Threefold-Hierarchical Transport of Highly Concentrated Aqueous Electrolyte Mediated by Environment-Reconstructed Ion Correlation Networks
Corresponding Author: Zhiguo Qu
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 231
Abstract
Highly concentrated aqueous electrolytes (HCAEs) offer superior energy density and stability in energy conversion and storage than their diluted counterparts, attributed to enhanced ion transport and correlated ion structures. However, their underlying structure–transport relationships remain poorly understood in wide-temperature and nanoconfinement environments. This study captures electrolyte structure and transport fingerprints shaped by environmental factors, by combining experimental characterization with first-principles molecular simulations at sub-nanometer resolution. It is revealed that ultrahigh concentration changes electrolyte electronic states and forms ion correlation networks with extensive aggregates. These alterations reduce free water content and hydrogen bond network connectivity, resulting in notable deviation from the Nernst–Einstein (NE)-predicted conductivity. This deviation is thermal-alleviated by weakening ion correlations. Nanoconfined interfaces create oscillatory-decaying distribution and heterogeneous orientation in HCAE constituents, resulting in redrawn ion correlation networks and localized NE deviations. Such transport behaviors are further modulated by synergistic thermal-interfacial constraints. Taking NE deviations as descriptors, HCAE transport, mediated by environment-reconstructed ion correlation networks, is then summarized to present threefold-hierarchical variations due to ion concentration, thermal effect, and confinement extent. This threefold-hierarchical framework is transferable among diverse electrolytes, offering a localized insight for electrolyte evaluation in electrochemical energy devices.
Highlights:
1 Transport fingerprints of aqueous electrolytes are captured to be mediated by environment-reconstructed ion correlation networks.
2 Taking the Nernst–Einstein deviations as descriptors, electrolyte transport presents threefold-hierarchical variations due to salt concentration, thermal effect, and nanoconfined interface.
3 This threefold-hierarchical framework is transferable among diverse electrolytes, offering a localized insight for electrolyte evaluation in electrochemical energy devices.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Wang, C. Breakwell, F. Foglia, R. Tan, L. Lovell et al., Selective ion transport through hydrated micropores in polymer membranes. Nature 635(8038), 353–358 (2024). https://doi.org/10.1038/s41586-024-08140-2
- L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15(1), 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
- H. Xia, W. Zhou, X. Qu, W. Wang, X. Wang et al., Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 19(9), 1316–1322 (2024). https://doi.org/10.1038/s41565-024-01691-5
- Q. Liu, Q. Wang, Z. Qu, J. Zhang, Interfacial binding rope theory of ion transport in sub-nanochannels and its application for osmotic energy conversion. Nano Energy 113, 108545 (2023). https://doi.org/10.1016/j.nanoen.2023.108545
- N. Farajpour, Y.M.N.D.Y. Bandara, L. Lastra, K.J. Freedman, Negative memory capacitance and ionic filtering effects in asymmetric nanopores. Nat. Nanotechnol. 20(3), 421–431 (2025). https://doi.org/10.1038/s41565-024-01829-5
- L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
- L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
- J. Park, J. Lee, W. Kim, Water-in-salt electrolyte enables ultrafast supercapacitors for AC line filtering. ACS Energy Lett. 6(2), 769–777 (2021). https://doi.org/10.1021/acsenergylett.0c02442
- S. Dong, Y. Wang, C. Chen, L. Shen, X. Zhang, Niobium tungsten oxide in a green water-in-salt electrolyte enables ultra-stable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020). https://doi.org/10.1007/s40820-020-00508-z
- M. Wang, S. Liu, H. Ji, T. Yang, T. Qian et al., Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 12(1), 3198 (2021). https://doi.org/10.1038/s41467-021-23360-0
- Q. Wang, Z. Qu, D. Tian, Electric double layer theory of interfacial ionic liquids for capturing ion hierarchical aggregation and anisotropic dynamics. Adv. Energy Mater. 15(13), 2402974 (2025). https://doi.org/10.1002/aenm.202402974
- N.M. Vargas-Barbosa, B. Roling, Dynamic ion correlations in solid and liquid electrolytes: How do they affect charge and mass transport? ChemElectroChem 7(2), 367–385 (2020). https://doi.org/10.1002/celc.201901627
- K. Xu, Navigating the minefield of battery literature. Commun. Mater. 3, 31 (2022). https://doi.org/10.1038/s43246-022-00251-5
- F. Wang, Y. Sun, J. Cheng, Switching of redox levels leads to high reductive stability in water-in-salt electrolytes. J. Am. Chem. Soc. 145(7), 4056–4064 (2023). https://doi.org/10.1021/jacs.2c11793
- Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi et al., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014). https://doi.org/10.1021/ja412807w
- W. Yang, Y. Yang, H. Yang, H. Zhou, Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 7(8), 2515–2530 (2022). https://doi.org/10.1021/acsenergylett.2c01152
- C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Lett. 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
- W. Nernst, Zur kinetik der in lösung befindlichen Körper. Z. Phys. Chem. 2U(1), 613–637 (1888). https://doi.org/10.1515/zpch-1888-0274
- A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905). https://doi.org/10.1002/andp.19053220806
- Z. Li, R.P. Misra, Y. Li, Y.-C. Yao, S. Zhao et al., Breakdown of the Nernst–Einstein relation in carbon nanotube porins. Nat. Nanotechnol. 18(2), 177–183 (2023). https://doi.org/10.1038/s41565-022-01276-0
- Q. Wang, X. Zhang, H. Zhu, X. Zhang, Q. Liu et al., Nanochannel-based ion transport and its application in osmotic energy conversion: a critical review. Adv. Phys. Res. 2(9), 2300016 (2023). https://doi.org/10.1002/apxr.202300016
- Q. Wang, Z. Qu, Nanoconfined ion transport: common foundations driving innovative theories and transformative applications. Innov. Energy 2(1), 100075 (2025). https://doi.org/10.59717/j.xinn-energy.2024.100075
- L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9(7), 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
- Z. Lin, Y. Cai, S. Zhang, J. Sun, Y. Liu et al., Wide-temperature electrolytes for aqueous alkali metal-ion batteries: challenges, progress, and prospects. Nano-Micro Lett. 18(1), 27 (2025). https://doi.org/10.1007/s40820-025-01865-3
- J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
- Q. Zhang, S. Xu, Y. Wang, Q. Dou, Y. Sun et al., Temperature-dependent structure and performance evolution of “water-in-salt” electrolyte for supercapacitor. Energy Storage Mater. 55, 205–213 (2023). https://doi.org/10.1016/j.ensm.2022.11.056
- C. Wang, M. Sun, Y. Zhao, M. Huo, X. Wang et al., Photo-electrochemical osmotic system enables simultaneous metal recovery and electricity generation from wastewater. Environ. Sci. Technol. 55(1), 604–613 (2021). https://doi.org/10.1021/acs.est.0c04375
- J. Han, A. Mariani, S. Passerini, A. Varzi, A perspective on the role of anions in highly concentrated aqueous electrolytes. Energy Environ. Sci. 16(4), 1480–1501 (2023). https://doi.org/10.1039/d2ee03682g
- S. Lin, Y. Fishler, S. Kwon, A.E. Böhme, W. Nie et al., Cooperative effects associated with high electrolyte concentrations in driving the conversion of CO2 to C2H4 on copper. Chem. Catal. 5(6), 101338 (2025). https://doi.org/10.1016/j.checat.2025.101338
- M. Sun, M. Qin, C. Wang, G. Weng, M. Huo et al., Electrochemical-osmotic process for simultaneous recovery of electric energy, water, and metals from wastewater. Environ. Sci. Technol. 54(13), 8430–8442 (2020). https://doi.org/10.1021/acs.est.0c01891
- Q. Wang, Z. Qu, J. Jiang, Sub-nanometer resolution for anion conduction in a covalent-organic framework membrane: a hierarchical approach. J. Energy Chem. 113, 186–197 (2026). https://doi.org/10.1016/j.jechem.2025.09.050
- X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
- C.-Y. Li, M. Chen, S. Liu, X. Lu, J. Meng et al., Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13(1), 5330 (2022). https://doi.org/10.1038/s41467-022-33129-8
- X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16(1), 53 (2023). https://doi.org/10.1007/s40820-023-01285-1
- H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Recent progress on asymmetric carbon- and silica-based nanomaterials: from synthetic strategies to their applications. Nano-Micro Lett. 14(1), 45 (2022). https://doi.org/10.1007/s40820-021-00789-y
- S.J. Nam, H. Zhang, Q. Yue, B. Gao, B. Jin, Influence of physicochemical characteristics of feed solution on water permeability in forward osmosis desalination system. Desalination 517, 115266 (2021). https://doi.org/10.1016/j.desal.2021.115266
- J. Xiao, M. Cong, M. Li, X. Zhang, Y. Zhang et al., Self-assembled nanoporous metal–organic framework monolayer film for osmotic energy harvesting. Adv. Funct. Mater. 34(2), 2307996 (2024). https://doi.org/10.1002/adfm.202307996
- T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, The applications of water-in-salt electrolytes in electrochemical energy storage devices. Adv. Funct. Mater. 31(3), 2006749 (2021). https://doi.org/10.1002/adfm.202006749
- J. Guo, Y. Ma, K. Zhao, Y. Wang, B. Yang et al., High-performance and ultra-stable aqueous supercapacitors based on a green and low-cost water-In-salt electrolyte. ChemElectroChem 6(21), 5433–5438 (2019). https://doi.org/10.1002/celc.201901591
- M.J. DelloStritto, S.M. Piontek, M.L. Klein, E. Borguet, Effect of functional and electron correlation on the structure and spectroscopy of the Al2O3 (001)-H2O interface. J. Phys. Chem. Lett. 10(9), 2031–2036 (2019). https://doi.org/10.1021/acs.jpclett.9b00016
- X.-H. Li, F. Wang, P.-D. Lu, J.-L. Dong, L.-Y. Wang et al., Confocal Raman observation of the efflorescence/deliquescence processes of individual NaNO3 ps on quartz. J. Phys. Chem. B 110(49), 24993–24998 (2006). https://doi.org/10.1021/jp064221o
- R. Wang, M. DelloStritto, M.L. Klein, E. Borguet, V. Carnevale, Topological properties of interfacial hydrogen bond networks. Phys. Rev. B 110, 014105 (2024). https://doi.org/10.1103/physrevb.110.014105
- R. Wang, R.C. Remsing, M.L. Klein, E. Borguet, V. Carnevale, On the role of α-alumina in the origin of life: surface-driven assembly of amino acids. Sci. Adv. 11(15), eadt4151 (2025). https://doi.org/10.1126/sciadv.adt4151
- K. Komori, T. Terao, Cluster-size distribution of ions in concentrated aqueous NaCl solutions: molecular dynamics simulations. Chem. Phys. Lett. 825, 140627 (2023). https://doi.org/10.1016/j.cplett.2023.140627
- J.-H. Choi, H. Lee, H.R. Choi, M. Cho, Graph theory and ion and molecular aggregation in aqueous solutions. Annu. Rev. Phys. Chem. 69, 125–149 (2018). https://doi.org/10.1146/annurev-physchem-050317-020915
- R. Wang, Y. Zou, R.C. Remsing, N.O. Ross, M.L. Klein et al., Superhydrophilicity of α-alumina surfaces results from tight binding of interfacial waters to specific aluminols. J. Colloid Interface Sci. 628, 943–954 (2022). https://doi.org/10.1016/j.jcis.2022.07.164
- J.-F. Olivieri, J.T. Hynes, D. Laage, Confined water’s dielectric constant reduction is due to the surrounding low dielectric media and not to interfacial molecular ordering. J. Phys. Chem. Lett. 12(17), 4319–4326 (2021). https://doi.org/10.1021/acs.jpclett.1c00447
References
A. Wang, C. Breakwell, F. Foglia, R. Tan, L. Lovell et al., Selective ion transport through hydrated micropores in polymer membranes. Nature 635(8038), 353–358 (2024). https://doi.org/10.1038/s41586-024-08140-2
L. Fu, Y. Hu, X. Lin, Q. Wang, L. Yang et al., Engineering multi-field-coupled synergistic ion transport system based on the heterogeneous nanofluidic membrane for high-efficient lithium extraction. Nano-Micro Lett. 15(1), 130 (2023). https://doi.org/10.1007/s40820-023-01106-5
H. Xia, W. Zhou, X. Qu, W. Wang, X. Wang et al., Electricity generated by upstream proton diffusion in two-dimensional nanochannels. Nat. Nanotechnol. 19(9), 1316–1322 (2024). https://doi.org/10.1038/s41565-024-01691-5
Q. Liu, Q. Wang, Z. Qu, J. Zhang, Interfacial binding rope theory of ion transport in sub-nanochannels and its application for osmotic energy conversion. Nano Energy 113, 108545 (2023). https://doi.org/10.1016/j.nanoen.2023.108545
N. Farajpour, Y.M.N.D.Y. Bandara, L. Lastra, K.J. Freedman, Negative memory capacitance and ionic filtering effects in asymmetric nanopores. Nat. Nanotechnol. 20(3), 421–431 (2025). https://doi.org/10.1038/s41565-024-01829-5
L. Suo, O. Borodin, Y. Wang, X. Rong, W. Sun et al., “Water-in-salt” electrolyte makes aqueous sodium-ion battery safe, green, and long-lasting. Adv. Energy Mater. 7(21), 1701189 (2017). https://doi.org/10.1002/aenm.201701189
L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho et al., “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350(6263), 938–943 (2015). https://doi.org/10.1126/science.aab1595
J. Park, J. Lee, W. Kim, Water-in-salt electrolyte enables ultrafast supercapacitors for AC line filtering. ACS Energy Lett. 6(2), 769–777 (2021). https://doi.org/10.1021/acsenergylett.0c02442
S. Dong, Y. Wang, C. Chen, L. Shen, X. Zhang, Niobium tungsten oxide in a green water-in-salt electrolyte enables ultra-stable aqueous lithium-ion capacitors. Nano-Micro Lett. 12(1), 168 (2020). https://doi.org/10.1007/s40820-020-00508-z
M. Wang, S. Liu, H. Ji, T. Yang, T. Qian et al., Salting-out effect promoting highly efficient ambient ammonia synthesis. Nat. Commun. 12(1), 3198 (2021). https://doi.org/10.1038/s41467-021-23360-0
Q. Wang, Z. Qu, D. Tian, Electric double layer theory of interfacial ionic liquids for capturing ion hierarchical aggregation and anisotropic dynamics. Adv. Energy Mater. 15(13), 2402974 (2025). https://doi.org/10.1002/aenm.202402974
N.M. Vargas-Barbosa, B. Roling, Dynamic ion correlations in solid and liquid electrolytes: How do they affect charge and mass transport? ChemElectroChem 7(2), 367–385 (2020). https://doi.org/10.1002/celc.201901627
K. Xu, Navigating the minefield of battery literature. Commun. Mater. 3, 31 (2022). https://doi.org/10.1038/s43246-022-00251-5
F. Wang, Y. Sun, J. Cheng, Switching of redox levels leads to high reductive stability in water-in-salt electrolytes. J. Am. Chem. Soc. 145(7), 4056–4064 (2023). https://doi.org/10.1021/jacs.2c11793
Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi et al., Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 136(13), 5039–5046 (2014). https://doi.org/10.1021/ja412807w
W. Yang, Y. Yang, H. Yang, H. Zhou, Regulating water activity for rechargeable zinc-ion batteries: progress and perspective. ACS Energy Lett. 7(8), 2515–2530 (2022). https://doi.org/10.1021/acsenergylett.2c01152
C. Zhou, Z. Ding, S. Ying, H. Jiang, Y. Wang et al., Electrode/electrolyte optimization-induced double-layered architecture for high-performance aqueous zinc-(dual) halogen batteries. Nano-Micro Lett. 17(1), 58 (2024). https://doi.org/10.1007/s40820-024-01551-w
W. Nernst, Zur kinetik der in lösung befindlichen Körper. Z. Phys. Chem. 2U(1), 613–637 (1888). https://doi.org/10.1515/zpch-1888-0274
A. Einstein, Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 322(8), 549–560 (1905). https://doi.org/10.1002/andp.19053220806
Z. Li, R.P. Misra, Y. Li, Y.-C. Yao, S. Zhao et al., Breakdown of the Nernst–Einstein relation in carbon nanotube porins. Nat. Nanotechnol. 18(2), 177–183 (2023). https://doi.org/10.1038/s41565-022-01276-0
Q. Wang, X. Zhang, H. Zhu, X. Zhang, Q. Liu et al., Nanochannel-based ion transport and its application in osmotic energy conversion: a critical review. Adv. Phys. Res. 2(9), 2300016 (2023). https://doi.org/10.1002/apxr.202300016
Q. Wang, Z. Qu, Nanoconfined ion transport: common foundations driving innovative theories and transformative applications. Innov. Energy 2(1), 100075 (2025). https://doi.org/10.59717/j.xinn-energy.2024.100075
L. Jiang, S. Han, Y.-C. Hu, Y. Yang, Y. Lu et al., Rational design of anti-freezing electrolytes for extremely low-temperature aqueous batteries. Nat. Energy 9(7), 839–848 (2024). https://doi.org/10.1038/s41560-024-01527-5
Z. Lin, Y. Cai, S. Zhang, J. Sun, Y. Liu et al., Wide-temperature electrolytes for aqueous alkali metal-ion batteries: challenges, progress, and prospects. Nano-Micro Lett. 18(1), 27 (2025). https://doi.org/10.1007/s40820-025-01865-3
J. Nan, Y. Sun, F. Yang, Y. Zhang, Y. Li et al., Coupling of adhesion and anti-freezing properties in hydrogel electrolytes for low-temperature aqueous-based hybrid capacitors. Nano-Micro Lett. 16(1), 22 (2023). https://doi.org/10.1007/s40820-023-01229-9
Q. Zhang, S. Xu, Y. Wang, Q. Dou, Y. Sun et al., Temperature-dependent structure and performance evolution of “water-in-salt” electrolyte for supercapacitor. Energy Storage Mater. 55, 205–213 (2023). https://doi.org/10.1016/j.ensm.2022.11.056
C. Wang, M. Sun, Y. Zhao, M. Huo, X. Wang et al., Photo-electrochemical osmotic system enables simultaneous metal recovery and electricity generation from wastewater. Environ. Sci. Technol. 55(1), 604–613 (2021). https://doi.org/10.1021/acs.est.0c04375
J. Han, A. Mariani, S. Passerini, A. Varzi, A perspective on the role of anions in highly concentrated aqueous electrolytes. Energy Environ. Sci. 16(4), 1480–1501 (2023). https://doi.org/10.1039/d2ee03682g
S. Lin, Y. Fishler, S. Kwon, A.E. Böhme, W. Nie et al., Cooperative effects associated with high electrolyte concentrations in driving the conversion of CO2 to C2H4 on copper. Chem. Catal. 5(6), 101338 (2025). https://doi.org/10.1016/j.checat.2025.101338
M. Sun, M. Qin, C. Wang, G. Weng, M. Huo et al., Electrochemical-osmotic process for simultaneous recovery of electric energy, water, and metals from wastewater. Environ. Sci. Technol. 54(13), 8430–8442 (2020). https://doi.org/10.1021/acs.est.0c01891
Q. Wang, Z. Qu, J. Jiang, Sub-nanometer resolution for anion conduction in a covalent-organic framework membrane: a hierarchical approach. J. Energy Chem. 113, 186–197 (2026). https://doi.org/10.1016/j.jechem.2025.09.050
X. Yu, M. Chen, Z. Li, X. Tan, H. Zhang et al., Unlocking dynamic solvation chemistry and hydrogen evolution mechanism in aqueous zinc batteries. J. Am. Chem. Soc. 146(25), 17103–17113 (2024). https://doi.org/10.1021/jacs.4c02558
C.-Y. Li, M. Chen, S. Liu, X. Lu, J. Meng et al., Unconventional interfacial water structure of highly concentrated aqueous electrolytes at negative electrode polarizations. Nat. Commun. 13(1), 5330 (2022). https://doi.org/10.1038/s41467-022-33129-8
X. You, D. Zhang, X.-G. Zhang, X. Li, J.-H. Tian et al., Exploring the cation regulation mechanism for interfacial water involved in the hydrogen evolution reaction by in situ Raman spectroscopy. Nano-Micro Lett. 16(1), 53 (2023). https://doi.org/10.1007/s40820-023-01285-1
H. Li, L. Chen, X. Li, D. Sun, H. Zhang, Recent progress on asymmetric carbon- and silica-based nanomaterials: from synthetic strategies to their applications. Nano-Micro Lett. 14(1), 45 (2022). https://doi.org/10.1007/s40820-021-00789-y
S.J. Nam, H. Zhang, Q. Yue, B. Gao, B. Jin, Influence of physicochemical characteristics of feed solution on water permeability in forward osmosis desalination system. Desalination 517, 115266 (2021). https://doi.org/10.1016/j.desal.2021.115266
J. Xiao, M. Cong, M. Li, X. Zhang, Y. Zhang et al., Self-assembled nanoporous metal–organic framework monolayer film for osmotic energy harvesting. Adv. Funct. Mater. 34(2), 2307996 (2024). https://doi.org/10.1002/adfm.202307996
T. Liang, R. Hou, Q. Dou, H. Zhang, X. Yan, The applications of water-in-salt electrolytes in electrochemical energy storage devices. Adv. Funct. Mater. 31(3), 2006749 (2021). https://doi.org/10.1002/adfm.202006749
J. Guo, Y. Ma, K. Zhao, Y. Wang, B. Yang et al., High-performance and ultra-stable aqueous supercapacitors based on a green and low-cost water-In-salt electrolyte. ChemElectroChem 6(21), 5433–5438 (2019). https://doi.org/10.1002/celc.201901591
M.J. DelloStritto, S.M. Piontek, M.L. Klein, E. Borguet, Effect of functional and electron correlation on the structure and spectroscopy of the Al2O3 (001)-H2O interface. J. Phys. Chem. Lett. 10(9), 2031–2036 (2019). https://doi.org/10.1021/acs.jpclett.9b00016
X.-H. Li, F. Wang, P.-D. Lu, J.-L. Dong, L.-Y. Wang et al., Confocal Raman observation of the efflorescence/deliquescence processes of individual NaNO3 ps on quartz. J. Phys. Chem. B 110(49), 24993–24998 (2006). https://doi.org/10.1021/jp064221o
R. Wang, M. DelloStritto, M.L. Klein, E. Borguet, V. Carnevale, Topological properties of interfacial hydrogen bond networks. Phys. Rev. B 110, 014105 (2024). https://doi.org/10.1103/physrevb.110.014105
R. Wang, R.C. Remsing, M.L. Klein, E. Borguet, V. Carnevale, On the role of α-alumina in the origin of life: surface-driven assembly of amino acids. Sci. Adv. 11(15), eadt4151 (2025). https://doi.org/10.1126/sciadv.adt4151
K. Komori, T. Terao, Cluster-size distribution of ions in concentrated aqueous NaCl solutions: molecular dynamics simulations. Chem. Phys. Lett. 825, 140627 (2023). https://doi.org/10.1016/j.cplett.2023.140627
J.-H. Choi, H. Lee, H.R. Choi, M. Cho, Graph theory and ion and molecular aggregation in aqueous solutions. Annu. Rev. Phys. Chem. 69, 125–149 (2018). https://doi.org/10.1146/annurev-physchem-050317-020915
R. Wang, Y. Zou, R.C. Remsing, N.O. Ross, M.L. Klein et al., Superhydrophilicity of α-alumina surfaces results from tight binding of interfacial waters to specific aluminols. J. Colloid Interface Sci. 628, 943–954 (2022). https://doi.org/10.1016/j.jcis.2022.07.164
J.-F. Olivieri, J.T. Hynes, D. Laage, Confined water’s dielectric constant reduction is due to the surrounding low dielectric media and not to interfacial molecular ordering. J. Phys. Chem. Lett. 12(17), 4319–4326 (2021). https://doi.org/10.1021/acs.jpclett.1c00447