Tailoring eg Orbital Occupancy of Fe in Ni-Doped Na4.3Fe3(PO4)2P2O7 Cathode for High-Performance Sodium-Ion Batteries
Corresponding Author: Xifei Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 237
Abstract
Na4Fe3(PO4)2P2O7 (NFPP) is regarded as a prospective cathode for sodium-ion batteries (SIBs) because of its high structural stability and cost-effectiveness. However, its practical application is hindered by intrinsically low electronic conductivity. Herein, an unconventional electron transfer mechanism from Ni2+ to Fe3+ ions is unveiled in Ni-doped Na4.3Fe3(PO4)2P2O7 (NFPP-Ni) cathode, which facilitates electronic coupling within the Fe−O−Ni coordination unit and thereby effectively boosts electron transport. Moreover, the redox kinetics and reversibility of NFPP materials are predominantly governed by the degree of Fe−O covalency. The intermediate eg occupancy of Fe2+, modulated by the presence of Ni2+, optimizes the overlap between Fe d and O p orbitals. The adjustment of Ni dopant strikes a balance between accelerating Na+ diffusion kinetics and mitigating lattice strain during cycling. As a result, the NFPP-Ni electrode displays impressive rate capacity (121.0 mAh g−1 at 0.1C / 80.9 mAh g−1 at 10C) and stable cyclability (89.1% capacity retention after 1000 cycles). More importantly, the relationship between Fe eg orbital occupancy and Fe−O covalency in NFPP as modulated by various transition metal cations (Ni2+, Mn2+, Zn2+, Co2+ and Cu2+) with different electron configurations are systematically elucidated, thereby providing insights for the commercial development of sodium-ion batteries (SIBs).
Highlights:
1 The Na4.3Fe3(PO4)2P2O7-M cathode constructed by various transition metal cations (M = Ni2+, Mn2+, Zn2+, Co2+ and Cu2+) with different electron configurations for sodium-ion batteries.
2 The Na4.3Fe3(PO4)2P2O7-Ni cathode exhibits superior electronic conductivity, high-rate performance and stable cyclability.
3 A quantitative relationship between the eg occupancy of Fe and the electrochemical activity of The Na4.3Fe3(PO4)2P2O7-M is proposed, serving as an activity descriptor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Ding, P. Ji, Z. Han, X. Hou, Y. Yang et al., Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials. Nat. Energy 9, 1529 (2024). https://doi.org/10.1038/s41560-024-01616-5
- O. Zhanadilov, S. Baiju, N. Voronina, J. Yu, A. Kim et al., Impact of transition metal layer vacancy on the structure and performance of P2 type layered sodium cathode material. Nano-Micro Lett. 16, 239 (2024). https://doi.org/10.1007/s40820-024-01439-9
- A. Nekahi, A.K.M.R. Reddy, X. Li, S. Deng, K. Zaghib, Rechargeable batteries for the electrification of society: past, present, and future. Electrochem. Energy Rev. 8, 1 (2025). https://doi.org/10.1007/s41918-024-00235-8
- Z. Hao, X. Shi, Z. Yang, X. Zhou, L. Li et al., The distance between phosphate‐based polyanionic compounds and their practical application for sodium‐ion batteries. Adv. Mater. 36(7), 2305135 (2023). https://doi.org/10.1002/adma.202305135
- W. Wei, C. Zhang, X. Yuan, J. Zhang, Organic electrode materials for lithium/sodium/potassium-ion batteries: synthesis, characterizations, functional mechanisms, and performance validation. Electrochem. Energy Rev. 8, 13 (2025). https://doi.org/10.1007/s41918-025-00250-3
- Y. Hua, Z. Song, K. Yang, S. Suk, L. Lyu et al., High-entropy doped KTiOPO4-type vanadium-basedfluorophosphate cathodes for high-energy sodium-ion batteries. Adv. Funct. Mater. 36, e12341 (2025). https://doi.org/10.1002/adfm.202512341
- P. Song, S. Chen, J. Guo, J. Wu, Q. Lu et al., Electrostatic regulation of Na+ coordination chemistry for high-performance all-solid-state sodium batteries. Nano-Micro Lett. 18, 72 (2025). https://doi.org/10.1007/s40820-025-01910-1
- C. Xu, L. Zhou, T. Gao, Z. Chen, X. Hou et al., Development of high-performance iron-based phosphate cathodes toward practical na-ion batteries. J. Am. Chem. Soc. 146(14), 9819–9827 (2024). https://doi.org/10.1021/jacs.3c14452
- S. Li, S. Chen, C. Yu, H. Zhao, Y. Yin et al., Dual-functional C-composited Na3.16Fe2.42(P2O7)2 cathode toward superior electrochemical performance for sodium-ion batteries. Ceram. Int. 48(20), 30384–30392 (2022). https://doi.org/10.1016/j.ceramint.2022.06.312
- L. Zhang, R. Sun, Y. Liang, X. Wang, J. Liu et al., Carbon quantum dot dual-regulation for constructing high-performance NFPP cathode: synergistic breakthrough in electron conductivity and ion transport. Energy Storage Mater. 81, 104548 (2025). https://doi.org/10.1016/j.ensm.2025.104548
- J. Gao, H. Chen, Y. Mei, L. Ni, H. Wang et al., Robust iron-based cathode for ultralong-lasting na-ion battery with a wide operation-temperature. Nano Energy 115, 108747 (2023). https://doi.org/10.1016/j.nanoen.2023.108747
- M. Chen, W. Hua, J. Xiao, J. Zhang, V.W. Lau et al., Activating a multielectron reaction of nasicon-structured cathodes toward high energy density for sodium-ion batteries. J. Am. Chem. Soc. 143(43), 18091–18102 (2021). https://doi.org/10.1021/jacs.1c06727
- J. Zhao, W. Yan, S. Li, S. Li, W.-H. Wang et al., Double-pinning effect assisting Na4VMn(PO4)3 with superior structural and electrochemical stabilization for sodium-ion batteries. Nano Energy 119, 109002 (2024). https://doi.org/10.1016/j.nanoen.2023.109002
- F. Xiong, J. Li, C. Zuo, X. Zhang, S. Tan et al., Mg‐doped Na4Fe3(PO4)2(P2O7)/C composite with enhanced intercalation pseudocapacitance for ultra‐stable and high‐rate sodium‐ion storage. Adv. Funct. Mater. 33(6), 2211257 (2022). https://doi.org/10.1002/adfm.202211257
- S. Jiang, Y. Wang, H. Ge, B. Yu, T. Wang et al., Trace Cu doping enabled high rate and long cycle life sodium iron phosphate cathode for sodium-ion batteries. ACS Nano 19, 1499–1508 (2025). https://doi.org/10.1021/acsnano.4c14448
- B. Zhang, G. Chen, Y. Yang, M. Liu, X. Li et al., Heterovalent chromium-doped Na3Fe2(PO4)P2O7 cathode material with superior rate and stability performance for sodium-ion storage. ACS Sustain. Chem. Eng. 11(27), 10083–10094 (2023). https://doi.org/10.1021/acssuschemeng.3c02013
- X. Wang, Y. Xu, Y. Xi, X. Yang, J. Wang et al., Doping engineering of phosphorus-based polyanion-type cathodes for sodium storage: a review. J. Mater. Chem. A 12(16), 9268–9295 (2024). https://doi.org/10.1039/d4ta00652f
- Y. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu et al., Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 145(41), 22708–22719 (2023). https://doi.org/10.1021/jacs.3c08070
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/nchem.1069
- A. Zhao, C. Liu, F. Ji, S. Zhang, H. Fan et al., Revealing the phase evolution in Na4FexP4O12+x (2 ≤ x ≤ 4) cathode materials. ACS Energy Lett. 8(1), 753–761 (2022). https://doi.org/10.1021/acsenergylett.2c02693
- M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen et al., Nasicon-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10(1), 1480 (2019). https://doi.org/10.1038/s41467-019-09170-5
- B. Patra, R. Hegde, A. Natarajan, D. Deb, D. Sachdeva et al., Stabilizing multi‐electron nasicon‐Na1.5V0.5Nb1.5(PO4)3 anode via structural modulation for long‐life sodium‐ion batteries. Adv. Energy Mater. 14(17), 2304091 (2024). https://doi.org/10.1002/aenm.202304091
- Y. Zhou, G. Xu, J. Lin, Y. Zhang, G. Fang et al., Reversible multielectron redox chemistry in a nasicon‐type cathode toward high‐energy‐density and long‐life sodium‐ion full batteries. Adv. Mater. 35(44), 2304428 (2023). https://doi.org/10.1002/adma.202304428
- X. Wang, Y. Wu, Y. Zhou, W. Zheng, K. Zhang et al., Interface engineering with an organic aluminum additive for high-rate sodium metal batteries. Adv. Funct. Mater. 35(4), 2414041 (2025). https://doi.org/10.1002/adfm.202414041
- Z. Zeng, L. Gan, H. Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12(1), 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
- C. Li, L. Xie, J. Zhao, L. Gu, H. Tang et al., Interfacial Fe−O−Ni−O−Fe bonding regulates the active ni sites of ni‐mofs via iron doping and decorating with feooh for super‐efficient oxygen evolution. Angew. Chem. Int. Ed. 61(17), 202116934 (2022). https://doi.org/10.1002/anie.202116934
- H. Zhong, Q. Zhang, J. Yu, X. Zhang, C. Wu et al., Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism. Nat. Commun. 14(1), 7488 (2023). https://doi.org/10.1038/s41467-023-43302-2
- L. An, H. Zhang, J. Zhu, S. Xi, B. Huang et al., Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 62(3), 202214600 (2022). https://doi.org/10.1002/anie.202214600
- Y. Xu, G. Zhang, X. Wang, J. Zhang, H. Wen et al., Efficient modulation d/p-band center proximity in birnessite-type MnO2 by cation/anion co-doping for enhanced dual-ion storage. Adv. Funct. Mater. 35, 27 (2025). https://doi.org/10.1002/adfm.202500137
- L. Lyu, Y. Yi, Z. Xu, Graphite co-intercalation chemistry in sodium-ion batteries. Batteries Supercaps 8, 202400521 (2024). https://doi.org/10.1002/batt.202400521
- X. Wang, D. Du, H. Xu, Y. Yan, X. Wen et al., Nimn-based metal-organic framework with optimized eg orbital occupancy as efficient bifunctional electrocatalyst for lithium-oxygen batteries. Chem. Eng. J. 452, 139524 (2023). https://doi.org/10.1016/j.cej.2022.139524
- Y. Wu, W. Shuang, Y. Wang, F. Chen, S. Tang et al., Recent progress in sodium-ion batteries: advanced materials, reaction mechanisms and energy applications. Electrochem. Energy Rev. 7, 17 (2025). https://doi.org/10.1007/s41918-024-00215-y
- A. Zhang, R. Zhao, Y. Wang, J. Yue, J. Yang et al., Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery. Angew. Chem. Int. Ed. 62(51), 202423824 (2023). https://doi.org/10.1002/anie.202313163
- B. Yun, A.Y. Maulana, D. Lee, J. Song, C.M. Futalan et al., The effect of ni doping on feof cathode material for high‐performance sodium‐ion batteries. Small 20(23), 2308011 (2024). https://doi.org/10.1002/smll.202308011
- Y. Xi, X. Wang, H. Wang, M. Wang, G. Wang et al., Optimizing the electron spin states of Na4Fe3(PO4)2(P2O7) cathodes via mn/f dual‐doping for enhanced sodium storage. Adv. Funct. Mater. 34, 2309701 (2023). https://doi.org/10.1002/adfm.202309701
- S. Shen, D. Ma, K. Ouyang, Y. Chen, M. Yang et al., An in situ electrochemical amorphization electrode enables high‐power high‐cryogenic capacity aqueous zinc‐ion batteries. Adv. Funct. Mater. 33(38), 2304255 (2023). https://doi.org/10.1002/adfm.202304255
- X. Wang, J. Lu, Y. Wu, W. Zheng, H. Zhang et al., Building stable anodes for high-rate na-metal batteries. Adv. Mater. 36, 16 (2024). https://doi.org/10.1002/adma.202311256
- J.D. Huang, C. Meisel, N.P. Sullivan, A. Zakutayev, R. O’Hayre, Rapid mapping of electrochemical processes in energy-conversion devices. Joule 8(7), 2049–2072 (2024). https://doi.org/10.1016/j.joule.2024.05.003
- C. Hu, Y. Li, D. Wang, C. Wu, F. Chen et al., Improving low‐temperature performance and stability of Na2Ti6O13 anodes by the Ti−O spring effect through Nb‐doping. Angew. Chem. Int. Ed. 62(46), 202312310 (2023). https://doi.org/10.1002/anie.202312310
- J. Hu, X. Li, Q. Liang, L. Xu, C. Ding et al., Optimization strategies of Na3V2(PO4)3 cathode materials for sodium-ion batteries. Nano-Micro Lett. 17, 33 (2025). https://doi.org/10.1007/s40820-024-01526-x
- L. Lyu, Y. Zheng, Y. Hua, J. Li, Y. Li et al., High-energy sodium ion batteries enabled by switching sodiophobic graphite into sodiophilic and high-capacity anodes. Angew. Chem. Int. Ed. 63, 202410253 (2024). https://doi.org/10.1002/anie.202410253
- C. Cheng, C. Chen, S. Chu, H. Hu, T. Yan et al., Enhancing the reversibility of lattice oxygen redox through modulated transition metal–oxygen covalency for layered battery electrodes. Adv. Mater. 34(20), 2201152 (2022). https://doi.org/10.1002/adma.202201152
- S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu et al., Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 7(1), 11510 (2016). https://doi.org/10.1038/ncomms11510
- H. Jia, N. Yao, Z. Liao, L. Wu, J. Zhu et al., Understanding the role of spin state in cobalt oxyhydroxides for water oxidation. Angew. Chem. Int. Ed. 63(47), 202408005 (2024). https://doi.org/10.1002/anie.202408005
- Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen et al., Enlarged Co−O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30(32), 1802912 (2018). https://doi.org/10.1002/adma.201802912
- H. Wang, T. Zhai, Y. Wu, T. Zhou, B. Zhou et al., High‐valence oxides for high performance oxygen evolution electrocatalysis. Adv. Sci. 10(22), 2301706 (2023). https://doi.org/10.1002/advs.202301706
- Z. Li, Y. Yu, T. Zhang, D. Wong, C. Schulz et al., Tuning electronegativity‐difference configuration to construct non‐bonded O 2p orbitals for reversible anionic redox in O3‐type cathode. Adv. Funct. Mater. 34, 2404797 (2024). https://doi.org/10.1002/adfm.202404797
- X. Jia, J. Wang, Y. Liu, Y. Zhu, J. Li et al., Facilitating layered oxide cathodes based on orbital hybridization for sodium‐ion batteries: Marvelous air stability, controllable high voltage, and anion redox chemistry. Adv. Mater. 36(15), 2307938 (2024). https://doi.org/10.1002/adma.202307938
References
F. Ding, P. Ji, Z. Han, X. Hou, Y. Yang et al., Tailoring planar strain for robust structural stability in high-entropy layered sodium oxide cathode materials. Nat. Energy 9, 1529 (2024). https://doi.org/10.1038/s41560-024-01616-5
O. Zhanadilov, S. Baiju, N. Voronina, J. Yu, A. Kim et al., Impact of transition metal layer vacancy on the structure and performance of P2 type layered sodium cathode material. Nano-Micro Lett. 16, 239 (2024). https://doi.org/10.1007/s40820-024-01439-9
A. Nekahi, A.K.M.R. Reddy, X. Li, S. Deng, K. Zaghib, Rechargeable batteries for the electrification of society: past, present, and future. Electrochem. Energy Rev. 8, 1 (2025). https://doi.org/10.1007/s41918-024-00235-8
Z. Hao, X. Shi, Z. Yang, X. Zhou, L. Li et al., The distance between phosphate‐based polyanionic compounds and their practical application for sodium‐ion batteries. Adv. Mater. 36(7), 2305135 (2023). https://doi.org/10.1002/adma.202305135
W. Wei, C. Zhang, X. Yuan, J. Zhang, Organic electrode materials for lithium/sodium/potassium-ion batteries: synthesis, characterizations, functional mechanisms, and performance validation. Electrochem. Energy Rev. 8, 13 (2025). https://doi.org/10.1007/s41918-025-00250-3
Y. Hua, Z. Song, K. Yang, S. Suk, L. Lyu et al., High-entropy doped KTiOPO4-type vanadium-basedfluorophosphate cathodes for high-energy sodium-ion batteries. Adv. Funct. Mater. 36, e12341 (2025). https://doi.org/10.1002/adfm.202512341
P. Song, S. Chen, J. Guo, J. Wu, Q. Lu et al., Electrostatic regulation of Na+ coordination chemistry for high-performance all-solid-state sodium batteries. Nano-Micro Lett. 18, 72 (2025). https://doi.org/10.1007/s40820-025-01910-1
C. Xu, L. Zhou, T. Gao, Z. Chen, X. Hou et al., Development of high-performance iron-based phosphate cathodes toward practical na-ion batteries. J. Am. Chem. Soc. 146(14), 9819–9827 (2024). https://doi.org/10.1021/jacs.3c14452
S. Li, S. Chen, C. Yu, H. Zhao, Y. Yin et al., Dual-functional C-composited Na3.16Fe2.42(P2O7)2 cathode toward superior electrochemical performance for sodium-ion batteries. Ceram. Int. 48(20), 30384–30392 (2022). https://doi.org/10.1016/j.ceramint.2022.06.312
L. Zhang, R. Sun, Y. Liang, X. Wang, J. Liu et al., Carbon quantum dot dual-regulation for constructing high-performance NFPP cathode: synergistic breakthrough in electron conductivity and ion transport. Energy Storage Mater. 81, 104548 (2025). https://doi.org/10.1016/j.ensm.2025.104548
J. Gao, H. Chen, Y. Mei, L. Ni, H. Wang et al., Robust iron-based cathode for ultralong-lasting na-ion battery with a wide operation-temperature. Nano Energy 115, 108747 (2023). https://doi.org/10.1016/j.nanoen.2023.108747
M. Chen, W. Hua, J. Xiao, J. Zhang, V.W. Lau et al., Activating a multielectron reaction of nasicon-structured cathodes toward high energy density for sodium-ion batteries. J. Am. Chem. Soc. 143(43), 18091–18102 (2021). https://doi.org/10.1021/jacs.1c06727
J. Zhao, W. Yan, S. Li, S. Li, W.-H. Wang et al., Double-pinning effect assisting Na4VMn(PO4)3 with superior structural and electrochemical stabilization for sodium-ion batteries. Nano Energy 119, 109002 (2024). https://doi.org/10.1016/j.nanoen.2023.109002
F. Xiong, J. Li, C. Zuo, X. Zhang, S. Tan et al., Mg‐doped Na4Fe3(PO4)2(P2O7)/C composite with enhanced intercalation pseudocapacitance for ultra‐stable and high‐rate sodium‐ion storage. Adv. Funct. Mater. 33(6), 2211257 (2022). https://doi.org/10.1002/adfm.202211257
S. Jiang, Y. Wang, H. Ge, B. Yu, T. Wang et al., Trace Cu doping enabled high rate and long cycle life sodium iron phosphate cathode for sodium-ion batteries. ACS Nano 19, 1499–1508 (2025). https://doi.org/10.1021/acsnano.4c14448
B. Zhang, G. Chen, Y. Yang, M. Liu, X. Li et al., Heterovalent chromium-doped Na3Fe2(PO4)P2O7 cathode material with superior rate and stability performance for sodium-ion storage. ACS Sustain. Chem. Eng. 11(27), 10083–10094 (2023). https://doi.org/10.1021/acssuschemeng.3c02013
X. Wang, Y. Xu, Y. Xi, X. Yang, J. Wang et al., Doping engineering of phosphorus-based polyanion-type cathodes for sodium storage: a review. J. Mater. Chem. A 12(16), 9268–9295 (2024). https://doi.org/10.1039/d4ta00652f
Y. Wang, X. Zhao, J. Jin, Q. Shen, Y. Hu et al., Boosting the reversibility and kinetics of anionic redox chemistry in sodium-ion oxide cathodes via reductive coupling mechanism. J. Am. Chem. Soc. 145(41), 22708–22719 (2023). https://doi.org/10.1021/jacs.3c08070
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
J. Suntivich, H.A. Gasteiger, N. Yabuuchi, H. Nakanishi, J.B. Goodenough et al., Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3(7), 546–550 (2011). https://doi.org/10.1038/nchem.1069
A. Zhao, C. Liu, F. Ji, S. Zhang, H. Fan et al., Revealing the phase evolution in Na4FexP4O12+x (2 ≤ x ≤ 4) cathode materials. ACS Energy Lett. 8(1), 753–761 (2022). https://doi.org/10.1021/acsenergylett.2c02693
M. Chen, W. Hua, J. Xiao, D. Cortie, W. Chen et al., Nasicon-type air-stable and all-climate cathode for sodium-ion batteries with low cost and high-power density. Nat. Commun. 10(1), 1480 (2019). https://doi.org/10.1038/s41467-019-09170-5
B. Patra, R. Hegde, A. Natarajan, D. Deb, D. Sachdeva et al., Stabilizing multi‐electron nasicon‐Na1.5V0.5Nb1.5(PO4)3 anode via structural modulation for long‐life sodium‐ion batteries. Adv. Energy Mater. 14(17), 2304091 (2024). https://doi.org/10.1002/aenm.202304091
Y. Zhou, G. Xu, J. Lin, Y. Zhang, G. Fang et al., Reversible multielectron redox chemistry in a nasicon‐type cathode toward high‐energy‐density and long‐life sodium‐ion full batteries. Adv. Mater. 35(44), 2304428 (2023). https://doi.org/10.1002/adma.202304428
X. Wang, Y. Wu, Y. Zhou, W. Zheng, K. Zhang et al., Interface engineering with an organic aluminum additive for high-rate sodium metal batteries. Adv. Funct. Mater. 35(4), 2414041 (2025). https://doi.org/10.1002/adfm.202414041
Z. Zeng, L. Gan, H. Yang, X. Su, J. Gao et al., Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 12(1), 4088 (2021). https://doi.org/10.1038/s41467-021-24052-5
C. Li, L. Xie, J. Zhao, L. Gu, H. Tang et al., Interfacial Fe−O−Ni−O−Fe bonding regulates the active ni sites of ni‐mofs via iron doping and decorating with feooh for super‐efficient oxygen evolution. Angew. Chem. Int. Ed. 61(17), 202116934 (2022). https://doi.org/10.1002/anie.202116934
H. Zhong, Q. Zhang, J. Yu, X. Zhang, C. Wu et al., Key role of eg* band broadening in nickel-based oxyhydroxides on coupled oxygen evolution mechanism. Nat. Commun. 14(1), 7488 (2023). https://doi.org/10.1038/s41467-023-43302-2
L. An, H. Zhang, J. Zhu, S. Xi, B. Huang et al., Balancing activity and stability in spinel cobalt oxides through geometrical sites occupation towards efficient electrocatalytic oxygen evolution. Angew. Chem. Int. Ed. 62(3), 202214600 (2022). https://doi.org/10.1002/anie.202214600
Y. Xu, G. Zhang, X. Wang, J. Zhang, H. Wen et al., Efficient modulation d/p-band center proximity in birnessite-type MnO2 by cation/anion co-doping for enhanced dual-ion storage. Adv. Funct. Mater. 35, 27 (2025). https://doi.org/10.1002/adfm.202500137
L. Lyu, Y. Yi, Z. Xu, Graphite co-intercalation chemistry in sodium-ion batteries. Batteries Supercaps 8, 202400521 (2024). https://doi.org/10.1002/batt.202400521
X. Wang, D. Du, H. Xu, Y. Yan, X. Wen et al., Nimn-based metal-organic framework with optimized eg orbital occupancy as efficient bifunctional electrocatalyst for lithium-oxygen batteries. Chem. Eng. J. 452, 139524 (2023). https://doi.org/10.1016/j.cej.2022.139524
Y. Wu, W. Shuang, Y. Wang, F. Chen, S. Tang et al., Recent progress in sodium-ion batteries: advanced materials, reaction mechanisms and energy applications. Electrochem. Energy Rev. 7, 17 (2025). https://doi.org/10.1007/s41918-024-00215-y
A. Zhang, R. Zhao, Y. Wang, J. Yue, J. Yang et al., Hybrid superlattice-triggered selective proton grotthuss intercalation in δ-MnO2 for high-performance zinc-ion battery. Angew. Chem. Int. Ed. 62(51), 202423824 (2023). https://doi.org/10.1002/anie.202313163
B. Yun, A.Y. Maulana, D. Lee, J. Song, C.M. Futalan et al., The effect of ni doping on feof cathode material for high‐performance sodium‐ion batteries. Small 20(23), 2308011 (2024). https://doi.org/10.1002/smll.202308011
Y. Xi, X. Wang, H. Wang, M. Wang, G. Wang et al., Optimizing the electron spin states of Na4Fe3(PO4)2(P2O7) cathodes via mn/f dual‐doping for enhanced sodium storage. Adv. Funct. Mater. 34, 2309701 (2023). https://doi.org/10.1002/adfm.202309701
S. Shen, D. Ma, K. Ouyang, Y. Chen, M. Yang et al., An in situ electrochemical amorphization electrode enables high‐power high‐cryogenic capacity aqueous zinc‐ion batteries. Adv. Funct. Mater. 33(38), 2304255 (2023). https://doi.org/10.1002/adfm.202304255
X. Wang, J. Lu, Y. Wu, W. Zheng, H. Zhang et al., Building stable anodes for high-rate na-metal batteries. Adv. Mater. 36, 16 (2024). https://doi.org/10.1002/adma.202311256
J.D. Huang, C. Meisel, N.P. Sullivan, A. Zakutayev, R. O’Hayre, Rapid mapping of electrochemical processes in energy-conversion devices. Joule 8(7), 2049–2072 (2024). https://doi.org/10.1016/j.joule.2024.05.003
C. Hu, Y. Li, D. Wang, C. Wu, F. Chen et al., Improving low‐temperature performance and stability of Na2Ti6O13 anodes by the Ti−O spring effect through Nb‐doping. Angew. Chem. Int. Ed. 62(46), 202312310 (2023). https://doi.org/10.1002/anie.202312310
J. Hu, X. Li, Q. Liang, L. Xu, C. Ding et al., Optimization strategies of Na3V2(PO4)3 cathode materials for sodium-ion batteries. Nano-Micro Lett. 17, 33 (2025). https://doi.org/10.1007/s40820-024-01526-x
L. Lyu, Y. Zheng, Y. Hua, J. Li, Y. Li et al., High-energy sodium ion batteries enabled by switching sodiophobic graphite into sodiophilic and high-capacity anodes. Angew. Chem. Int. Ed. 63, 202410253 (2024). https://doi.org/10.1002/anie.202410253
C. Cheng, C. Chen, S. Chu, H. Hu, T. Yan et al., Enhancing the reversibility of lattice oxygen redox through modulated transition metal–oxygen covalency for layered battery electrodes. Adv. Mater. 34(20), 2201152 (2022). https://doi.org/10.1002/adma.202201152
S. Zhou, X. Miao, X. Zhao, C. Ma, Y. Qiu et al., Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition. Nat. Commun. 7(1), 11510 (2016). https://doi.org/10.1038/ncomms11510
H. Jia, N. Yao, Z. Liao, L. Wu, J. Zhu et al., Understanding the role of spin state in cobalt oxyhydroxides for water oxidation. Angew. Chem. Int. Ed. 63(47), 202408005 (2024). https://doi.org/10.1002/anie.202408005
Y. Zhou, S. Sun, J. Song, S. Xi, B. Chen et al., Enlarged Co−O covalency in octahedral sites leading to highly efficient spinel oxides for oxygen evolution reaction. Adv. Mater. 30(32), 1802912 (2018). https://doi.org/10.1002/adma.201802912
H. Wang, T. Zhai, Y. Wu, T. Zhou, B. Zhou et al., High‐valence oxides for high performance oxygen evolution electrocatalysis. Adv. Sci. 10(22), 2301706 (2023). https://doi.org/10.1002/advs.202301706
Z. Li, Y. Yu, T. Zhang, D. Wong, C. Schulz et al., Tuning electronegativity‐difference configuration to construct non‐bonded O 2p orbitals for reversible anionic redox in O3‐type cathode. Adv. Funct. Mater. 34, 2404797 (2024). https://doi.org/10.1002/adfm.202404797
X. Jia, J. Wang, Y. Liu, Y. Zhu, J. Li et al., Facilitating layered oxide cathodes based on orbital hybridization for sodium‐ion batteries: Marvelous air stability, controllable high voltage, and anion redox chemistry. Adv. Mater. 36(15), 2307938 (2024). https://doi.org/10.1002/adma.202307938