nat. Rev. Phys. 6(6), 365–381 (2024). https://doi.org/10.1038/s42254-024-00719-y
- S. Guan, Y. Li, Z. Bi, Y. Lin, Y. Fu et al., Fine-tuning the hierarchical morphology of multi-component organic photovoltaics via a dual-additive strategy for 20.5% efficiency. Energy Environ. Sci. 18(1), 313–321 (2025). https://doi.org/10.1039/d4ee03778b
- N. Wei, J. Chen, Y. Cheng, Z. Bian, W. Liu et al., Constructing multiscale fibrous morphology to achieve 20% efficiency organic solar cells by mixing high and low molecular weight D18. Adv. Mater. 36(41), 2408934 (2024). https://doi.org/10.1002/adma.202408934
- H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding et al., Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 24(3), 444–453 (2025). https://doi.org/10.1038/s41563-024-02062-0
- H. Li, Y. Li, X. Dai, X. Xu, Q. Peng, Ethanol processable inorganic-organic hybrid hole transporting layers enabled 20.12% efficiency organic solar cells. Angew. Chem. Int. Ed. 64(4), e202416866 (2025). https://doi.org/10.1002/anie.202416866
- Y. Wang, C. Gao, W. Lei, T. Yang, Z. Liang et al., Achieving 20% toluene-processed binary organic solar cells via secondary regulation of donor aggregation in sequential processing. Nano-Micro Lett. 17(1), 206 (2025). https://doi.org/10.1007/s40820-025-01715-2
- W. Kong, J. Wang, Y. Hu, N. Cui, C. Yan et al., P-type polymers in semitransparent organic photovoltaics. Angew. Chem. Int. Ed. 62(45), e202307622 (2023). https://doi.org/10.1002/anie.202307622
- X. Yan, J. Wang, W. He, T.A. Dela Peña, C. Zhu et al., Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor. J. Energy Chem. 96, 351–358 (2024). https://doi.org/10.1016/j.jechem.2024.05.008
- X. Huang, X. Ren, Y. Cheng, Y. Zhang, Z. Sun et al., Collaborative regulation strategy of donor and acceptor analogues realizes multifunctional semitransparent organic solar cells with excellent comprehensive performance. Energy Environ. Sci. 17(8), 2825–2836 (2024). https://doi.org/10.1039/d3ee04476a
- N. Gao, H. Bin, S. Wu, R.A.J. Janssen, Y. Li, Semitransparent organic solar cells with high light utilization efficiency and color rendering index. Sci. China Chem. 67(7), 2248–2256 (2024). https://doi.org/10.1007/s11426-024-2056-9
- J. Wang, J. Zhang, Y. Xiao, T. Xiao, R. Zhu et al., Effect of isomerization on high-performance nonfullerene electron acceptors. J. Am. Chem. Soc. 140(29), 9140–9147 (2018). https://doi.org/10.1021/jacs.8b04027
- C. Xu, K. Jin, Z. Xiao, Z. Zhao, X. Ma et al., Wide bandgap polymer with narrow photon harvesting in visible light range enables efficient semitransparent organic photovoltaics. Adv. Funct. Mater. 31(52), 2107934 (2021). https://doi.org/10.1002/adfm.202107934
- W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang et al., Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed. 61(19), e202116111 (2022). https://doi.org/10.1002/anie.202116111
- D. Xie, Y. Zhang, X. Yuan, Y. Li, F. Huang et al., A 2.20 eV bandgap polymer donor for efficient colorful semitransparent organic solar cells. Adv. Funct. Mater. 33(11), 2212601 (2023). https://doi.org/10.1002/adfm.202212601
- J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6(9), 614–634 (2022). https://doi.org/10.1038/s41570-022-00409-2
- C. Xu, Z. Zhao, L. Kan, S. Tao, X. Ma et al., Colorful semitransparent organic photovoltaics with record key parameters by optimizing photon utilization and fabry-Pérot resonator electrode. Adv. Opt. Mater. 12(10), 2302285 (2024). https://doi.org/10.1002/adom.202302285
- L. Ma, S. Zhang, J. Zhu, Z. Chen, T. Zhang et al., Design of low-cost non-fused ultranarrow-band-gap acceptors for versatile photovoltaic applications. Joule 8(8), 2238–2249 (2024). https://doi.org/10.1016/j.joule.2024.05.011
- W. Xu, H. Zhou, H. Tian, L. Zhang, J. Du et al., Achieving light utilization efficiency of 3.88% and efficiency of 14.04% for semitransparent layer-by-layer organic solar cells by diluting donor layer. Chem. Eng. J. 508, 161148 (2025). https://doi.org/10.1016/j.cej.2025.161148
- H. Yu, J. Wang, Y. Li, T. Liu, Y. Gong et al., Mitigating interfacial recombination enabling efficient semitransparent organic photovoltaics. Chem. Eng. J. 499, 156475 (2024). https://doi.org/10.1016/j.cej.2024.156475
- Y. Li, J. Wang, C. Yan, S. Zhang, N. Cui et al., Optical and electrical losses in semitransparent organic photovoltaics. Joule 8(2), 527–541 (2024). https://doi.org/10.1016/j.joule.2023.12.011
- Y. Zhao, P. Cheng, H. Yang, M. Wang, D. Meng et al., Towards high-performance semitransparent organic photovoltaics: dual-functional p-type soft interlayer. ACS Nano 16(1), 1231–1238 (2022). https://doi.org/10.1021/acsnano.1c09018
- Y. Li, C. He, L. Zuo, F. Zhao, L. Zhan et al., High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity. Adv. Energy Mater. 11(11), 2003408 (2021). https://doi.org/10.1002/aenm.202003408
- Y. Zhang, J. Zheng, Z. Jiang, X. He, J. Kim et al., Guided-growth ultrathin metal film enabled efficient semi-transparent organic solar cells. Adv. Energy Mater. 13(7), 2203266 (2023). https://doi.org/10.1002/aenm.202203266
- J.A. Venables, G.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47(4), 399–459 (1984). https://doi.org/10.1088/0034-4885/47/4/002
- J. Yun, Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27(18), 1606641 (2017). https://doi.org/10.1002/adfm.201606641
- J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue et al., Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 12(20), 2200453 (2022). https://doi.org/10.1002/aenm.202200453
- X. Duan, C. Liu, Y. Cai, L. Ye, J. Xue et al., Longitudinal through-hole architecture for efficient and thickness-insensitive semitransparent organic solar cells. Adv. Mater. 35(32), 2302927 (2023). https://doi.org/10.1002/adma.202302927
- J. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang et al., Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11(1), 2726 (2020). https://doi.org/10.1038/s41467-020-16509-w
- F. Neese, The ORCA program system. WIREs Comput. Mol. Sci. 2(1), 73–78 (2012). https://doi.org/10.1002/wcms.81
- F. Neese, Software update: the ORCA program system: version 5.0. WIREs Comput. Mol. Sci. 12(5), e1606 (2022). https://doi.org/10.1002/wcms.1606
- W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
- W. Yu, Z. Yu, Y. Cui, Z. Bao, Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7(10), 3270–3275 (2022). https://doi.org/10.1021/acsenergylett.2c01587
- A. Etxebarria, S.L. Koch, O. Bondarchuk, S. Passerini, G. Teobaldi et al., Work function evolution in Li anode processing. Adv. Energy Mater. 10(24), 2000520 (2020). https://doi.org/10.1002/aenm.202000520
- S. Liu, J. Liu, G. Liu, Y. Liu, H. Zhong, Modulation of the morphology, surface energy and wettability of malachite through a S, O, O-ligand surfactant: mechanism and hydrophobization. Appl. Surf. Sci. 505, 144467 (2020). https://doi.org/10.1016/j.apsusc.2019.144467
- H. Jeong, R. Nandi, J.Y. Cho, P.S. Pawar, H.S. Lee et al., CZTSSe/Zn(O, S) heterojunction solar cells with 9.82% efficiency enabled via (NH4)2S treatment of absorber layer. Prog. Photovoltaics Res. Appl. 29(10), 1057–1067 (2021). https://doi.org/10.1002/pip.3439
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
- T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139(2), 25 (2020). https://doi.org/10.1007/s00214-019-2541-z
- X. Ding, J. Lv, Z. Liang, X. Sun, J. Zhao et al., Optimizing of cathode interface layers in organic solar cells using polyphenols: an effective approach. Adv. Energy Mater. 14(36), 2401741 (2024). https://doi.org/10.1002/aenm.202401741
- A.D. Scaccabarozzi, A. Basu, F. Aniés, J. Liu, O. Zapata-Arteaga et al., Doping approaches for organic semiconductors. Chem. Rev. 122(4), 4420–4492 (2022). https://doi.org/10.1021/acs.chemrev.1c00581
- I.E. Jacobs, A.J. Moulé, Controlling molecular doping in organic semiconductors. Adv. Mater. 29(42), 1703063 (2017). https://doi.org/10.1002/adma.201703063
- X. Zheng, S. Ahmed, Y. Zhang, G. Xu, J. Wang et al., Differentiating the 2D passivation from amorphous passivation in perovskite solar cells. Nano-Micro Lett. 18(1), 62 (2025). https://doi.org/10.1007/s40820-025-01913-y
- Z. Wan, R. Wei, Y. Wang, H. Zeng, H. Yin et al., Multifunctional MXene for thermal management in perovskite solar cells. Nano-Micro Lett. 18(1), 18 (2025). https://doi.org/10.1007/s40820-025-01855-5
- C. Zhu, Y. Wang, L. Meng, B. Qiu, J. Li et al., Bifunctional bridging capping layer enables 24.5% efficiency of perovskite solar cells with polymer-based hole transport materials. Sci. China Chem. 68(1), 350–359 (2025). https://doi.org/10.1007/s11426-024-2142-4
- V.V. Brus, C.M. Proctor, N.A. Ran, T.-Q. Nguyen, Capacitance spectroscopy for quantifying recombination losses in nonfullerene small-molecule bulk heterojunction solar cells. Adv. Energy Mater. 6(11), 1502250 (2016). https://doi.org/10.1002/aenm.201502250
- J. Vollbrecht, V.V. Brus, S.-J. Ko, J. Lee, A. Karki et al., Quantifying the nongeminate recombination dynamics in nonfullerene bulk heterojunction organic solar cells. Adv. Energy Mater. 9(32), 1901438 (2019). https://doi.org/10.1002/aenm.201901438
References
S.-Y. Chang, P. Cheng, G. Li, Y. Yang, Transparent polymer photovoltaics for solar energy harvesting and beyond. Joule 2(6), 1039–1054 (2018). https://doi.org/10.1016/j.joule.2018.04.005
Y. Hu, J. Wang, C. Yan, P. Cheng, The multifaceted potential applications of organic photovoltaics. Nat. Rev. Mater. 7(11), 836–838 (2022). https://doi.org/10.1038/s41578-022-00497-y
V.V. Brus, J. Lee, B.R. Luginbuhl, S.-J. Ko, G.C. Bazan et al., Solution-processed semitransparent organic photovoltaics: from molecular design to device performance. Adv. Mater. 31(30), e1900904 (2019). https://doi.org/10.1002/adma.201900904
H. Yu, J. Wang, Q. Zhou, J. Qin, Y. Wang et al., Semi-transparent organic photovoltaics. Chem. Soc. Rev. 52(13), 4132–4148 (2023). https://doi.org/10.1039/d3cs00233k
T. Liu, M.M.S. Almutairi, J. Ma, A. Stewart, Z. Xing et al., Solution-processed thin film transparent photovoltaics: present challenges and future development. Nano-Micro Lett. 17(1), 49 (2024). https://doi.org/10.1007/s40820-024-01547-6
E. Ravishankar, R.E. Booth, C. Saravitz, H. Sederoff, H.W. Ade et al., Achieving net zero energy greenhouses by integrating semitransparent organic solar cells. Joule 4(2), 490–506 (2020). https://doi.org/10.1016/j.joule.2019.12.018
D. Wang, H. Liu, Y. Li, G. Zhou, L. Zhan et al., High-performance and eco-friendly semitransparent organic solar cells for greenhouse applications. Joule 5(4), 945–957 (2021). https://doi.org/10.1016/j.joule.2021.02.010
N.C. Davy, M. Sezen-Edmonds, J. Gao, X. Lin, A. Liu et al., Pairing of near-ultraviolet solar cells with electrochromic windows for smart management of the solar spectrum. Nat. Energy 2, 17104 (2017). https://doi.org/10.1038/nenergy.2017.104
D. Wang, Y. Li, G. Zhou, E. Gu, R. Xia et al., High-performance see-through power windows. Energy Environ. Sci. 15(6), 2629–2637 (2022). https://doi.org/10.1039/d2ee00977c
N. Zhang, T. Jiang, C. Guo, L. Qiao, Q. Ji et al., High-performance semitransparent polymer solar cells floating on water: rational analysis of power generation, water evaporation and algal growth. Nano Energy 77, 105111 (2020). https://doi.org/10.1016/j.nanoen.2020.105111
Z. Chen, J. Ge, W. Song, X. Tong, H. Liu et al., 20.2% efficiency organic photovoltaics employing a π-extension quinoxaline-based acceptor with ordered arrangement. Adv. Mater. 36(33), 2406690 (2024). https://doi.org/10.1002/adma.202406690
Y. Sun, L. Wang, C. Guo, J. Xiao, C. Liu et al., π-extended nonfullerene acceptor for compressed molecular packing in organic solar cells to achieve over 20% efficiency. J. Am. Chem. Soc. 146(17), 12011–12019 (2024). https://doi.org/10.1021/jacs.4c01503
J. Wang, P. Wang, T. Chen, W. Zhao, J. Wang et al., Isomerism effect of 3D dimeric acceptors for non-halogenated solvent-processed organic solar cells with 20% efficiency. Angew. Chem. Int. Ed. 64(12), e202423562 (2025). https://doi.org/10.1002/anie.202423562
X. Li, X. Kong, G. Sun, Y. Li, Organic small molecule acceptor materials for organic solar cells. eScience 3(5), 100171 (2023). https://doi.org/10.1016/j.esci.2023.100171
J. Wang, Y. Xie, K. Chen, H. Wu, J.M. Hodgkiss et al., Physical insights into non-fullerene organic photovoltaics. Nat. Rev. Phys. 6(6), 365–381 (2024). https://doi.org/10.1038/s42254-024-00719-y
S. Guan, Y. Li, Z. Bi, Y. Lin, Y. Fu et al., Fine-tuning the hierarchical morphology of multi-component organic photovoltaics via a dual-additive strategy for 20.5% efficiency. Energy Environ. Sci. 18(1), 313–321 (2025). https://doi.org/10.1039/d4ee03778b
N. Wei, J. Chen, Y. Cheng, Z. Bian, W. Liu et al., Constructing multiscale fibrous morphology to achieve 20% efficiency organic solar cells by mixing high and low molecular weight D18. Adv. Mater. 36(41), 2408934 (2024). https://doi.org/10.1002/adma.202408934
H. Chen, Y. Huang, R. Zhang, H. Mou, J. Ding et al., Organic solar cells with 20.82% efficiency and high tolerance of active layer thickness through crystallization sequence manipulation. Nat. Mater. 24(3), 444–453 (2025). https://doi.org/10.1038/s41563-024-02062-0
H. Li, Y. Li, X. Dai, X. Xu, Q. Peng, Ethanol processable inorganic-organic hybrid hole transporting layers enabled 20.12% efficiency organic solar cells. Angew. Chem. Int. Ed. 64(4), e202416866 (2025). https://doi.org/10.1002/anie.202416866
Y. Wang, C. Gao, W. Lei, T. Yang, Z. Liang et al., Achieving 20% toluene-processed binary organic solar cells via secondary regulation of donor aggregation in sequential processing. Nano-Micro Lett. 17(1), 206 (2025). https://doi.org/10.1007/s40820-025-01715-2
W. Kong, J. Wang, Y. Hu, N. Cui, C. Yan et al., P-type polymers in semitransparent organic photovoltaics. Angew. Chem. Int. Ed. 62(45), e202307622 (2023). https://doi.org/10.1002/anie.202307622
X. Yan, J. Wang, W. He, T.A. Dela Peña, C. Zhu et al., Semitransparent organic photovoltaics enabled by transparent p-type inorganic semiconductor and near-infrared acceptor. J. Energy Chem. 96, 351–358 (2024). https://doi.org/10.1016/j.jechem.2024.05.008
X. Huang, X. Ren, Y. Cheng, Y. Zhang, Z. Sun et al., Collaborative regulation strategy of donor and acceptor analogues realizes multifunctional semitransparent organic solar cells with excellent comprehensive performance. Energy Environ. Sci. 17(8), 2825–2836 (2024). https://doi.org/10.1039/d3ee04476a
N. Gao, H. Bin, S. Wu, R.A.J. Janssen, Y. Li, Semitransparent organic solar cells with high light utilization efficiency and color rendering index. Sci. China Chem. 67(7), 2248–2256 (2024). https://doi.org/10.1007/s11426-024-2056-9
J. Wang, J. Zhang, Y. Xiao, T. Xiao, R. Zhu et al., Effect of isomerization on high-performance nonfullerene electron acceptors. J. Am. Chem. Soc. 140(29), 9140–9147 (2018). https://doi.org/10.1021/jacs.8b04027
C. Xu, K. Jin, Z. Xiao, Z. Zhao, X. Ma et al., Wide bandgap polymer with narrow photon harvesting in visible light range enables efficient semitransparent organic photovoltaics. Adv. Funct. Mater. 31(52), 2107934 (2021). https://doi.org/10.1002/adfm.202107934
W. Liu, S. Sun, L. Zhou, Y. Cui, W. Zhang et al., Design of near-infrared nonfullerene acceptor with ultralow nonradiative voltage loss for high-performance semitransparent ternary organic solar cells. Angew. Chem. Int. Ed. 61(19), e202116111 (2022). https://doi.org/10.1002/anie.202116111
D. Xie, Y. Zhang, X. Yuan, Y. Li, F. Huang et al., A 2.20 eV bandgap polymer donor for efficient colorful semitransparent organic solar cells. Adv. Funct. Mater. 33(11), 2212601 (2023). https://doi.org/10.1002/adfm.202212601
J. Wang, P. Xue, Y. Jiang, Y. Huo, X. Zhan, The principles, design and applications of fused-ring electron acceptors. Nat. Rev. Chem. 6(9), 614–634 (2022). https://doi.org/10.1038/s41570-022-00409-2
C. Xu, Z. Zhao, L. Kan, S. Tao, X. Ma et al., Colorful semitransparent organic photovoltaics with record key parameters by optimizing photon utilization and fabry-Pérot resonator electrode. Adv. Opt. Mater. 12(10), 2302285 (2024). https://doi.org/10.1002/adom.202302285
L. Ma, S. Zhang, J. Zhu, Z. Chen, T. Zhang et al., Design of low-cost non-fused ultranarrow-band-gap acceptors for versatile photovoltaic applications. Joule 8(8), 2238–2249 (2024). https://doi.org/10.1016/j.joule.2024.05.011
W. Xu, H. Zhou, H. Tian, L. Zhang, J. Du et al., Achieving light utilization efficiency of 3.88% and efficiency of 14.04% for semitransparent layer-by-layer organic solar cells by diluting donor layer. Chem. Eng. J. 508, 161148 (2025). https://doi.org/10.1016/j.cej.2025.161148
H. Yu, J. Wang, Y. Li, T. Liu, Y. Gong et al., Mitigating interfacial recombination enabling efficient semitransparent organic photovoltaics. Chem. Eng. J. 499, 156475 (2024). https://doi.org/10.1016/j.cej.2024.156475
Y. Li, J. Wang, C. Yan, S. Zhang, N. Cui et al., Optical and electrical losses in semitransparent organic photovoltaics. Joule 8(2), 527–541 (2024). https://doi.org/10.1016/j.joule.2023.12.011
Y. Zhao, P. Cheng, H. Yang, M. Wang, D. Meng et al., Towards high-performance semitransparent organic photovoltaics: dual-functional p-type soft interlayer. ACS Nano 16(1), 1231–1238 (2022). https://doi.org/10.1021/acsnano.1c09018
Y. Li, C. He, L. Zuo, F. Zhao, L. Zhan et al., High-performance semi-transparent organic photovoltaic devices via improving absorbing selectivity. Adv. Energy Mater. 11(11), 2003408 (2021). https://doi.org/10.1002/aenm.202003408
Y. Zhang, J. Zheng, Z. Jiang, X. He, J. Kim et al., Guided-growth ultrathin metal film enabled efficient semi-transparent organic solar cells. Adv. Energy Mater. 13(7), 2203266 (2023). https://doi.org/10.1002/aenm.202203266
J.A. Venables, G.T. Spiller, M. Hanbucken, Nucleation and growth of thin films. Rep. Prog. Phys. 47(4), 399–459 (1984). https://doi.org/10.1088/0034-4885/47/4/002
J. Yun, Ultrathin metal films for transparent electrodes of flexible optoelectronic devices. Adv. Funct. Mater. 27(18), 1606641 (2017). https://doi.org/10.1002/adfm.201606641
J. Jing, S. Dong, K. Zhang, Z. Zhou, Q. Xue et al., Semitransparent organic solar cells with efficiency surpassing 15%. Adv. Energy Mater. 12(20), 2200453 (2022). https://doi.org/10.1002/aenm.202200453
X. Duan, C. Liu, Y. Cai, L. Ye, J. Xue et al., Longitudinal through-hole architecture for efficient and thickness-insensitive semitransparent organic solar cells. Adv. Mater. 35(32), 2302927 (2023). https://doi.org/10.1002/adma.202302927
J. Yao, B. Qiu, Z.-G. Zhang, L. Xue, R. Wang et al., Cathode engineering with perylene-diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 11(1), 2726 (2020). https://doi.org/10.1038/s41467-020-16509-w
F. Neese, The ORCA program system. WIREs Comput. Mol. Sci. 2(1), 73–78 (2012). https://doi.org/10.1002/wcms.81
F. Neese, Software update: the ORCA program system: version 5.0. WIREs Comput. Mol. Sci. 12(5), e1606 (2022). https://doi.org/10.1002/wcms.1606
W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5
W. Yu, Z. Yu, Y. Cui, Z. Bao, Degradation and speciation of Li salts during XPS analysis for battery research. ACS Energy Lett. 7(10), 3270–3275 (2022). https://doi.org/10.1021/acsenergylett.2c01587
A. Etxebarria, S.L. Koch, O. Bondarchuk, S. Passerini, G. Teobaldi et al., Work function evolution in Li anode processing. Adv. Energy Mater. 10(24), 2000520 (2020). https://doi.org/10.1002/aenm.202000520
S. Liu, J. Liu, G. Liu, Y. Liu, H. Zhong, Modulation of the morphology, surface energy and wettability of malachite through a S, O, O-ligand surfactant: mechanism and hydrophobization. Appl. Surf. Sci. 505, 144467 (2020). https://doi.org/10.1016/j.apsusc.2019.144467
H. Jeong, R. Nandi, J.Y. Cho, P.S. Pawar, H.S. Lee et al., CZTSSe/Zn(O, S) heterojunction solar cells with 9.82% efficiency enabled via (NH4)2S treatment of absorber layer. Prog. Photovoltaics Res. Appl. 29(10), 1057–1067 (2021). https://doi.org/10.1002/pip.3439
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885
T. Lu, Q. Chen, A simple method of identifying π orbitals for non-planar systems and a protocol of studying π electronic structure. Theor. Chem. Acc. 139(2), 25 (2020). https://doi.org/10.1007/s00214-019-2541-z
X. Ding, J. Lv, Z. Liang, X. Sun, J. Zhao et al., Optimizing of cathode interface layers in organic solar cells using polyphenols: an effective approach. Adv. Energy Mater. 14(36), 2401741 (2024). https://doi.org/10.1002/aenm.202401741
A.D. Scaccabarozzi, A. Basu, F. Aniés, J. Liu, O. Zapata-Arteaga et al., Doping approaches for organic semiconductors. Chem. Rev. 122(4), 4420–4492 (2022). https://doi.org/10.1021/acs.chemrev.1c00581
I.E. Jacobs, A.J. Moulé, Controlling molecular doping in organic semiconductors. Adv. Mater. 29(42), 1703063 (2017). https://doi.org/10.1002/adma.201703063
X. Zheng, S. Ahmed, Y. Zhang, G. Xu, J. Wang et al., Differentiating the 2D passivation from amorphous passivation in perovskite solar cells. Nano-Micro Lett. 18(1), 62 (2025). https://doi.org/10.1007/s40820-025-01913-y
Z. Wan, R. Wei, Y. Wang, H. Zeng, H. Yin et al., Multifunctional MXene for thermal management in perovskite solar cells. Nano-Micro Lett. 18(1), 18 (2025). https://doi.org/10.1007/s40820-025-01855-5
C. Zhu, Y. Wang, L. Meng, B. Qiu, J. Li et al., Bifunctional bridging capping layer enables 24.5% efficiency of perovskite solar cells with polymer-based hole transport materials. Sci. China Chem. 68(1), 350–359 (2025). https://doi.org/10.1007/s11426-024-2142-4
V.V. Brus, C.M. Proctor, N.A. Ran, T.-Q. Nguyen, Capacitance spectroscopy for quantifying recombination losses in nonfullerene small-molecule bulk heterojunction solar cells. Adv. Energy Mater. 6(11), 1502250 (2016). https://doi.org/10.1002/aenm.201502250
J. Vollbrecht, V.V. Brus, S.-J. Ko, J. Lee, A. Karki et al., Quantifying the nongeminate recombination dynamics in nonfullerene bulk heterojunction organic solar cells. Adv. Energy Mater. 9(32), 1901438 (2019). https://doi.org/10.1002/aenm.201901438