Bidirectionally Enhanced Reaction Kinetics in Vanadium Redox Flow Battery via Regulating Mixed-Valence States in Perovskite Electrodes
Corresponding Author: Zhangxing He
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 233
Abstract
Various metal oxide catalysts have been utilized to enhance the electrode reaction kinetics in vanadium redox flow battery (VRFB). However, the determining factor governing their catalysis is still insufficiently understood. Herein, selectively doping of Sr and Ce at La site of LaMnO3 perovskite (LSMO and LCMO) was used to modulate chemical environments of Mn ion activity donors, thereby boosting vanadium redox reaction processes. Sr doping increases the valence state of Mn ions, making it easier for Mn ions to take an electron from the electrode and transfer it to V3+ ions, which lowers the reaction energy barrier of V3+/V2+ redox processes. Conversely, Ce doping decreases the Mn valence and increases the oxygen vacancies, boosting the charge transfer and mass transfer of VO2+/VO2+ redox processes. Theoretical calculation further demonstrates that doping Sr and Ce enhances the vanadium ion’s ability for charge transfer and adsorption. Compared with pristine VRFB, the VRFB with LSMO- and LCMO-modified anode and cathode, respectively, exhibits an excellent energy efficiency (EE) of 67% at a high current density of 300 mA cm−2 and an increased EE of 15% at 150 mA cm−2. This study is critical for promoting fundamental understanding and offering a design strategy for achieving superior-performance metal-based electrocatalysts in VRFB.
Highlights:
1 A selectively regulating strategy for chemical environments of Mn ion activity donors in LaMnO3 perovskite can bidirectionally enhance vanadium reaction kinetics.
2 The key reactive sites and control steps of perovskite on vanadium redox reactions are established based on electrochemical tests and theoretical calculation.
3 Sr and Ce doped LaMnO3 as anode and cathode catalysts of the vanadium redox flow battery (VRFB) , respectively, synergistically improves the VRFB’s energy storage performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Han, K. Zheng, H. Hu, J. Liu, Z. Zou et al., Long-duration energy-storage technologies: a stabilizer for new power systems. Innov. Energy 2(2), 100077 (2025). https://doi.org/10.59717/j.xinn-energy.2025.100077
- O.C. Esan, X. Shi, Z. Pan, X. Huo, L. An et al., Modeling and simulation of flow batteries. Adv. Energy Mater. 10(31), 2000758 (2020). https://doi.org/10.1002/aenm.202000758
- T.M. Narayanan, Y.G. Zhu, E. Gençer, G. McKinley, Y. Shao-Horn, Low-cost manganese dioxide semi-solid electrode for flow batteries. Joule 5(11), 2934–2954 (2021). https://doi.org/10.1016/j.joule.2021.07.010
- H. Fan, K. Liu, X. Zhang, Y. Di, P. Liu et al., Spatial structure regulation towards armor-clad five-membered pyrroline nitroxides catholyte for long-life aqueous organic redox flow batteries. eScience 4(1), 100202 (2024). https://doi.org/10.1016/j.esci.2023.100202
- Y. Zhao, Y. Wang, J. Li, J. Xiong, Q. Li et al., Thermodynamic and kinetic insights for manipulating aqueous Zn battery chemistry: towards future grid-scale renewable energy storage systems. eScience 5(4), 100331 (2025). https://doi.org/10.1016/j.esci.2024.100331
- Y. Zhu, X. Ye, S.H. Ali, S. Dou, J. Cheng et al., Resource substitutability path for China’s energy storage between lithium and vanadium. iScience 28(5), 112462 (2025). https://doi.org/10.1016/j.isci.2025.112462
- Z. Zhao, X. Liu, M. Zhang, L. Zhang, C. Zhang et al., Development of flow battery technologies using the principles of sustainable chemistry. Chem. Soc. Rev. 52(17), 6031–6074 (2023). https://doi.org/10.1039/d2cs00765g
- Y. Cheng, X. Wang, S. Huang, W. Samarakoon, S. Xi et al., Redox targeting-based vanadium redox-flow battery. ACS Energy Lett. 4(12), 3028–3035 (2019). https://doi.org/10.1021/acsenergylett.9b01939
- E.W. Zhao, T. Liu, E. Jónsson, J. Lee, I. Temprano et al., In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579(7798), 224–228 (2020). https://doi.org/10.1038/s41586-020-2081-7
- A. Kaliyaraj Selva Kumar, R.G. Compton, Single-entity “nano-catalysis”: carbon nanotubes and the VO2+/VO2+ redox reaction. ACS Catal. 12(8), 4754–4764 (2022). https://doi.org/10.1021/acscatal.2c00849
- H. Agarwal, J. Florian, D. Pert, B.R. Goldsmith, N. Singh, Explaining kinetic trends of inner-sphere transition-metal-ion redox reactions on metal electrodes. ACS Catal. 13(4), 2223–2233 (2023). https://doi.org/10.1021/acscatal.2c05694
- H. Agarwal, J. Florian, B.R. Goldsmith, N. Singh, V2+/V3+ redox kinetics on glassy carbon in acidic electrolytes for vanadium redox flow batteries. ACS Energy Lett. 4(10), 2368–2377 (2019). https://doi.org/10.1021/acsenergylett.9b01423
- J. Du, H. Lin, L. Zhang, L. Wang, Advanced materials for vanadium redox flow batteries: major obstacles and optimization strategies. Adv. Funct. Mater. 35(35), 2501689 (2025). https://doi.org/10.1002/adfm.202501689
- Z. Yu, X. Jia, Y. Cai, R. Su, Q. Zhu et al., Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Mater. 69, 103404 (2024). https://doi.org/10.1016/j.ensm.2024.103404
- S. Aberoumand, P. Woodfield, B. Shabani, D.V. Dao, Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach. Phys. Rep. 881, 1–49 (2020). https://doi.org/10.1016/j.physrep.2020.08.001
- J. Ying, H. Li, X. Jia, Z. Yu, T. Zhao et al., One stone two birds: enhancing energy density and temperature adaptability for vanadium-based redox flow batteries via dual active species strategy. Energy Storage Mater. 83, 104693 (2025). https://doi.org/10.1016/j.ensm.2025.104693
- T.T.K. Huynh, T. Yang, P.S. Nayanthara, Y. Yang, J. Ye et al., Construction of high-performance membranes for vanadium redox flow batteries: challenges, development, and perspectives. Nano-Micro Lett. 17(1), 260 (2025). https://doi.org/10.1007/s40820-025-01736-x
- Y. Zhang, D. Zhang, Q. Zhou, X. Zhang, S. Hou et al., Interfacial engineering of MXene-based heterogeneous membranes with enhanced ion selectivity in vanadium redox flow battery. Adv. Funct. Mater. e10597 (2025). https://doi.org/10.1002/adfm.202510597
- J. Ye, C. Zheng, J. Liu, T. Sun, S. Yu et al., In situ grown tungsten trioxide nanops on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery. Adv. Funct. Mater. 32(8), 2109427 (2022). https://doi.org/10.1002/adfm.202109427
- J. Sun, M.C. Wu, X.Z. Fan, Y.H. Wan, C.Y.H. Chao et al., Aligned microfibers interweaved with highly porous carbon nanofibers: a novel electrode for high-power vanadium redox flow batteries. Energy Storage Mater. 43, 30–41 (2021). https://doi.org/10.1016/j.ensm.2021.08.034
- Z. Zhu, Y. Men, W. Zhang, W. Yang, F. Wang et al., Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience 4(5), 100249 (2024). https://doi.org/10.1016/j.esci.2024.100249
- P. Rodríguez Lagar, A. Concheso, D. Barreda, Z. González, M.A. Montes-Morán et al., Direct ink writing of 3D-structured all-carbon electrodes with high electrical conductivity for (vanadium) redox flow batteries. Adv. Sci. 12(22), 2417641 (2025). https://doi.org/10.1002/advs.202417641
- M. Park, I.Y. Jeon, J. Ryu, J.-B. Baek, J. Cho, Exploration of the effective location of surface oxygen defects in graphene-based electrocatalysts for all-vanadium redox-flow batteries. Adv. Energy Mater. 5(5), 1401550 (2015). https://doi.org/10.1002/aenm.201401550
- H. Radinger, V. Trouillet, F. Bauer, F. Scheiba, Work function describes the electrocatalytic activity of graphite for vanadium oxidation. ACS Catal. 12(10), 6007–6015 (2022). https://doi.org/10.1021/acscatal.2c00334
- R. Wang, Y. Li, Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: status and perspective. Energy Storage Mater. 31, 230–251 (2020). https://doi.org/10.1016/j.ensm.2020.06.012
- X. Zhang, A. Valencia, W. Li, K. Ao, J. Shi et al., Decoupling activation and transport by electron-regulated atomic-Bi harnessed surface-to-pore interface for vanadium redox flow battery. Adv. Mater. 36(6), 2470048 (2024). https://doi.org/10.1002/adma.202470048
- K. Zhang, C. Yan, A. Tang, Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Mater. 34, 301–310 (2021). https://doi.org/10.1016/j.ensm.2020.10.005
- A. Mukhopadhyay, Y. Yang, Y. Li, Y. Chen, H. Li et al., Mass transfer and reaction kinetic enhanced electrode for high-performance aqueous flow batteries. Adv. Funct. Mater. 29(43), 1903192 (2019). https://doi.org/10.1002/adfm.201903192
- Z. Xu, M. Zhu, K. Zhang, X. Zhang, L. Xu et al., Inspired by “quenching-cracking” strategy: structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries. Energy Storage Mater. 39, 166–175 (2021). https://doi.org/10.1016/j.ensm.2021.04.025
- K. Ma, Y. Zhang, L. Liu, J. Xi, X. Qiu et al., In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries. Nat. Commun. 10(1), 5286 (2019). https://doi.org/10.1038/s41467-019-13147-9
- Y. Nie, R. Nie, H. Lin, J. Wu, L. Yu et al., In-situ constructed core-shell catalyst enabling subzero capacity unlocking of cost-effective and long-life vanadium flow batteries. Angew. Chem. Int. Ed. 64(9), e202420794 (2025). https://doi.org/10.1002/anie.202420794
- J.J. Patil, C.T. Wan, S. Gong, Y.-M. Chiang, F.R. Brushett et al., Bayesian-optimization-assisted laser reduction of poly(acrylonitrile) for electrochemical applications. ACS Nano 17(5), 4999–5013 (2023). https://doi.org/10.1021/acsnano.2c12663
- Y. Yang, X. Wang, Y. Wang, G. Qiu, Z. Song et al., Functional nano-carbon layer decorated carbon felt electrode for vanadium redox flow batteries. J. Energy Chem. 106, 735–741 (2025). https://doi.org/10.1016/j.jechem.2025.02.056
- X. Zhang, X. Ye, A. Valencia, F. Liu, K. Ao et al., Asymmetric chemical potential activated nanointerfacial electric field for efficient vanadium redox flow batteries. ACS Nano 17(21), 21799–21812 (2023). https://doi.org/10.1021/acsnano.3c07732
- F. Xing, Q. Fu, F. Xing, J. Zhao, H. Long et al., Bismuth single atoms regulated graphite felt electrode boosting high power density vanadium flow batteries. J. Am. Chem. Soc. 146(38), 26024–26033 (2024). https://doi.org/10.1021/jacs.4c04951
- H. Hu, M. Han, J. Liu, K. Zheng, Z. Zou et al., Strategies for improving the design of porous fiber felt electrodes for all-vanadium redox flow batteries from macro and micro perspectives. Energy Environ. Sci. 18(7), 3085–3119 (2025). https://doi.org/10.1039/D4EE05556J
- L. Ye, S. Qi, T. Cheng, Y. Jiang, Z. Feng et al., Vanadium redox flow battery: review and perspective of 3D electrodes. ACS Nano 18(29), 18852–18869 (2024). https://doi.org/10.1021/acsnano.4c06675
- K. Amini, J. Gostick, M.D. Pritzker, Metal and metal oxide electrocatalysts for redox flow batteries. Adv. Funct. Mater. 30(23), 1910564 (2020). https://doi.org/10.1002/adfm.201910564
- X. Zhang, K. Ao, J. Shi, X. Yue, A. Valencia et al., The critical role of atomic-scale polarization in transition metal oxides on vanadium-redox electrochemistry. Adv. Mater. 37(13), 2570102 (2025). https://doi.org/10.1002/adma.202570102
- R. Huang, S. Liu, Z. He, G. Ye, W. Zhu et al., The role of proton in high power density vanadium redox flow batteries. ACS Nano 17(19), 19098–19108 (2023). https://doi.org/10.1021/acsnano.3c05037
- X. Pan, X. Cheng, T. Deng, L. Xia, J. Zhang et al., MOF-derived high-entropy oxide-modified graphite felt for enhanced electrochemical performance in vanadium redox flow batteries. J. Mater. Sci. Technol. 247, 44–54 (2026). https://doi.org/10.1016/j.jmst.2025.05.033
- A. Ejigu, M. Edwards, D.A. Walsh, Synergistic catalyst–support interactions in a graphene–Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 5(12), 7122–7130 (2015). https://doi.org/10.1021/acscatal.5b01973
- Y. Jiang, Z. Liu, Y. Lv, A. Tang, L. Dai et al., Perovskite enables high performance vanadium redox flow battery. Chem. Eng. J. 443, 136341 (2022). https://doi.org/10.1016/j.cej.2022.136341
- J.M.V. Nsanzimana, L. Cai, Z. Jiang, B.Y. Xia, T. Maiyalagan, Engineering bifunctional catalytic microenvironments for durable and high-energy-density metal-air batteries. Nano-Micro Letters 17(1), 294 (2025). https://doi.org/10.1007/s40820-025-01799-w
- M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma et al., Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience 3(2), 100111 (2023). https://doi.org/10.1016/j.esci.2023.100111
- Y. Sun, R. Li, X. Chen, J. Wu, Y. Xie et al., A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 11(12), 2003755 (2021). https://doi.org/10.1002/aenm.202003755
- D. Kim, R. Bliem, F. Hess, J.-J. Gallet, B. Yildiz, Electrochemical polarization dependence of the elastic and electrostatic driving forces to aliovalent dopant segregation on LaMnO3. J. Am. Chem. Soc. 142(7), 3548–3563 (2020). https://doi.org/10.1021/jacs.9b13040
- V.L. Joseph Joly, P.A. Joy, S.K. Date, Studies on the effect of substitution of tetravalent ions for La3+ in LaMnO3. J. Magn. Magn. Mater. 247(3), 316–323 (2002). https://doi.org/10.1016/S0304-8853(02)00289-5
- J.M. Naik, C. Ritter, B. Bulfin, A. Steinfeld, R. Erni et al., Reversible phase transformations in novel Ce-substituted perovskite oxide composites for solar thermochemical redox splitting of CO2. Adv. Energy Mater. 11(16), 2003532 (2021). https://doi.org/10.1002/aenm.202003532
- X. Shi, J. Guo, T. Shen, A. Fan, S. Yuan et al., Enhancement of Ce doped La–Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance. Chem. Eng. J. 421, 129995 (2021). https://doi.org/10.1016/j.cej.2021.129995
- A. Giroir-Fendler, S. Gil, A. Baylet, (La0.8A0.2)MnO3 (a = Sr, K) perovskite catalysts for NO and C10H22 oxidation and selective reduction of NO by C10H22. Chin. J. Catal. 35(8), 1299–1304 (2014). https://doi.org/10.1016/S1872-2067(14)60173-X
- H.R. Jiang, J. Sun, L. Wei, M.C. Wu, W. Shyy et al., A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24, 529–540 (2020). https://doi.org/10.1016/j.ensm.2019.07.005
- X. Zhang, D. Zhang, L. Liu, K. Zhang, Y. Zhang et al., MOF-derived W/Zr bimetallic oxides@Carbon for comprehensively remedying melamine foam electrode defects in vanadium redox flow batteries. Chem. Eng. J. 467, 143360 (2023). https://doi.org/10.1016/j.cej.2023.143360
- T. Long, Y. Long, M. Ding, Z. Xu, J. Xu et al., Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano Res. 14(10), 3538–3544 (2021). https://doi.org/10.1007/s12274-021-3564-z
References
M. Han, K. Zheng, H. Hu, J. Liu, Z. Zou et al., Long-duration energy-storage technologies: a stabilizer for new power systems. Innov. Energy 2(2), 100077 (2025). https://doi.org/10.59717/j.xinn-energy.2025.100077
O.C. Esan, X. Shi, Z. Pan, X. Huo, L. An et al., Modeling and simulation of flow batteries. Adv. Energy Mater. 10(31), 2000758 (2020). https://doi.org/10.1002/aenm.202000758
T.M. Narayanan, Y.G. Zhu, E. Gençer, G. McKinley, Y. Shao-Horn, Low-cost manganese dioxide semi-solid electrode for flow batteries. Joule 5(11), 2934–2954 (2021). https://doi.org/10.1016/j.joule.2021.07.010
H. Fan, K. Liu, X. Zhang, Y. Di, P. Liu et al., Spatial structure regulation towards armor-clad five-membered pyrroline nitroxides catholyte for long-life aqueous organic redox flow batteries. eScience 4(1), 100202 (2024). https://doi.org/10.1016/j.esci.2023.100202
Y. Zhao, Y. Wang, J. Li, J. Xiong, Q. Li et al., Thermodynamic and kinetic insights for manipulating aqueous Zn battery chemistry: towards future grid-scale renewable energy storage systems. eScience 5(4), 100331 (2025). https://doi.org/10.1016/j.esci.2024.100331
Y. Zhu, X. Ye, S.H. Ali, S. Dou, J. Cheng et al., Resource substitutability path for China’s energy storage between lithium and vanadium. iScience 28(5), 112462 (2025). https://doi.org/10.1016/j.isci.2025.112462
Z. Zhao, X. Liu, M. Zhang, L. Zhang, C. Zhang et al., Development of flow battery technologies using the principles of sustainable chemistry. Chem. Soc. Rev. 52(17), 6031–6074 (2023). https://doi.org/10.1039/d2cs00765g
Y. Cheng, X. Wang, S. Huang, W. Samarakoon, S. Xi et al., Redox targeting-based vanadium redox-flow battery. ACS Energy Lett. 4(12), 3028–3035 (2019). https://doi.org/10.1021/acsenergylett.9b01939
E.W. Zhao, T. Liu, E. Jónsson, J. Lee, I. Temprano et al., In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature 579(7798), 224–228 (2020). https://doi.org/10.1038/s41586-020-2081-7
A. Kaliyaraj Selva Kumar, R.G. Compton, Single-entity “nano-catalysis”: carbon nanotubes and the VO2+/VO2+ redox reaction. ACS Catal. 12(8), 4754–4764 (2022). https://doi.org/10.1021/acscatal.2c00849
H. Agarwal, J. Florian, D. Pert, B.R. Goldsmith, N. Singh, Explaining kinetic trends of inner-sphere transition-metal-ion redox reactions on metal electrodes. ACS Catal. 13(4), 2223–2233 (2023). https://doi.org/10.1021/acscatal.2c05694
H. Agarwal, J. Florian, B.R. Goldsmith, N. Singh, V2+/V3+ redox kinetics on glassy carbon in acidic electrolytes for vanadium redox flow batteries. ACS Energy Lett. 4(10), 2368–2377 (2019). https://doi.org/10.1021/acsenergylett.9b01423
J. Du, H. Lin, L. Zhang, L. Wang, Advanced materials for vanadium redox flow batteries: major obstacles and optimization strategies. Adv. Funct. Mater. 35(35), 2501689 (2025). https://doi.org/10.1002/adfm.202501689
Z. Yu, X. Jia, Y. Cai, R. Su, Q. Zhu et al., Electrolyte engineering for efficient and stable vanadium redox flow batteries. Energy Storage Mater. 69, 103404 (2024). https://doi.org/10.1016/j.ensm.2024.103404
S. Aberoumand, P. Woodfield, B. Shabani, D.V. Dao, Advances in electrode and electrolyte improvements in vanadium redox flow batteries with a focus on the nanofluidic electrolyte approach. Phys. Rep. 881, 1–49 (2020). https://doi.org/10.1016/j.physrep.2020.08.001
J. Ying, H. Li, X. Jia, Z. Yu, T. Zhao et al., One stone two birds: enhancing energy density and temperature adaptability for vanadium-based redox flow batteries via dual active species strategy. Energy Storage Mater. 83, 104693 (2025). https://doi.org/10.1016/j.ensm.2025.104693
T.T.K. Huynh, T. Yang, P.S. Nayanthara, Y. Yang, J. Ye et al., Construction of high-performance membranes for vanadium redox flow batteries: challenges, development, and perspectives. Nano-Micro Lett. 17(1), 260 (2025). https://doi.org/10.1007/s40820-025-01736-x
Y. Zhang, D. Zhang, Q. Zhou, X. Zhang, S. Hou et al., Interfacial engineering of MXene-based heterogeneous membranes with enhanced ion selectivity in vanadium redox flow battery. Adv. Funct. Mater. e10597 (2025). https://doi.org/10.1002/adfm.202510597
J. Ye, C. Zheng, J. Liu, T. Sun, S. Yu et al., In situ grown tungsten trioxide nanops on graphene oxide nanosheet to regulate ion selectivity of membrane for high performance vanadium redox flow battery. Adv. Funct. Mater. 32(8), 2109427 (2022). https://doi.org/10.1002/adfm.202109427
J. Sun, M.C. Wu, X.Z. Fan, Y.H. Wan, C.Y.H. Chao et al., Aligned microfibers interweaved with highly porous carbon nanofibers: a novel electrode for high-power vanadium redox flow batteries. Energy Storage Mater. 43, 30–41 (2021). https://doi.org/10.1016/j.ensm.2021.08.034
Z. Zhu, Y. Men, W. Zhang, W. Yang, F. Wang et al., Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems. eScience 4(5), 100249 (2024). https://doi.org/10.1016/j.esci.2024.100249
P. Rodríguez Lagar, A. Concheso, D. Barreda, Z. González, M.A. Montes-Morán et al., Direct ink writing of 3D-structured all-carbon electrodes with high electrical conductivity for (vanadium) redox flow batteries. Adv. Sci. 12(22), 2417641 (2025). https://doi.org/10.1002/advs.202417641
M. Park, I.Y. Jeon, J. Ryu, J.-B. Baek, J. Cho, Exploration of the effective location of surface oxygen defects in graphene-based electrocatalysts for all-vanadium redox-flow batteries. Adv. Energy Mater. 5(5), 1401550 (2015). https://doi.org/10.1002/aenm.201401550
H. Radinger, V. Trouillet, F. Bauer, F. Scheiba, Work function describes the electrocatalytic activity of graphite for vanadium oxidation. ACS Catal. 12(10), 6007–6015 (2022). https://doi.org/10.1021/acscatal.2c00334
R. Wang, Y. Li, Carbon electrodes improving electrochemical activity and enhancing mass and charge transports in aqueous flow battery: status and perspective. Energy Storage Mater. 31, 230–251 (2020). https://doi.org/10.1016/j.ensm.2020.06.012
X. Zhang, A. Valencia, W. Li, K. Ao, J. Shi et al., Decoupling activation and transport by electron-regulated atomic-Bi harnessed surface-to-pore interface for vanadium redox flow battery. Adv. Mater. 36(6), 2470048 (2024). https://doi.org/10.1002/adma.202470048
K. Zhang, C. Yan, A. Tang, Oxygen-induced electrode activation and modulation essence towards enhanced anode redox chemistry for vanadium flow batteries. Energy Storage Mater. 34, 301–310 (2021). https://doi.org/10.1016/j.ensm.2020.10.005
A. Mukhopadhyay, Y. Yang, Y. Li, Y. Chen, H. Li et al., Mass transfer and reaction kinetic enhanced electrode for high-performance aqueous flow batteries. Adv. Funct. Mater. 29(43), 1903192 (2019). https://doi.org/10.1002/adfm.201903192
Z. Xu, M. Zhu, K. Zhang, X. Zhang, L. Xu et al., Inspired by “quenching-cracking” strategy: structure-based design of sulfur-doped graphite felts for ultrahigh-rate vanadium redox flow batteries. Energy Storage Mater. 39, 166–175 (2021). https://doi.org/10.1016/j.ensm.2021.04.025
K. Ma, Y. Zhang, L. Liu, J. Xi, X. Qiu et al., In situ mapping of activity distribution and oxygen evolution reaction in vanadium flow batteries. Nat. Commun. 10(1), 5286 (2019). https://doi.org/10.1038/s41467-019-13147-9
Y. Nie, R. Nie, H. Lin, J. Wu, L. Yu et al., In-situ constructed core-shell catalyst enabling subzero capacity unlocking of cost-effective and long-life vanadium flow batteries. Angew. Chem. Int. Ed. 64(9), e202420794 (2025). https://doi.org/10.1002/anie.202420794
J.J. Patil, C.T. Wan, S. Gong, Y.-M. Chiang, F.R. Brushett et al., Bayesian-optimization-assisted laser reduction of poly(acrylonitrile) for electrochemical applications. ACS Nano 17(5), 4999–5013 (2023). https://doi.org/10.1021/acsnano.2c12663
Y. Yang, X. Wang, Y. Wang, G. Qiu, Z. Song et al., Functional nano-carbon layer decorated carbon felt electrode for vanadium redox flow batteries. J. Energy Chem. 106, 735–741 (2025). https://doi.org/10.1016/j.jechem.2025.02.056
X. Zhang, X. Ye, A. Valencia, F. Liu, K. Ao et al., Asymmetric chemical potential activated nanointerfacial electric field for efficient vanadium redox flow batteries. ACS Nano 17(21), 21799–21812 (2023). https://doi.org/10.1021/acsnano.3c07732
F. Xing, Q. Fu, F. Xing, J. Zhao, H. Long et al., Bismuth single atoms regulated graphite felt electrode boosting high power density vanadium flow batteries. J. Am. Chem. Soc. 146(38), 26024–26033 (2024). https://doi.org/10.1021/jacs.4c04951
H. Hu, M. Han, J. Liu, K. Zheng, Z. Zou et al., Strategies for improving the design of porous fiber felt electrodes for all-vanadium redox flow batteries from macro and micro perspectives. Energy Environ. Sci. 18(7), 3085–3119 (2025). https://doi.org/10.1039/D4EE05556J
L. Ye, S. Qi, T. Cheng, Y. Jiang, Z. Feng et al., Vanadium redox flow battery: review and perspective of 3D electrodes. ACS Nano 18(29), 18852–18869 (2024). https://doi.org/10.1021/acsnano.4c06675
K. Amini, J. Gostick, M.D. Pritzker, Metal and metal oxide electrocatalysts for redox flow batteries. Adv. Funct. Mater. 30(23), 1910564 (2020). https://doi.org/10.1002/adfm.201910564
X. Zhang, K. Ao, J. Shi, X. Yue, A. Valencia et al., The critical role of atomic-scale polarization in transition metal oxides on vanadium-redox electrochemistry. Adv. Mater. 37(13), 2570102 (2025). https://doi.org/10.1002/adma.202570102
R. Huang, S. Liu, Z. He, G. Ye, W. Zhu et al., The role of proton in high power density vanadium redox flow batteries. ACS Nano 17(19), 19098–19108 (2023). https://doi.org/10.1021/acsnano.3c05037
X. Pan, X. Cheng, T. Deng, L. Xia, J. Zhang et al., MOF-derived high-entropy oxide-modified graphite felt for enhanced electrochemical performance in vanadium redox flow batteries. J. Mater. Sci. Technol. 247, 44–54 (2026). https://doi.org/10.1016/j.jmst.2025.05.033
A. Ejigu, M. Edwards, D.A. Walsh, Synergistic catalyst–support interactions in a graphene–Mn3O4 electrocatalyst for vanadium redox flow batteries. ACS Catal. 5(12), 7122–7130 (2015). https://doi.org/10.1021/acscatal.5b01973
Y. Jiang, Z. Liu, Y. Lv, A. Tang, L. Dai et al., Perovskite enables high performance vanadium redox flow battery. Chem. Eng. J. 443, 136341 (2022). https://doi.org/10.1016/j.cej.2022.136341
J.M.V. Nsanzimana, L. Cai, Z. Jiang, B.Y. Xia, T. Maiyalagan, Engineering bifunctional catalytic microenvironments for durable and high-energy-density metal-air batteries. Nano-Micro Letters 17(1), 294 (2025). https://doi.org/10.1007/s40820-025-01799-w
M. Chen, N. Kitiphatpiboon, C. Feng, A. Abudula, Y. Ma et al., Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: a critical review. eScience 3(2), 100111 (2023). https://doi.org/10.1016/j.esci.2023.100111
Y. Sun, R. Li, X. Chen, J. Wu, Y. Xie et al., A-site management prompts the dynamic reconstructed active phase of perovskite oxide OER catalysts. Adv. Energy Mater. 11(12), 2003755 (2021). https://doi.org/10.1002/aenm.202003755
D. Kim, R. Bliem, F. Hess, J.-J. Gallet, B. Yildiz, Electrochemical polarization dependence of the elastic and electrostatic driving forces to aliovalent dopant segregation on LaMnO3. J. Am. Chem. Soc. 142(7), 3548–3563 (2020). https://doi.org/10.1021/jacs.9b13040
V.L. Joseph Joly, P.A. Joy, S.K. Date, Studies on the effect of substitution of tetravalent ions for La3+ in LaMnO3. J. Magn. Magn. Mater. 247(3), 316–323 (2002). https://doi.org/10.1016/S0304-8853(02)00289-5
J.M. Naik, C. Ritter, B. Bulfin, A. Steinfeld, R. Erni et al., Reversible phase transformations in novel Ce-substituted perovskite oxide composites for solar thermochemical redox splitting of CO2. Adv. Energy Mater. 11(16), 2003532 (2021). https://doi.org/10.1002/aenm.202003532
X. Shi, J. Guo, T. Shen, A. Fan, S. Yuan et al., Enhancement of Ce doped La–Mn oxides for the selective catalytic reduction of NOx with NH3 and SO2 and/or H2O resistance. Chem. Eng. J. 421, 129995 (2021). https://doi.org/10.1016/j.cej.2021.129995
A. Giroir-Fendler, S. Gil, A. Baylet, (La0.8A0.2)MnO3 (a = Sr, K) perovskite catalysts for NO and C10H22 oxidation and selective reduction of NO by C10H22. Chin. J. Catal. 35(8), 1299–1304 (2014). https://doi.org/10.1016/S1872-2067(14)60173-X
H.R. Jiang, J. Sun, L. Wei, M.C. Wu, W. Shyy et al., A high power density and long cycle life vanadium redox flow battery. Energy Storage Mater. 24, 529–540 (2020). https://doi.org/10.1016/j.ensm.2019.07.005
X. Zhang, D. Zhang, L. Liu, K. Zhang, Y. Zhang et al., MOF-derived W/Zr bimetallic oxides@Carbon for comprehensively remedying melamine foam electrode defects in vanadium redox flow batteries. Chem. Eng. J. 467, 143360 (2023). https://doi.org/10.1016/j.cej.2023.143360
T. Long, Y. Long, M. Ding, Z. Xu, J. Xu et al., Large scale preparation of 20 cm × 20 cm graphene modified carbon felt for high performance vanadium redox flow battery. Nano Res. 14(10), 3538–3544 (2021). https://doi.org/10.1007/s12274-021-3564-z