Design, Fabrication, and Application of Stretchable Electronic Conductors
Corresponding Author: Fang Yi
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 166
Abstract
Stretchable electronics have been recognized as intriguing next-generation electronics that possess huge market value, and stretchable electronic conductors (SECs) are essential for stretchable electronics, which not only can serve as critical functional components but also are the indispensable electronic connections bridging various electronic components within stretchable electronic systems. Herein, we offer a comprehensive review of recent progress in SECs including the material categories, structure designs, fabrication techniques, and applications. The characteristics, performance enhancement strategies, and application requirements are emphasized. Based on the recent advances, the existing challenges and future prospects are outlined and discussed.
Highlights:
1 A comprehensive review of recent advances in stretchable electronic conductors including the material categories, structure designs, fabrication techniques, and applications.
2 A novel emphasis on the characteristics, performance enhancement strategies, and application requirements of stretchable electronic conductors.
3 An exhaustive analysis of the existing challenges and future prospects for stretchable electronic conductors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cao, X. Liu, J. Qiu, Z. Yue, Y. Li et al., Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion. Nat. Commun. 15(1), 1116 (2024). https://doi.org/10.1038/s41467-024-45393-x
- W.B. Han, G.-J. Ko, K.-G. Lee, D. Kim, J.H. Lee et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
- Y. Li, N. Li, W. Liu, A. Prominski, S. Kang et al., Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14(1), 4488 (2023). https://doi.org/10.1038/s41467-023-40191-3
- Y. Shao, J. Yan, Y. Zhi, C. Li, Q. Li et al., A universal packaging substrate for mechanically stable assembly of stretchable electronics. Nat. Commun. 15, 6106 (2024). https://doi.org/10.1038/s41467-024-50494-8
- D. Zhong, C. Wu, Y. Jiang, Y. Yuan, M.-G. Kim et al., High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627(8003), 313–320 (2024). https://doi.org/10.1038/s41586-024-07096-7
- S.-H. Kang, J.-W. Jo, J.M. Lee, S. Moon, S.B. Shin et al., Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat. Commun. 15(1), 2814 (2024). https://doi.org/10.1038/s41467-024-47184-w
- Y. Bian, H. Shi, Q. Yuan, Y. Zhu, Z. Lin et al., Patterning techniques based on metallized electrospun nanofibers for advanced stretchable electronics. Adv. Sci. 11(26), 2309735 (2024). https://doi.org/10.1002/advs.202309735
- J. Jang, H. Choo, S. Lee, J. Song, K. Park et al., Reconfigurable assembly of self-healing stretchable transistors and circuits for integrated systems. Nat. Electron. 8(6), 474–484 (2025). https://doi.org/10.1038/s41928-025-01389-z
- G.-H. Lee, Y. Lee, H. Seo, K. Jo, J. Yeo et al., Meter-scale heterostructure printing for high-toughness fiber electrodes in intelligent digital apparel. Nat. Commun. 16(1), 4320 (2025). https://doi.org/10.1038/s41467-025-59703-4
- H. Seo, G.-H. Lee, J. Park, D.-Y. Kim, Y. Son et al., Self-packaged stretchable printed circuits with ligand-bound liquid metal ps in elastomer. Nat. Commun. 16, 4944 (2025). https://doi.org/10.1038/s41467-025-60118-4
- R. Lin, C. Jiang, S. Achavananthadith, X. Yang, H.P.A. Ali et al., Soft electronics based on p engulfment printing. Nat. Electron. (2025). https://doi.org/10.1038/s41928-024-01291-0
- O. Gul, M. Song, C.-Y. Gu, J. Ahn, K. Lee et al., Bioinspired interfacial engineering for highly stretchable electronics. Nat. Commun. 16, 1337 (2025). https://doi.org/10.1038/s41467-025-56502-9
- C.-C. Kim, H.-H. Lee, K.H. Oh, J.-Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353(6300), 682–687 (2016). https://doi.org/10.1126/science.aaf8810
- J.-Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014). https://doi.org/10.1002/adma.201403441
- O.Y. Kweon, S.K. Samanta, Y. Won, J.H. Yoo, J.H. Oh, Stretchable and self-healable conductive hydrogels for wearable multimodal touch sensors with thermoresponsive behavior. ACS Appl. Mater. Interfaces 11(29), 26134–26143 (2019). https://doi.org/10.1021/acsami.9b04440
- N. Matsuhisa, X. Chen, Z. Bao, T. Someya, Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48(11), 2946–2966 (2019). https://doi.org/10.1039/c8cs00814k
- S. Liu, D.S. Shah, R. Kramer-Bottiglio, Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20(6), 851–858 (2021). https://doi.org/10.1038/s41563-021-00921-8
- D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.-H. Kim, Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32(15), 1902743 (2020). https://doi.org/10.1002/adma.201902743
- A.M. Díez-Pascual, A. Rahdar, Composites of vegetable oil-based polymers and carbon nanomaterials. Macromol 1(4), 276–292 (2021). https://doi.org/10.3390/macromol1040019
- M. Dadashi Firouzjaei, S.K. Nemani, M. Sadrzadeh, E.K. Wujcik, M. Elliott et al., Life-cycle assessment of Ti3C2Tx MXene synthesis. Adv. Mater. 35(31), 2300422 (2023). https://doi.org/10.1002/adma.202300422
- J. Liu, X. Zhang, Y. Liu, M. Rodrigo, P.D. Loftus et al., Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14769–14778 (2020). https://doi.org/10.1073/pnas.2000207117
- R. Dong, L. Wang, C. Hang, Z. Chen, X. Liu et al., Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 17(14), 2006612 (2021). https://doi.org/10.1002/smll.202006612
- H. Chen, W. Yang, C. Zhang, M. Wu, W. Li et al., Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Res. 15(3), 2465–2471 (2022). https://doi.org/10.1007/s12274-021-3724-1
- W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906
- N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
- S. Yoon, H.-M. Sim, S. Cho, H. Ko, Y. Park et al., Highly stretchable, conductive polymer electrodes with a mixed AgPdCu and PTFE network interlayer for stretchable electronics. Adv. Mater. Interfaces 8(3), 2001500 (2021). https://doi.org/10.1002/admi.202001500
- Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin et al., Flexible silicon solar cells with high power-to-weight ratios. Nature 626(7997), 105–110 (2024). https://doi.org/10.1038/s41586-023-06948-y
- S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26(33), 5808–5814 (2014). https://doi.org/10.1002/adma.201400474
- J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
- H. Lee, S. Hong, J. Lee, Y.D. Suh, J. Kwon et al., Highly stretchable and transparent supercapacitor by Ag–Au core–shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 8(24), 15449–15458 (2016). https://doi.org/10.1021/acsami.6b04364
- H. Moon, H. Lee, J. Kwon, Y.D. Suh, D.K. Kim et al., Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 7, 41981 (2017). https://doi.org/10.1038/srep41981
- D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123(16), 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
- P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), e2002397 (2021). https://doi.org/10.1002/adma.202002397
- P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19(9), 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
- J. Yang, Q. Cao, X. Tang, J. Du, T. Yu et al., 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9(35), 19649–19658 (2021). https://doi.org/10.1039/d1ta02617h
- W. Zhang, Q. Liu, S. Chao, R. Liu, X. Cui et al., Ultrathin stretchable triboelectric nanogenerators improved by postcharging electrode material. ACS Appl. Mater. Interfaces 13(36), 42966–42976 (2021). https://doi.org/10.1021/acsami.1c13840
- Y. Yang, J. Han, J. Huang, J. Sun, Z.L. Wang et al., Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanop-based electrodes. Adv. Funct. Mater. 30(29), 1909652 (2020). https://doi.org/10.1002/adfm.201909652
- Y. Cui, F. Zhang, G. Chen, L. Yao, N. Zhang et al., A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv. Mater. 33(34), 2100221 (2021). https://doi.org/10.1002/adma.202100221
- L.-W. Lo, J. Zhao, K. Aono, W. Li, Z. Wen et al., Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano 16(8), 11792–11801 (2022). https://doi.org/10.1021/acsnano.2c04962
- P. Lu, J. Xu, X. Wang, W. Lian, C. Li et al., Gradient pore structured Ppy/PDMS conductive sponge for flexible pressure sensor. Chem. Eng. J. 488, 151049 (2024). https://doi.org/10.1016/j.cej.2024.151049
- T. Zhou, H. Yuk, F. Hu, J. Wu, F. Tian et al., 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22(7), 895–902 (2023). https://doi.org/10.1038/s41563-023-01569-2
- J. Woo, H. Lee, C. Yi, J. Lee, C. Won et al., Ultrastretchable helical conductive fibers using percolated Ag nanop networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv. Funct. Mater. 30(29), 1910026 (2020). https://doi.org/10.1002/adfm.201910026
- K. Kim, J. Kim, B.G. Hyun, S. Ji, S.-Y. Kim et al., Stretchable and transparent electrodes based on in-plane structures. Nanoscale 7(35), 14577–14594 (2015). https://doi.org/10.1039/c5nr04341g
- S.N. Obaid, R.T. Yin, J. Tian, Z. Chen, S.W. Chen et al., Multifunctional flexible biointerfaces for simultaneous colocalized optophysiology and electrophysiology. Adv. Funct. Mater. 30(24), 1910027 (2020). https://doi.org/10.1002/adfm.201910027
- K. Chen, L. Zhang, K. Wu, C. Yang, R. Wang et al., Highly robust and strain-resilient thin film conductors featuring brittle materials. Nano Lett. 23(14), 6619–6628 (2023). https://doi.org/10.1021/acs.nanolett.3c01781
- L. Meng, W. Wang, B. Xu, J. Qin, K. Zhang et al., Solution-processed flexible transparent electrodes for printable electronics. ACS Nano 17(5), 4180–4192 (2023). https://doi.org/10.1021/acsnano.2c10999
- S. Song, H. Hong, K.Y. Kim, K.K. Kim, J. Kim et al., Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17(21), 21443–21454 (2023). https://doi.org/10.1021/acsnano.3c06207
- P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
- P. Lee, J. Ham, J. Lee, S. Hong, S. Han et al., Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 24(36), 5671–5678 (2014). https://doi.org/10.1002/adfm.201400972
- J. Jung, H. Cho, R. Yuksel, D. Kim, H. Lee et al., Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale 11(43), 20356–20378 (2019). https://doi.org/10.1039/c9nr04193a
- X. Zhou, W. Cao, Flexible and stretchable carbon-based sensors and actuators for soft robots. Nanomaterials 13(2), 316 (2023). https://doi.org/10.3390/nano13020316
- W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023). https://doi.org/10.1016/j.nanoen.2022.108043
- S. Yu, H.-J. Jeon, Free-standing ultra-thin film with semi-embedded metal nanofiber web for high-performance flexible transparent electrodes. Mater. Lett. 348, 134737 (2023). https://doi.org/10.1016/j.matlet.2023.134737
- B. Feng, T. Sun, W. Wang, Y. Xiao, J. Huo et al., Venation-mimicking, ultrastretchable, room-temperature-attachable metal tapes for integrated electronic skins. Adv. Mater. 35(8), e2208568 (2023). https://doi.org/10.1002/adma.202208568
- Z.-Y. Chen, D. Yin, Y.-P. Wang, H.-Y. Zhang, S.-X. Jia et al., Highly transparent and stretchable organic light-emitting diodes with ultrathin metal films as double electrodes. Appl. Phys. Lett. 122(5), 051105 (2023). https://doi.org/10.1063/5.0132938
- J. Xu, Y. Li, H. Liu, J. Wang, J. Wang et al., Integration of patterned electrolyte film and sacrificial substrate serpentine electrode of low curvature for high stretch supercapacitor, physiological signal detection. Chem. Eng. J. 472, 144907 (2023). https://doi.org/10.1016/j.cej.2023.144907
- T. Sun, B. Feng, J. Huo, Y. Xiao, J. Peng et al., Switching ultra-stretchability and sensitivity in metal films for electronic skins: a pufferfish-inspired, interlayer regulation strategy. Mater. Horiz. 10(7), 2525–2534 (2023). https://doi.org/10.1039/D3MH00252G
- R. Muniramaiah, G. Maharana, J.M. Fernandes, M. Manivel Raja, D.B. Padmanaban et al., Sputter-deposited highly flexible noble metal multi-layer electrode viable for energy and luminescent devices. Surf. Interfaces 39, 102949 (2023). https://doi.org/10.1016/j.surfin.2023.102949
- S.-H. Sunwoo, S.I. Han, D. Jung, M. Kim, S. Nam et al., Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed Pt nanops for wearable and implantable device. ACS Nano 17(8), 7550–7561 (2023). https://doi.org/10.1021/acsnano.2c12659
- H. Cho, S. Chung, J. Jeong, Fabrication and characterization of low-sheet-resistance and stable stretchable electrodes employing metal and metal nanowire hybrid structure. Flex. Print. Electron. 6(4), 045013 (2021). https://doi.org/10.1088/2058-8585/ac3ffd
- M. Mohammed Ali, D. Maddipatla, B.B. Narakathu, A.A. Chlaihawi, S. Emamian et al., Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sens. Actuators A 274, 109–115 (2018). https://doi.org/10.1016/j.sna.2018.03.003
- I.M. Graz, D.P.J. Cotton, S.P. Lacour, Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94(7), 071902 (2009). https://doi.org/10.1063/1.3076103
- S.P. Lacour, D. Chan, S. Wagner, T. Li, Z. Suo, Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88(20), 204103 (2006). https://doi.org/10.1063/1.2201874
- Q. Liao, W. Si, J. Zhang, H. Sun, L. Qin, In situ silver nanonets for flexible stretchable electrodes. Int. J. Mol. Sci. 24(11), 9319 (2023). https://doi.org/10.3390/ijms24119319
- X. Chen, J. Chen, L. Huang, S. Nie, W. Xu et al., Highly conductive omnidirectionally stretchable 2D transparent copper mesh electrodes and applications in optoelectronic devices. Adv. Mater. Technol. 8(7), 2201406 (2023). https://doi.org/10.1002/admt.202201406
- Z. Chen, S. Yang, J. Huang, Y. Gu, W. Huang et al., Flexible, transparent and conductive metal mesh films with ultra-high FoM for stretchable heating and electromagnetic interference shielding. Nano-Micro Lett. 16(1), 92 (2024). https://doi.org/10.1007/s40820-023-01295-z
- M. Kim, P. Jae, C. Cho, K. Hwan, Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration. Adv. Funct. Mater. 33(36), 2303286 (2023). https://doi.org/10.1002/adfm.202303286
- M. Kim, H. Lim, S.H. Ko, Liquid metal patterning and unique properties for next-generation soft electronics. Adv. Sci. 10(6), 2205795 (2023). https://doi.org/10.1002/advs.202205795
- M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29(27), 1606425 (2017). https://doi.org/10.1002/adma.201606425
- Y.R. Jeong, G. Lee, H. Park, J.S. Ha, Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res. 52(1), 91–99 (2019). https://doi.org/10.1021/acs.accounts.8b00508
- J. Zhang, Q. Lu, Y. Li, T. Li, M.-H. Lu et al., An ultrastretchable reflective electrode based on a liquid metal film for deformable optoelectronics. ACS Mater. Lett. 3(8), 1104–1111 (2021). https://doi.org/10.1021/acsmaterialslett.1c00216
- X. Yi, Z. Yu, X. Niu, J. Shang, G. Mao et al., Intrinsically stretchable resistive switching memory enabled by combining a liquid metal–based soft electrode and a metal–organic framework insulator. Adv. Electron. Mater. 5(2), 1800655 (2019). https://doi.org/10.1002/aelm.201800655
- D. Wu, S. Wu, P. Narongdej, S. Duan, C. Chen et al., Fast and facile liquid metal printing via projection lithography for highly stretchable electronic circuits. Adv. Mater. 36(34), 2307632 (2024). https://doi.org/10.1002/adma.202307632
- R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23(42), 5292–5296 (2013). https://doi.org/10.1002/adfm.201203589
- C. Pan, K. Kumar, J. Li, E.J. Markvicka, P.R. Herman et al., Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30(12), 1706937 (2018). https://doi.org/10.1002/adma.201706937
- S. Chen, S. Fan, J. Qi, Z. Xiong, Z. Qiao et al., Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor. Adv. Mater. 35(5), 2208569 (2023). https://doi.org/10.1002/adma.202208569
- J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12(19), 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
- C. Xu, B. Ma, S. Yuan, C. Zhao, H. Liu, High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv. Electron. Mater. 6(1), 1900721 (2020). https://doi.org/10.1002/aelm.201900721
- B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29(28), 1901370 (2019). https://doi.org/10.1002/adfm.201901370
- B. Wang, J. Gao, J. Jiang, Z. Hu, K. Hjort et al., Liquid metal microscale deposition enabled high resolution and density epidermal microheater for localized ectopic expression in Drosophila. Adv. Mater. Technol. 7(3), 2100903 (2022). https://doi.org/10.1002/admt.202100903
- Z. Wang, Y. Wu, B. Zhu, Q. Chen, Y. Zhang et al., Self-patterning of highly stretchable and electrically conductive liquid metal conductors by direct-write super-hydrophilic laser-induced graphene and electroless copper plating. ACS Appl. Mater. Interfaces 15(3), 4713–4723 (2023). https://doi.org/10.1021/acsami.2c18814
- M. Kim, C. Cho, W. Shin, J.J. Park, J. Kim et al., Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces. NPJ Flex. Electron. 6, 99 (2022). https://doi.org/10.1038/s41528-022-00232-1
- N. Ochirkhuyag, Y. Isano, K. Inoue, H. Ota, Biphasic liquid metal mixtures in stretchable and flexible applications. Sens. Diagn. 2(2), 290–306 (2023). https://doi.org/10.1039/d2sd00214k
- Z. Zhou, Y. Yao, C. Zhang, Z. Deng, Q. Li et al., Liquid metal printed optoelectronics toward fast fabrication of customized and erasable patterned displays. Adv. Mater. Technol. 7(5), 2101010 (2022). https://doi.org/10.1002/admt.202101010
- G. Shin, B. Jeon, Y.-L. Park, Direct printing of sub-30 μm liquid metal patterns on three-dimensional surfaces for stretchable electronics. J. Micromech. Microeng. 30(3), 034001 (2020). https://doi.org/10.1088/1361-6439/ab6dbc
- S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong et al., Hydrogen-doped viscoplastic liquid metal microps for stretchable printed metal lines. Nat. Mater. 20(4), 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7
- G.-H. Lee, D.H. Lee, W. Jeon, J. Yoon, K. Ahn et al., Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics. Nat. Commun. 14, 4173 (2023). https://doi.org/10.1038/s41467-023-39928-x
- W. Kong, N.U.H. Shah, T.V. Neumann, M.H. Vong, P. Kotagama et al., Oxide-mediated mechanisms of gallium foam generation and stabilization during shear mixing in air. Soft Matter 16(25), 5801–5805 (2020). https://doi.org/10.1039/D0SM00503G
- H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou et al., Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl. Mater. Interfaces 12(12), 14125–14135 (2020). https://doi.org/10.1021/acsami.9b20430
- C. Cho, W. Shin, M. Kim, J. Bang, P. Won et al., Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and metallic nanowire backbone. Small 18(37), 2202841 (2022). https://doi.org/10.1002/smll.202202841
- Y. Chen, B. Ma, G. Chen, J. Zhang, D. Feng et al., Breakup-free and colorful liquid metal thin films via electrochemical oxidation. ACS Appl. Mater. Interfaces 15(44), 50898–50907 (2023). https://doi.org/10.1021/acsami.3c11966
- S. Liu, S.N. Reed, M.J. Higgins, M.S. Titus, R. Kramer-Bottiglio, Oxide rupture-induced conductivity in liquid metal nanops by laser and thermal sintering. Nanoscale 11(38), 17615–17629 (2019). https://doi.org/10.1039/c9nr03903a
- S. Han, K. Kim, S.Y. Lee, S. Moon, J.-Y. Lee, Stretchable electrodes based on over-layered liquid metal networks. Adv. Mater. 35(11), e2210112 (2023). https://doi.org/10.1002/adma.202210112
- K. Schlingman, G.M. D’Amaral, R.S. Carmichael, T.B. Carmichael, Intrinsically conductive liquid metal-elastomer composites for stretchable and flexible electronics. Adv. Mater. Technol. 8(1), 2200374 (2023). https://doi.org/10.1002/admt.202200374
- D.H. Lee, T. Lim, J. Pyeon, H. Park, S.-W. Lee et al., Self-mixed biphasic liquid metal composite with ultra-high stretchability and strain-insensitivity for neuromorphic circuits. Adv. Mater. 36(16), 2310956 (2024). https://doi.org/10.1002/adma.202310956
- V. Vallem, V. Aggarwal, M.D. Dickey, Stretchable liquid metal films with high surface area and strain invariant resistance. Adv. Mater. Technol. 8(5), 2201233 (2023). https://doi.org/10.1002/admt.202201233
- X. Gong, Z. Chu, G. Li, Y. Tan, Q. Dong et al., Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices. Macromol. Rapid Commun. 44(5), 2200795 (2023). https://doi.org/10.1002/marc.202200795
- X. Li, J. Wang, K. Wang, J. Yao, H. Bian et al., Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking. Chem. Eng. J. 390, 124442 (2020). https://doi.org/10.1016/j.cej.2020.124442
- H.J. Yang, J.-W. Lee, S.H. Seo, B. Jeong, B. Lee et al., Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 86, 106083 (2021). https://doi.org/10.1016/j.nanoen.2021.106083
- K. Liu, Y. Yao, T. Lv, H. Li, N. Li et al., Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power. Sources 446, 227355 (2020). https://doi.org/10.1016/j.jpowsour.2019.227355
- L. Lin, J. Chen, D. Liu, X. Li, G.G. Wallace et al., Engineering 2D materials: a viable pathway for improved electrochemical energy storage. Adv. Energy Mater. 10(45), 2002621 (2020). https://doi.org/10.1002/aenm.202002621
- J. Tang, Y. Wu, S. Ma, T. Yan, Z. Pan, Strain-sensing composite nanofiber filament and regulation mechanism of shoulder peaks based on carbon nanomaterial dispersion. ACS Appl. Mater. Interfaces 15(5), 7392–7404 (2023). https://doi.org/10.1021/acsami.2c20390
- P. Li, C. Wang, M. Li, X. Xuan, B. Zhou et al., Flexible silver/carbon nanotube-graphene oxide-polydimethylsiloxane electrode patch for electroencephalography language. Adv. Intell. Syst. 5(8), 2300018 (2023). https://doi.org/10.1002/aisy.202300018
- Q. Liu, S. Zhao, T. Hu, C. Jiang, B. Sheng, Superstretchable and linear-response strain sensors with carbon nanotubes ultrasonically assembled on silicone rubber film. IEEE Sens. J. 23(8), 8268–8276 (2023). https://doi.org/10.1109/JSEN.2023.3254139
- J. Jia, Y. Peng, X.-J. Zha, K. Ke, R.-Y. Bao et al., Seeding carbon nanotube microemulsions in elastomer films for hetero-structured porous stretchable composites. Carbon 214, 118379 (2023). https://doi.org/10.1016/j.carbon.2023.118379
- W. Wang, T. Zhang, H. Fang, Z. Zhang, Z. Peng et al., Structural and dimensional engineering of three-dimensional carbon nanotube/polydimethylsiloxane composite for stretchable sensor. Compos. Commun. 44, 101755 (2023). https://doi.org/10.1016/j.coco.2023.101755
- R. Zhang, S. Lv, Z. Li, Y. Dong, Y. Zhao et al., Low-power-consumption electronic skins based on carbon nanotube/graphene hybrid films for human–machine interactions and wearable devices. ACS Appl. Nano Mater. 6(13), 12338–12350 (2023). https://doi.org/10.1021/acsanm.3c02024
- J. Tahalyani, M.J. Akhtar, K.K. Kar, Flexible, stretchable, and lightweight hierarchical carbon-nanotube-decorated carbon fiber structures for microwave absorption. ACS Appl. Nano Mater. 6(13), 11888–11901 (2023). https://doi.org/10.1021/acsanm.3c01746
- C. Cao, Y. Zhou, S. Ubnoske, J. Zang, Y. Cao et al., Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 9(22), 1900618 (2019). https://doi.org/10.1002/aenm.201900618
- J. Zhang, M. Wang, Z. Yang, X. Zhang, Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 176, 139–147 (2021). https://doi.org/10.1016/j.carbon.2021.01.130
- Y. Chao, Y. Han, Z. Chen, D. Chu, Q. Xu et al., Multiscale structural design of 2D nanomaterials-based flexible electrodes for wearable energy storage applications. Adv. Sci. 11(9), 2305558 (2024). https://doi.org/10.1002/advs.202305558
- N. Kumar, S. Ghosh, D. Thakur, C.-P. Lee, P.K. Sahoo, Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. Nanoscale Adv. 5(12), 3146–3176 (2023). https://doi.org/10.1039/D3NA00094J
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
- H. Kim, H.L. Zhao, A.M. van der Zande, Stretchable thin-film transistors based on wrinkled graphene and MoS2 heterostructures. Nano Lett. 24(4), 1454–1461 (2024). https://doi.org/10.1021/acs.nanolett.3c05091
- M.M. Slepchenkov, P.V. Barkov, O.E. Glukhova, Island-type graphene-nanotube hybrid structures for flexible and stretchable electronics: in silico study. Micromachines 14(3), 671 (2023). https://doi.org/10.3390/mi14030671
- Y. Wu, H. Tang, L. Wang, Y. Zong, J. Jia et al., Temperature-insensitive stretchable conductors based on hierarchical double-layer graphene foams/PEDOT: PSS networks. Compos. Sci. Technol. 242, 110190 (2023). https://doi.org/10.1016/j.compscitech.2023.110190
- C.-H. Huang, H.-C. Wu, B.-F. Chen, Y.-C. Li, Graphene/silver nanowires/graphene sandwich composite for stretchable transparent electrodes and its fracture mechanism. Micromachines 12(5), 512 (2021). https://doi.org/10.3390/mi12050512
- S. Zhang, M. Sharifuzzamn, S.M. Sohel Rana, M. Abu Zahed, S. Sharma et al., Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics. Nano Res. 16(5), 7627–7637 (2023). https://doi.org/10.1007/s12274-023-5429-5
- J.-W. Li, J.C. Lee, K.-C. Chuang, C.-W. Chiu, Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Prog. Org. Coat. 176, 107378 (2023). https://doi.org/10.1016/j.porgcoat.2022.107378
- S.D. Kim, A. Sarkar, J.-H. Ahn, Graphene-based nanomaterials for flexible and stretchable batteries. Small 17(48), 2006262 (2021). https://doi.org/10.1002/smll.202006262
- L. Bai, Y. Xu, Y. Jiang, H. Chen, X. Li et al., Transfer method of crumpled graphene and its application for human strain monitoring. Sens. Actuat. A Phys. 260, 153–160 (2017). https://doi.org/10.1016/j.sna.2017.04.028
- R. Garg, N.R. Patra, S. Samal, S. Babbar, K. Parida, A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale 15(18), 8110–8133 (2023). https://doi.org/10.1039/D2NR05969J
- Z. Cao, Y.-B. Zhu, K. Chen, Q. Wang, Y. Li et al., Super-stretchable and high-energy micro-pseudocapacitors based on MXene embedded Ag nanops. Adv. Mater. 36(26), 2401271 (2024). https://doi.org/10.1002/adma.202401271
- C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
- Y. Liu, G. Tian, Y. Du, P. Shi, N. Li et al., Highly stretchable, low-hysteresis, and adhesive TA@MXene-composited organohydrogels for durable wearable sensors. Adv. Funct. Mater. 34(30), 2315813 (2024). https://doi.org/10.1002/adfm.202315813
- W.-T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma et al., A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020). https://doi.org/10.1002/adfm.202004181
- W. Chen, M. Luo, K. Yang, C. Liu, D. Zhang et al., MXene loaded onto clean wiper by a dot-matrix drop-casting method as a free-standing electrode for stretchable and flexible supercapacitors. Chem. Eng. J. 423, 130242 (2021). https://doi.org/10.1016/j.cej.2021.130242
- X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31(38), 2104928 (2021). https://doi.org/10.1002/adfm.202104928
- J. Zhou, B. Tang, D. Li, C.-W. You, Y.-Y. Zhao et al., Binary-1D/2D nanomaterial-functionalization toward strong, stretchable, and anti-freezing electrically conductive organohydrogels for self-powered operation monitoring of robotic hand. Chem. Eng. J. 478, 147317 (2023). https://doi.org/10.1016/j.cej.2023.147317
- Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang et al., Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14(3), 3576–3586 (2020). https://doi.org/10.1021/acsnano.9b10066
- M. Wang, S. Feng, C. Bai, K. Ji, J. Zhang et al., Ultrastretchable MXene microsupercapacitors. Small 19(21), 2300386 (2023). https://doi.org/10.1002/smll.202300386
- M. Jiang, D. Jiang, J. Wang, Y. Sun, J. Liu, Stretchable MXene based films towards achieving balanced electrical, mechanical and energy storage properties. Chem. Eng. J. 459, 141527 (2023). https://doi.org/10.1016/j.cej.2023.141527
- J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13(50), 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
- S. Lee, E.H. Kim, S. Yu, H. Kim, C. Park et al., Polymer-laminated Ti3C2TX MXene electrodes for transparent and flexible field-driven electronics. ACS Nano 15(5), 8940–8952 (2021). https://doi.org/10.1021/acsnano.1c01621
- S. Suh, K. Kim, J. Park, W. Kim, Ultrafast flexible PEDOT: PSS supercapacitor with outstanding volumetric capacitance for AC line filtering. Chem. Eng. J. 463, 142377 (2023). https://doi.org/10.1016/j.cej.2023.142377
- M. Kim, H.-K. Um, H. Choi, J.S. Lee, J. Kim et al., Stretchable and biocompatible transparent electrodes for multimodal biosignal sensing from exposed skin. Adv. Electron. Mater. 9(7), 2300075 (2023). https://doi.org/10.1002/aelm.202300075
- U. Boda, I. Petsagkourakis, V. Beni, P. Andersson Ersman, K. Tybrandt, Fully screen-printed stretchable organic electrochemical transistors. Adv. Mater. Technol. 8(16), 2300247 (2023). https://doi.org/10.1002/admt.202300247
- I.K. Moon, B. Ki, J. Oh, Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT: PSS/graphene electrode. Chem. Eng. J. 392, 123794 (2020). https://doi.org/10.1016/j.cej.2019.123794
- H. He, J. Ouyang, Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications. Acc. Mater. Res. 1(2), 146–157 (2020). https://doi.org/10.1021/accountsmr.0c00021
- S. Devaraju, A.K. Mohanty, D.-H. Won, H.-J. Paik, One-step fabrication of highly stable, durable, adhesion enhanced, flexible, transparent conducting films based on silver nanowires and neutralized PEDOT: PSS. Mater. Adv. 4(7), 1769–1776 (2023). https://doi.org/10.1039/D3MA00031A
- B. Adilbekova, A.D. Scaccabarozzi, H. Faber, M.I. Nugraha, V. Bruevich et al., Enhancing the electrical conductivity and long-term stability of PEDOT: PSS electrodes through sequential treatment with nitric acid and cesium chloride. Adv. Mater. 36(41), 2405094 (2024). https://doi.org/10.1002/adma.202405094
- S.J.K. O’Neill, M. Ashizawa, A.M. McLean, R.R. Serrano, T. Shimura et al., Supramolecular conductive hydrogels with homogeneous ionic and electronic transport. Adv. Mater. 37(26), 2415687 (2025). https://doi.org/10.1002/adma.202415687
- Y. Bai, W. Li, Y. Tie, Y. Kou, Y.-X. Wang et al., A stretchable polymer conductor through the mutual plasticization effect. Adv. Mater. 35(38), e2303245 (2023). https://doi.org/10.1002/adma.202303245
- D.-H. Kim, J.-H. Kim, J.-H. So, H.-J. Koo, Optimization of fabrication process of stretchable, transparent PEDOT: PSS electrodes for optoelectronic applications. Korean J. Chem. Eng. 41(2), 453–459 (2024). https://doi.org/10.1007/s11814-024-00051-2
- J. Yan, Y. Qin, W.-T. Fan, W.-T. Wu, S.-W. Lv et al., Plasticizer and catalyst co-functionalized PEDOT: PSS enables stretchable electrochemical sensing of living cells. Chem. Sci. 12(43), 14432–14440 (2021). https://doi.org/10.1039/D1SC04138J
- H. He, L. Zhang, X. Guan, H. Cheng, X. Liu et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11(29), 26185–26193 (2019). https://doi.org/10.1021/acsami.9b07325
- H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
- X. Fan, N.E. Stott, J. Zeng, Y. Li, J. Ouyang et al., PEDOT: PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 11(35), 18561–18591 (2023). https://doi.org/10.1039/D3TA03213B
- S. Hou, H. Chen, D. Lv, W. Li, X. Liu et al., Highly conductive inkjet-printed PEDOT: PSS film under cyclic stretching. ACS Appl. Mater. Interfaces 15(23), 28503–28515 (2023). https://doi.org/10.1021/acsami.3c03378
- E. Dauzon, Y. Lin, H. Faber, E. Yengel, X. Sallenave et al., Stretchable and transparent conductive PEDOT: PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 30(28), 2001251 (2020). https://doi.org/10.1002/adfm.202001251
- N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng et al., Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26(14), 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
- X. Fan, B. Xu, S. Liu, C. Cui, J. Wang et al., Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl. Mater. Interfaces 8(22), 14029–14036 (2016). https://doi.org/10.1021/acsami.6b01389
- Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3(3), e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
- J.Y. Oh, S. Kim, H.-K. Baik, U. Jeong, Conducting polymer dough for deformable electronics. Adv. Mater. 28(22), 4455–4461 (2016). https://doi.org/10.1002/adma.201502947
- J. Song, G. Ma, F. Qin, L. Hu, B. Luo et al., High-conductivity, flexible and transparent PEDOT: PSS electrodes for high performance semi-transparent supercapacitors. Polymers 12(2), 450 (2020). https://doi.org/10.3390/polym12020450
- N.A. Mohd Radzuan, A.B. Sulong, J. Sahari, A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy 42(14), 9262–9273 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.045
- M.L. Clingerman, J.A. King, K.H. Schulz, J.D. Meyers, Evaluation of electrical conductivity models for conductive polymer composites. J. Appl. Polym. Sci. 83(6), 1341–1356 (2002). https://doi.org/10.1002/app.10014
- P. Wang, T. Ding, Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J. Appl. Polym. Sci. 116(4), 2035–2039 (2010). https://doi.org/10.1002/app.31693
- X. Meng, L. Mo, S. Han, J. Zhao, Y. Pan et al., Pressure-temperature dual-parameter flexible sensors based on conformal printing of conducting polymer PEDOT: PSS on microstructured substrate. Adv. Mater. Interfaces 10(5), 2201927 (2023). https://doi.org/10.1002/admi.202201927
- N. Abhishek, A. Verma, A. Singh, T. Kumar, Metal-conducting polymer hybrid composites: a promising platform for electrochemical sensing. Inorg. Chem. Commun. 157, 111334 (2023). https://doi.org/10.1016/j.inoche.2023.111334
- H.D. Kyomuhimbo, U. Feleni, Electroconductive green metal-polyaniline nanocomposites: synthesis and application in sensors. Electroanalysis 35(2), e202100636 (2023). https://doi.org/10.1002/elan.202100636
- Y. Zhan, C. Santillo, Y. Meng, M. Lavorgna, Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. J. Mater. Chem. C 11(3), 859–892 (2023). https://doi.org/10.1039/D2TC03821H
- C. Li, K. Huang, T. Yuan, T. Cong, Z. Fan et al., Fabrication and conductive mechanism analysis of stretchable electrodes based on PDMS-Ag nanosheet composite with low resistance, stability, and durability. Nanomaterials 12(15), 2628 (2022). https://doi.org/10.3390/nano12152628
- Z. Sang, K. Ke, I. Manas-Zloczower, Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors. Compos. Part A Appl. Sci. Manuf. 121, 207–212 (2019). https://doi.org/10.1016/j.compositesa.2019.03.007
- D. Niu, W. Jiang, G. Ye, K. Wang, L. Yin et al., Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Mater. Res. Bull. 102, 92–99 (2018). https://doi.org/10.1016/j.materresbull.2018.02.005
- F. Dong, X. Yang, L. Guo, Y. Qian, P. Sun et al., A tough, healable, and recyclable conductive polyurethane/carbon nanotube composite. J. Colloid Interface Sci. 631, 239–248 (2023). https://doi.org/10.1016/j.jcis.2022.11.045
- R. Luo, X. Li, H. Li, B. Du, S. Zhou, A stretchable and printable PEDOT: PSS/PDMS composite conductors and its application to wearable strain sensor. Prog. Org. Coat. 162, 106593 (2022). https://doi.org/10.1016/j.porgcoat.2021.106593
- Y. Yang, G. Zhao, X. Cheng, H. Deng, Q. Fu, Stretchable and healable conductive elastomer based on PEDOT: PSS/natural rubber for self-powered temperature and strain sensing. ACS Appl. Mater. Interfaces 13(12), 14599–14611 (2021). https://doi.org/10.1021/acsami.1c00879
- Y. Kim, S. Yoo, J.-H. Kim, Water-based highly stretchable PEDOT: PSS/nonionic WPU transparent electrode. Polymers 14(5), 949 (2022). https://doi.org/10.3390/polym14050949
- F. Zhang, S. Wu, S. Peng, C.H. Wang, The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Compos. Sci. Technol. 165, 131–139 (2018). https://doi.org/10.1016/j.compscitech.2018.06.019
- K. Ke, V. Solouki Bonab, D. Yuan, I. Manas-Zloczower, Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52–58 (2018). https://doi.org/10.1016/j.carbon.2018.06.037
- Y. Cheng, R. Wang, J. Sun, L. Gao, Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. ACS Nano 9(4), 3887–3895 (2015). https://doi.org/10.1021/nn5070937
- Z.-Y. Wang, X. Sun, Y. Wang, J.-D. Liu, C. Zhang et al., A high-performance thermally conductive and electrically insulating silver@siloxane/graphene/epoxy composites at low filler content: fabrication, mechanism study of insulation and thermal conductivity enhancement. Ceram. Int. 49(2), 2871–2880 (2023). https://doi.org/10.1016/j.ceramint.2022.09.271
- L.M. Al-Harbi, Q.A. Alsulami, M.O. Farea, A. Rajeh, Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanops for flexible electronic devices. J. Mol. Struct. 1272, 134244 (2023). https://doi.org/10.1016/j.molstruc.2022.134244
- Y.-I. Choi, B.-U. Hwang, M. Meeseepong, A. Hanif, S. Ramasundaram et al., Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanops with high dispersion and fused junctions. Nanoscale 11(9), 3916–3924 (2019). https://doi.org/10.1039/C8NR10170A
- D. Jung, C. Lim, C. Park, Y. Kim, M. Kim et al., Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34(23), 2200980 (2022). https://doi.org/10.1002/adma.202200980
- D. Jung, Y. Kim, H. Lee, S. Jung, C. Park et al., Metal-like stretchable nanocomposite using locally-bundled nanowires for skin-mountable devices. Adv. Mater. 35(44), e2303458 (2023). https://doi.org/10.1002/adma.202303458
- M. Nie, B. Li, Y.-L. Hsieh, K.K. Fu, J. Zhou, Stretchable one-dimensional conductors for wearable applications. ACS Nano 16(12), 19810–19839 (2022). https://doi.org/10.1021/acsnano.2c08166
- B. Wang, K. Yang, H. Cheng, T. Ye, C. Wang, A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem. Eng. J. 404, 126393 (2021). https://doi.org/10.1016/j.cej.2020.126393
- Q. Hua, G. Shen, Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev. 53(3), 1316–1353 (2024). https://doi.org/10.1039/d3cs00918a
- T. Dey, I. Chauhan, S. Dutta, Flexible and stretchable electrodes in biofuel cells for sustainable power. ACS Appl. Electron. Mater. 6(6), 4016–4029 (2024). https://doi.org/10.1021/acsaelm.4c00607
- Y. Sun, W.G. Chong, Structural engineering of electrodes for flexible energy storage devices. Mater. Horiz. 10(7), 2373–2397 (2023). https://doi.org/10.1039/d3mh00045a
- B.S. Kim, H. Kwon, H.J. Kwon, J.B. Pyo, J. Oh et al., Buckling instability control of 1D nanowire networks for a large-area stretchable and transparent electrode. Adv. Funct. Mater. 30(21), 1910214 (2020). https://doi.org/10.1002/adfm.201910214
- W. Meng, M. Nie, Z. Liu, J. Zhou, Buckled fiber conductors with resistance stability under strain. Adv. Fiber Mater. 3(3), 149–159 (2021). https://doi.org/10.1007/s42765-021-00067-x
- K. Yoon, S. Lee, D. Shim, M. Lee, S. Cho et al., Strain-insensitive stretchable fiber conductors based on highly conductive buckled shells for wearable electronics. ACS Appl. Mater. Interfaces 15(14), 18281–18289 (2023). https://doi.org/10.1021/acsami.2c21959
- Z.-J. Wang, X. Kong, Y. Huang, J. Li, L. Bao et al., Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals. Nat. Mater. 23(3), 331–338 (2024). https://doi.org/10.1038/s41563-023-01632-y
- W. Hou, Q. Liao, S. Xie, Y. Song, L. Qin, Prospects and challenges of flexible stretchable electrodes for electronics. Coatings 12(5), 558 (2022). https://doi.org/10.3390/coatings12050558
- H. Kang, Q. Chen, Q. Ma, L. Zhang, Q. Yang et al., Coaxial spiral structural polymer/reduced graphene oxide composite as a high-performance anode for potassium ion batteries. J. Power. Sources 545, 231951 (2022). https://doi.org/10.1016/j.jpowsour.2022.231951
- Q. Liang, J. Wan, P. Ji, D. Zhang, N. Sheng et al., Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor. Chem. Eng. J. 427, 131904 (2022). https://doi.org/10.1016/j.cej.2021.131904
- B. Ma, J. Zhang, G. Chen, Y. Chen, C. Xu et al., Shape-programmable liquid metal fibers. Biosensors 13(1), 28 (2023). https://doi.org/10.3390/bios13010028
- Y.-L. Liu, W.-H. Huang, Stretchable electrochemical sensors for cell and tissue detection. Angew. Chem. Int. Ed. 60(6), 2757–2767 (2021). https://doi.org/10.1002/anie.202007754
- X. Gong, Q. Yang, C. Zhi, P.S. Lee, Stretchable energy storage devices: from materials and structural design to device assembly. Adv. Energy Mater. 11(15), 2003308 (2021). https://doi.org/10.1002/aenm.202003308
- L. Li, Z. Lou, W. Han, D. Chen, K. Jiang et al., Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2(3), 1600282 (2017). https://doi.org/10.1002/admt.201600282
- Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau et al., Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2(24), 9142–9149 (2014). https://doi.org/10.1039/c4ta00734d
- S. Yu, H. Yu, Capacitive stretchable strain sensor with low hysteresis based on wavy-shape interdigitated metal electrodes. IEEE Sens. J. 21(24), 27335–27342 (2021). https://doi.org/10.1109/JSEN.2021.3124517
- Y. Xue, Z. Wang, A. Dutta, X. Chen, P. Gao et al., Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. Chem. Eng. J. 465, 142774 (2023). https://doi.org/10.1016/j.cej.2023.142774
- C. Kang, S.-W. Kim, W. Kim, D. Choi, H.-K. Kim, Stretchable and flexible snake skin patterned electrodes for wearable electronics inspired by kirigami structure. Adv. Mater. Interfaces 10(11), 2202477 (2023). https://doi.org/10.1002/admi.202202477
- S.-H. Ha, J.-M. Kim, Boosted mechanosensitivity of stretchable conductive composite strain sensors based on kirigami cut design. J. Mater. Chem. C 11(37), 12616–12625 (2023). https://doi.org/10.1039/D3TC01751F
- H. Choi, Y. Luo, G. Olson, P. Won, J.H. Shin et al., Highly stretchable and strain-insensitive liquid metal based elastic kirigami electrodes (LM-eKE). Adv. Funct. Mater. 33(30), 2301388 (2023). https://doi.org/10.1002/adfm.202301388
- N. Swain, A. Tripathy, A. Thirumurugan, B. Saravanakumar, L. Schmidt-Mende et al., A brief review on stretchable, compressible, and deformable supercapacitor for smart devices. Chem. Eng. J. 446, 136876 (2022). https://doi.org/10.1016/j.cej.2022.136876
- H. Yin, Y. Zhu, K. Youssef, Z. Yu, Q. Pei, Structures and materials in stretchable electroluminescent devices. Adv. Mater. 34(22), 2106184 (2022). https://doi.org/10.1002/adma.202106184
- X. Li, J. Wang, One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2(1), 3–32 (2020). https://doi.org/10.1002/inf2.12040
- D.W. Kim, M. Kong, U. Jeong, Interface design for stretchable electronic devices. Adv. Sci. 8(8), 2004170 (2021). https://doi.org/10.1002/advs.202004170
- Y. Zhang, C. Liu, B. Jia, D. Ma, X. Tian et al., Kirigami-inspired, three-dimensional piezoelectric pressure sensors assembled by compressive buckling. NPJ Flex. Electron. 8, 23 (2024). https://doi.org/10.1038/s41528-024-00310-6
- J. Xu, Z. Xie, H. Yue, Y. Lu, F. Yang, A triboelectric multifunctional sensor based on the controlled buckling structure for motion monitoring and bionic tactile of soft robots. Nano Energy 104, 107845 (2022). https://doi.org/10.1016/j.nanoen.2022.107845
- G. Lee, M. Zarei, Q. Wei, Y. Zhu, S.G. Lee, Surface wrinkling for flexible and stretchable sensors. Small 18(42), 2203491 (2022). https://doi.org/10.1002/smll.202203491
- L. Zhao, P. Yang, S. Shi, X. Wang, S. Yu, Highly adaptable strain capacitive sensors with exceptional selectivity using spontaneous micrometer-pyramid electrodes. ACS Appl. Electron. Mater. 5(2), 977–984 (2023). https://doi.org/10.1021/acsaelm.2c01504
- M. Jiang, D. Jiang, X. Cao, J. Wang, Y. Sun et al., Scalable 2D/2D assembly of ultrathin MOF/MXene sheets for stretchable and bendable energy storage devices. Adv. Funct. Mater. 34(11), 2312692 (2024). https://doi.org/10.1002/adfm.202312692
- C.A. Silva, J. lv, L. Yin, I. Jeerapan, G. Innocenzi et al., Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30(30), 2002041 (2020). https://doi.org/10.1002/adfm.202002041
- Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7(1), 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y
- S. Jiang, J. Liu, W. Xiong, Z. Yang, L. Yin et al., A snakeskin-inspired, soft-hinge kirigami metamaterial for self-adaptive conformal electronic armor. Adv. Mater. 34(31), e2204091 (2022). https://doi.org/10.1002/adma.202204091
- S. Wu, Z. Cui, G.L. Baker, S. Mahendran, Z. Xie et al., A biaxially stretchable and self-sensing textile heater using silver nanowire composite. ACS Appl. Mater. Interfaces 13(49), 59085–59091 (2021). https://doi.org/10.1021/acsami.1c17651
- H.M. Lee, M.H. Kim, Y. Jin, Y. Jang, P.S. Lee et al., Hierarchically engineered unibody Au mesh for stretchable and transparent conductors. J. Mater. Chem. A 11(8), 4220–4229 (2023). https://doi.org/10.1039/d2ta08971h
- J. Han, J.-Y. Lee, J. Lee, J.-S. Yeo, Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Adv. Mater. 30(3), 1704626 (2018). https://doi.org/10.1002/adma.201704626
- S. Zhang, H. Liu, J. Yu, B. Li, B. Ding, Multi-functional flexible 2D carbon nanostructured networks. Nat. Commun. 11(1), 5134 (2020). https://doi.org/10.1038/s41467-020-18977-6
- Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen et al., Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 249, 110512 (2024). https://doi.org/10.1016/j.compscitech.2024.110512
- W. Zhou, Y. Li, P. Li, J. Chen, R. Xu et al., Metal mesh as a transparent omnidirectional strain sensor. Adv. Mater. Technol. 4(4), 1800698 (2019). https://doi.org/10.1002/admt.201800698
- B. Lee, H. Cho, S. Moon, Y. Ko, Y.-S. Ryu et al., Omnidirectional printing of elastic conductors for three-dimensional stretchable electronics. Nat. Electron. 6(4), 307–318 (2023). https://doi.org/10.1038/s41928-023-00949-5
- L. Lyu, W. Hooch Antink, Y.S. Kim, C.W. Kim, T. Hyeon et al., Recent development of flexible and stretchable supercapacitors using transition metal compounds as electrode materials. Small 17(36), 2101974 (2021). https://doi.org/10.1002/smll.202101974
- Y. Zheng, X. Huang, J. Chen, K. Wu, J. Wang et al., A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications. Materials 14(14), 3911 (2021). https://doi.org/10.3390/ma14143911
- A. John, L. Benny, A.R. Cherian, S.Y. Narahari, A. Varghese et al., Electrochemical sensors using conducting polymer/noble metal nanop nanocomposites for the detection of various analytes: a review. J. Nanostruct. Chem. 11(1), 1–31 (2021). https://doi.org/10.1007/s40097-020-00372-8
- H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015). https://doi.org/10.1038/ncomms7503
- C. Cho, P. Kang, A. Taqieddin, Y. Jing, K. Yong et al., Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 4(2), 126–133 (2021). https://doi.org/10.1038/s41928-021-00538-4
- C. Zhang, C. Ji, Y.-B. Park, L.J. Guo, Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Adv. Opt. Mater. 9(3), 2001298 (2021). https://doi.org/10.1002/adom.202001298
- X. Lu, Y. Zhang, Z. Zheng, Metal-based flexible transparent electrodes: challenges and recent advances. Adv. Electron. Mater. 7(5), 2001121 (2021). https://doi.org/10.1002/aelm.202001121
- D. Wang, Y. Zhang, X. Lu, Z. Ma, C. Xie et al., Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 47(12), 4611–4641 (2018). https://doi.org/10.1039/c7cs00192d
- C. Ji, D. Liu, C. Zhang, L.J. Guo, Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100. Nat. Commun. 11(1), 3367 (2020). https://doi.org/10.1038/s41467-020-17107-6
- S. Wu, S. Peng, Y. Yu, C.-H. Wang, Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 5(2), 1900908 (2020). https://doi.org/10.1002/admt.201900908
- H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces. Adv. Sci. 8(2), 2001938 (2020). https://doi.org/10.1002/advs.202001938
- G. Chen, N. Matsuhisa, Z. Liu, D. Qi, P. Cai et al., Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 30(21), 1800129 (2018). https://doi.org/10.1002/adma.201800129
- Y. Jeon, D. Lee, H. Yoo, Recent advances in metal-oxide thin-film transistors: flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications. Coatings 12(2), 204 (2022). https://doi.org/10.3390/coatings12020204
- G. Xu, Y. Li, Metal-microstructure based flexible transparent electrodes and their applications in electronic devices. Nano Select 1(2), 169–182 (2020). https://doi.org/10.1002/nano.202000006
- F.-T. Zhang, L. Xu, J.-H. Chen, B. Zhao, X.-Z. Fu et al., Electroless deposition metals on poly(dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials. ACS Appl. Mater. Interfaces 10(2), 2075–2082 (2018). https://doi.org/10.1021/acsami.7b15726
- D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011). https://doi.org/10.1038/nnano.2011.184
- H. Min, S. Baik, J. Kim, J. Lee, B.-G. Bok et al., Tough carbon nanotube-implanted bioinspired three-dimensional electrical adhesive for isotropically stretchable water-repellent bioelectronics. Adv. Funct. Mater. 32(8), 2107285 (2022). https://doi.org/10.1002/adfm.202107285
- A. Nag, M.E.E. Alahi, S.C. Mukhopadhyay, Z. Liu, Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4), 1261 (2021). https://doi.org/10.3390/s21041261
- Y. Liu, T. Wang, J. Wang, X. Chen, J. Chen et al., A super-stretchable conductive film with strain-insensitive conductivity for stretchable EMI shielding materials and wearable capacitive strain sensors. Compos. Sci. Technol. 258, 110877 (2024). https://doi.org/10.1016/j.compscitech.2024.110877
- C. Rong, T. Su, Z. Li, T. Chu, M. Zhu et al., Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nat. Commun. 15, 1566 (2024). https://doi.org/10.1038/s41467-024-45657-6
- H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
- I. Hussain, S. Sahoo, M.S. Javed, J. Lu, K. Zhang, Flexible 2D MXenes for wearable next-generation energy storage applications. Mater. Sci. Eng. R. Rep. 160, 100814 (2024). https://doi.org/10.1016/j.mser.2024.100814
- N. Liu, A. Chortos, T. Lei, L. Jin, T.R. Kim et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3(9), e1700159 (2017). https://doi.org/10.1126/sciadv.1700159
- M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22(2), 421–428 (2012). https://doi.org/10.1002/adfm.201101775
- J. Ouyang, Application of intrinsically conducting polymers in flexible electronics. SmartMat 2(3), 263–285 (2021). https://doi.org/10.1002/smm2.1059
- S. Peng, Y. Yu, S. Wu, C.-H. Wang, Conductive polymer nanocomposites for stretchable electronics: material selection, design, and applications. ACS Appl. Mater. Interfaces 13(37), 43831–43854 (2021). https://doi.org/10.1021/acsami.1c15014
- P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13(1), 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
- D. Wu, L. Weng, X. Zhang, L. Guan, Z. Wu, Flexible and wearable piezoresistive sensors based on double wrinkled layers for motion monitoring and human physiological signal monitoring. ACS Appl. Electron. Mater. 5(11), 6433–6445 (2023). https://doi.org/10.1021/acsaelm.3c01301
- Y. Liang, J. Gao, Q. Wang, N. Lu, Y.-C. Zhang et al., Self-healing micro-supercapacitor based on robust liquid metal-CNT-PEDOT: PSS film for wireless powering of integrated strain sensor. Small Methods 9(4), 2401581 (2025). https://doi.org/10.1002/smtd.202401581
- Y. Tian, M. Huang, Y. Wang, Y. Zheng, R. Yin et al., Ultra-stretchable, sensitive and breathable electronic skin based on TPU electrospinning fibrous membrane with microcrack structure for human motion monitoring and self-powered application. Chem. Eng. J. 480, 147899 (2024). https://doi.org/10.1016/j.cej.2023.147899
- J. Kim, D. Won, T.H. Kim, C.-Y. Kim, S.H. Ko, Rapid prototyping and facile customization of conductive hydrogel bioelectronics based on all laser process. Biosens. Bioelectron. 258, 116327 (2024). https://doi.org/10.1016/j.bios.2024.116327
- S. Duan, Z. Wang, L. Zhang, J. Liu, C. Li, Three-dimensional highly stretchable conductors from elastic fiber mat with conductive polymer coating. ACS Appl. Mater. Interfaces 9(36), 30772–30778 (2017). https://doi.org/10.1021/acsami.7b08453
- J.H. Shin, J.Y. Choi, K. June, H. Choi, T.-I. Kim, Polymeric conductive adhesive-based ultrathin epidermal electrodes for long-term monitoring of electrophysiological signals. Adv. Mater. 36(23), 2313157 (2024). https://doi.org/10.1002/adma.202313157
- F. Nie, Y.-L. Gu, L. Zhao, L.-T. Li, F.-X. Shen et al., Construction of conductive polymer coatings onto flexible PDMS foam composites with exceptional mechanical robustness for sensitive strain sensing applications. Adv. Sensor Res. 3(4), 2300140 (2024). https://doi.org/10.1002/adsr.202300140
- L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31(10), 1806133 (2019). https://doi.org/10.1002/adma.201806133
- H. He, R. Chen, S. Yue, S. Yu, J. Wei et al., Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Sci. Adv. 8(47), eabq8160 (2022). https://doi.org/10.1126/sciadv.abq8160
- Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
- C. Li, J. Mu, Y. Song, S. Chen, F. Xu, Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces 15(7), 9820–9829 (2023). https://doi.org/10.1021/acsami.2c20464
- Y. Li, M. Shan, J. Peng, L. Lan, L. Wei et al., A highly stretchable and conductive continuous composite filament with buckled polypyrrole coating for stretchy electronic textiles. Appl. Surf. Sci. 610, 155515 (2023). https://doi.org/10.1016/j.apsusc.2022.155515
- D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7(6), 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
- Y. Hao, Q. Yan, H. Liu, X. He, P. Zhang et al., A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare. Adv. Funct. Mater. 33(44), 2303881 (2023). https://doi.org/10.1002/adfm.202303881
- E. Bertran-Serra, S. Rodriguez-Miguel, Z. Li, Y. Ma, G. Farid et al., Advancements in plasma-enhanced chemical vapor deposition for producing vertical graphene nanowalls. Nanomaterials 13(18), 2533 (2023). https://doi.org/10.3390/nano13182533
- T. Cheng, Y.-Z. Zhang, S. Wang, Y.-L. Chen, S.-Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021). https://doi.org/10.1002/adfm.202101303
- L.-W. Lo, J. Zhao, H. Wan, Y. Wang, S. Chakrabartty et al., An inkjet-printed PEDOT: PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces 13(18), 21693–21702 (2021). https://doi.org/10.1021/acsami.1c00537
- W. Wang, J. Cao, J. Yu, F. Tian, X. Luo et al., Flexible supercapacitors based on stretchable conducting polymer electrodes. Polymers 15(8), 1856 (2023). https://doi.org/10.3390/polym15081856
- H. Duzcukoglu, H.B. Kaybal, R. Asmatulu, Enhancing the coating durability and electrical stability of fiber composites with SPEEK/PEDOT: PSS permanent coatings: a novel approach. Polym. Degrad. Stab. 228, 110908 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110908
- J. Zhuang, X. Jiang, J. Wang, C. Yang, H. Yang, Stretchable electrode composed of carbon nanotube-SBS hybrid film and its application on biosensor. J. Electrochem. Soc. 164(14), H1028–H1032 (2017). https://doi.org/10.1149/2.0741714jes
- L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 161108 (2009). https://doi.org/10.1063/1.3114463
- S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 2000919 (2020). https://doi.org/10.1002/adma.202000919
- M. Kim, H. Lee, S. Nam, D.-H. Kim, G.D. Cha, Soft bioelectronics using nanomaterials and nanostructures for neuroengineering. Acc. Chem. Res. 57(11), 1633–1647 (2024). https://doi.org/10.1021/acs.accounts.4c00163
- K.-K. Sheng, Y.-F. Lu, W.-T. Fan, Y.-L. Liu, Flexible and stretchable electrodes for in vivo electrophysiological and electrochemical monitoring. Chin. J. Chem. 42(13), 1523–1545 (2024). https://doi.org/10.1002/cjoc.202300652
- Y. Li, Y. Sun, Q. Lu, Y. Lu, D. Kong, Recent advances in stretchable and permeable electrodes for epidermal electronics. Adv. Sens. Res. 3(6), 2300195 (2024). https://doi.org/10.1002/adsr.202300195
- G.K. Sharma, N.R. James, Highly flexible, PEDOT: PSS-polyvinylpyrrolidone coated carbon nanofiber-polydimethylsiloxane composite for electromagnetic interference shielding. Synth. Met. 296, 117376 (2023). https://doi.org/10.1016/j.synthmet.2023.117376
- S. Li, J. Tang, Y. Liu, J. Hua, J. Liu, Electrostatically self-assembled three-dimensional conductive network for highly sensitive and reliable skin-like strain sensor. Compos. Sci. Technol. 249, 110493 (2024). https://doi.org/10.1016/j.compscitech.2024.110493
- K. Xu, L. Wang, W. Shan, K. Gao, J. Wang et al., Highly stretchable and self-adhesive wearable biosensor based on nanozyme-catalyzed conductive hydrogels. ACS Appl. Polym. Mater. 6(4), 2188–2200 (2024). https://doi.org/10.1021/acsapm.3c02623
- R. Luo, H. Li, B. Du, S. Zhou, Y. Zhu, A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Org. Electron. 76, 105451 (2020). https://doi.org/10.1016/j.orgel.2019.105451
- J. Ahn, S. Noh, D. Kim, B.-S. Kim, S. Kim et al., Structural conductive carbon nanotube nanocomposites for stretchable electronics. Mater. Res. Express 10(3), 036304 (2023). https://doi.org/10.1088/2053-1591/acc1c6
- H.V. Padi, N. Nanattil, S. Sulaiman, R.M. Ramakrishnan, B.N. Narayanan, High-quality graphene devoid of oxygen functionalities as conductive ink for flexible electronics and bendable all-solid-state supercapacitors. J. Energy Storage 86, 111297 (2024). https://doi.org/10.1016/j.est.2024.111297
- X. Qiao, Y. Zhang, L. Wang, S. Zhou, X. Pang, Simple preparation of lignosulfonate stabilized eutectic gallium/indium liquid metal nanodroplets through ball milling process. Int. J. Biol. Macromol. 254, 127809 (2024). https://doi.org/10.1016/j.ijbiomac.2023.127809
- P. Xu, S. Wang, A. Lin, H.-K. Min, Z. Zhou et al., Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14(1), 623 (2023). https://doi.org/10.1038/s41467-023-36214-8
- J.-W. Li, H.-F. Chen, Y.-Z. Liu, J.-H. Wang, M.-C. Lu et al., Photocurable 3D-printed AgNPs/Graphene/Polymer nanocomposites with high flexibility and stretchability for ECG and EMG smart clothing. Chem. Eng. J. 484, 149452 (2024). https://doi.org/10.1016/j.cej.2024.149452
- Y. Lu, Y. Chen, H. Sun, F. Deng, C. Mei et al., Resilient, environment tolerant and biocompatible electroluminescent devices with enhanced luminance based on compliant and self-adhesive electrodes. npj Flex. Electron. 8, 37 (2024). https://doi.org/10.1038/s41528-024-00322-2
- W. Chen, S. Jiang, H. Xiao, X. Zhou, X. Xu et al., Graphene modified
References
J. Cao, X. Liu, J. Qiu, Z. Yue, Y. Li et al., Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion. Nat. Commun. 15(1), 1116 (2024). https://doi.org/10.1038/s41467-024-45393-x
W.B. Han, G.-J. Ko, K.-G. Lee, D. Kim, J.H. Lee et al., Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023). https://doi.org/10.1038/s41467-023-38040-4
Y. Li, N. Li, W. Liu, A. Prominski, S. Kang et al., Achieving tissue-level softness on stretchable electronics through a generalizable soft interlayer design. Nat. Commun. 14(1), 4488 (2023). https://doi.org/10.1038/s41467-023-40191-3
Y. Shao, J. Yan, Y. Zhi, C. Li, Q. Li et al., A universal packaging substrate for mechanically stable assembly of stretchable electronics. Nat. Commun. 15, 6106 (2024). https://doi.org/10.1038/s41467-024-50494-8
D. Zhong, C. Wu, Y. Jiang, Y. Yuan, M.-G. Kim et al., High-speed and large-scale intrinsically stretchable integrated circuits. Nature 627(8003), 313–320 (2024). https://doi.org/10.1038/s41586-024-07096-7
S.-H. Kang, J.-W. Jo, J.M. Lee, S. Moon, S.B. Shin et al., Full integration of highly stretchable inorganic transistors and circuits within molecular-tailored elastic substrates on a large scale. Nat. Commun. 15(1), 2814 (2024). https://doi.org/10.1038/s41467-024-47184-w
Y. Bian, H. Shi, Q. Yuan, Y. Zhu, Z. Lin et al., Patterning techniques based on metallized electrospun nanofibers for advanced stretchable electronics. Adv. Sci. 11(26), 2309735 (2024). https://doi.org/10.1002/advs.202309735
J. Jang, H. Choo, S. Lee, J. Song, K. Park et al., Reconfigurable assembly of self-healing stretchable transistors and circuits for integrated systems. Nat. Electron. 8(6), 474–484 (2025). https://doi.org/10.1038/s41928-025-01389-z
G.-H. Lee, Y. Lee, H. Seo, K. Jo, J. Yeo et al., Meter-scale heterostructure printing for high-toughness fiber electrodes in intelligent digital apparel. Nat. Commun. 16(1), 4320 (2025). https://doi.org/10.1038/s41467-025-59703-4
H. Seo, G.-H. Lee, J. Park, D.-Y. Kim, Y. Son et al., Self-packaged stretchable printed circuits with ligand-bound liquid metal ps in elastomer. Nat. Commun. 16, 4944 (2025). https://doi.org/10.1038/s41467-025-60118-4
R. Lin, C. Jiang, S. Achavananthadith, X. Yang, H.P.A. Ali et al., Soft electronics based on p engulfment printing. Nat. Electron. (2025). https://doi.org/10.1038/s41928-024-01291-0
O. Gul, M. Song, C.-Y. Gu, J. Ahn, K. Lee et al., Bioinspired interfacial engineering for highly stretchable electronics. Nat. Commun. 16, 1337 (2025). https://doi.org/10.1038/s41467-025-56502-9
C.-C. Kim, H.-H. Lee, K.H. Oh, J.-Y. Sun, Highly stretchable, transparent ionic touch panel. Science 353(6300), 682–687 (2016). https://doi.org/10.1126/science.aaf8810
J.-Y. Sun, C. Keplinger, G.M. Whitesides, Z. Suo, Ionic skin. Adv. Mater. 26(45), 7608–7614 (2014). https://doi.org/10.1002/adma.201403441
O.Y. Kweon, S.K. Samanta, Y. Won, J.H. Yoo, J.H. Oh, Stretchable and self-healable conductive hydrogels for wearable multimodal touch sensors with thermoresponsive behavior. ACS Appl. Mater. Interfaces 11(29), 26134–26143 (2019). https://doi.org/10.1021/acsami.9b04440
N. Matsuhisa, X. Chen, Z. Bao, T. Someya, Materials and structural designs of stretchable conductors. Chem. Soc. Rev. 48(11), 2946–2966 (2019). https://doi.org/10.1039/c8cs00814k
S. Liu, D.S. Shah, R. Kramer-Bottiglio, Highly stretchable multilayer electronic circuits using biphasic gallium-indium. Nat. Mater. 20(6), 851–858 (2021). https://doi.org/10.1038/s41563-021-00921-8
D.C. Kim, H.J. Shim, W. Lee, J.H. Koo, D.-H. Kim, Material-based approaches for the fabrication of stretchable electronics. Adv. Mater. 32(15), 1902743 (2020). https://doi.org/10.1002/adma.201902743
A.M. Díez-Pascual, A. Rahdar, Composites of vegetable oil-based polymers and carbon nanomaterials. Macromol 1(4), 276–292 (2021). https://doi.org/10.3390/macromol1040019
M. Dadashi Firouzjaei, S.K. Nemani, M. Sadrzadeh, E.K. Wujcik, M. Elliott et al., Life-cycle assessment of Ti3C2Tx MXene synthesis. Adv. Mater. 35(31), 2300422 (2023). https://doi.org/10.1002/adma.202300422
J. Liu, X. Zhang, Y. Liu, M. Rodrigo, P.D. Loftus et al., Intrinsically stretchable electrode array enabled in vivo electrophysiological mapping of atrial fibrillation at cellular resolution. Proc. Natl. Acad. Sci. U. S. A. 117(26), 14769–14778 (2020). https://doi.org/10.1073/pnas.2000207117
R. Dong, L. Wang, C. Hang, Z. Chen, X. Liu et al., Printed stretchable liquid metal electrode arrays for in vivo neural recording. Small 17(14), 2006612 (2021). https://doi.org/10.1002/smll.202006612
H. Chen, W. Yang, C. Zhang, M. Wu, W. Li et al., Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring. Nano Res. 15(3), 2465–2471 (2022). https://doi.org/10.1007/s12274-021-3724-1
W. Zhou, S. Yao, H. Wang, Q. Du, Y. Ma et al., Gas-permeable, ultrathin, stretchable epidermal electronics with porous electrodes. ACS Nano 14(5), 5798–5805 (2020). https://doi.org/10.1021/acsnano.0c00906
N. Matsuhisa, S. Niu, S.J.K. O’Neill, J. Kang, Y. Ochiai et al., High-frequency and intrinsically stretchable polymer diodes. Nature 600(7888), 246–252 (2021). https://doi.org/10.1038/s41586-021-04053-6
S. Yoon, H.-M. Sim, S. Cho, H. Ko, Y. Park et al., Highly stretchable, conductive polymer electrodes with a mixed AgPdCu and PTFE network interlayer for stretchable electronics. Adv. Mater. Interfaces 8(3), 2001500 (2021). https://doi.org/10.1002/admi.202001500
Y. Li, X. Ru, M. Yang, Y. Zheng, S. Yin et al., Flexible silicon solar cells with high power-to-weight ratios. Nature 626(7997), 105–110 (2024). https://doi.org/10.1038/s41586-023-06948-y
S. Han, S. Hong, J. Ham, J. Yeo, J. Lee et al., Fast plasmonic laser nanowelding for a Cu-nanowire percolation network for flexible transparent conductors and stretchable electronics. Adv. Mater. 26(33), 5808–5814 (2014). https://doi.org/10.1002/adma.201400474
J. Jung, H. Lee, I. Ha, H. Cho, K.K. Kim et al., Highly stretchable and transparent electromagnetic interference shielding film based on silver nanowire percolation network for wearable electronics applications. ACS Appl. Mater. Interfaces 9(51), 44609–44616 (2017). https://doi.org/10.1021/acsami.7b14626
H. Lee, S. Hong, J. Lee, Y.D. Suh, J. Kwon et al., Highly stretchable and transparent supercapacitor by Ag–Au core–shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 8(24), 15449–15458 (2016). https://doi.org/10.1021/acsami.6b04364
H. Moon, H. Lee, J. Kwon, Y.D. Suh, D.K. Kim et al., Ag/Au/polypyrrole core-shell nanowire network for transparent, stretchable and flexible supercapacitor in wearable energy devices. Sci. Rep. 7, 41981 (2017). https://doi.org/10.1038/srep41981
D. Won, J. Bang, S.H. Choi, K.R. Pyun, S. Jeong et al., Transparent electronics for wearable electronics application. Chem. Rev. 123(16), 9982–10078 (2023). https://doi.org/10.1021/acs.chemrev.3c00139
P. Won, K.K. Kim, H. Kim, J.J. Park, I. Ha et al., Transparent soft actuators/sensors and camouflage skins for imperceptible soft robotics. Adv. Mater. 33(19), e2002397 (2021). https://doi.org/10.1002/adma.202002397
P. Won, J.J. Park, T. Lee, I. Ha, S. Han et al., Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 19(9), 6087–6096 (2019). https://doi.org/10.1021/acs.nanolett.9b02014
J. Yang, Q. Cao, X. Tang, J. Du, T. Yu et al., 3D-printed highly stretchable conducting polymer electrodes for flexible supercapacitors. J. Mater. Chem. A 9(35), 19649–19658 (2021). https://doi.org/10.1039/d1ta02617h
W. Zhang, Q. Liu, S. Chao, R. Liu, X. Cui et al., Ultrathin stretchable triboelectric nanogenerators improved by postcharging electrode material. ACS Appl. Mater. Interfaces 13(36), 42966–42976 (2021). https://doi.org/10.1021/acsami.1c13840
Y. Yang, J. Han, J. Huang, J. Sun, Z.L. Wang et al., Stretchable energy-harvesting tactile interactive interface with liquid-metal-nanop-based electrodes. Adv. Funct. Mater. 30(29), 1909652 (2020). https://doi.org/10.1002/adfm.201909652
Y. Cui, F. Zhang, G. Chen, L. Yao, N. Zhang et al., A stretchable and transparent electrode based on PEGylated silk fibroin for in vivo dual-modal neural-vascular activity probing. Adv. Mater. 33(34), 2100221 (2021). https://doi.org/10.1002/adma.202100221
L.-W. Lo, J. Zhao, K. Aono, W. Li, Z. Wen et al., Stretchable sponge electrodes for long-term and motion-artifact-tolerant recording of high-quality electrophysiologic signals. ACS Nano 16(8), 11792–11801 (2022). https://doi.org/10.1021/acsnano.2c04962
P. Lu, J. Xu, X. Wang, W. Lian, C. Li et al., Gradient pore structured Ppy/PDMS conductive sponge for flexible pressure sensor. Chem. Eng. J. 488, 151049 (2024). https://doi.org/10.1016/j.cej.2024.151049
T. Zhou, H. Yuk, F. Hu, J. Wu, F. Tian et al., 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces. Nat. Mater. 22(7), 895–902 (2023). https://doi.org/10.1038/s41563-023-01569-2
J. Woo, H. Lee, C. Yi, J. Lee, C. Won et al., Ultrastretchable helical conductive fibers using percolated Ag nanop networks encapsulated by elastic polymers with high durability in omnidirectional deformations for wearable electronics. Adv. Funct. Mater. 30(29), 1910026 (2020). https://doi.org/10.1002/adfm.201910026
K. Kim, J. Kim, B.G. Hyun, S. Ji, S.-Y. Kim et al., Stretchable and transparent electrodes based on in-plane structures. Nanoscale 7(35), 14577–14594 (2015). https://doi.org/10.1039/c5nr04341g
S.N. Obaid, R.T. Yin, J. Tian, Z. Chen, S.W. Chen et al., Multifunctional flexible biointerfaces for simultaneous colocalized optophysiology and electrophysiology. Adv. Funct. Mater. 30(24), 1910027 (2020). https://doi.org/10.1002/adfm.201910027
K. Chen, L. Zhang, K. Wu, C. Yang, R. Wang et al., Highly robust and strain-resilient thin film conductors featuring brittle materials. Nano Lett. 23(14), 6619–6628 (2023). https://doi.org/10.1021/acs.nanolett.3c01781
L. Meng, W. Wang, B. Xu, J. Qin, K. Zhang et al., Solution-processed flexible transparent electrodes for printable electronics. ACS Nano 17(5), 4180–4192 (2023). https://doi.org/10.1021/acsnano.2c10999
S. Song, H. Hong, K.Y. Kim, K.K. Kim, J. Kim et al., Photothermal lithography for realizing a stretchable multilayer electronic circuit using a laser. ACS Nano 17(21), 21443–21454 (2023). https://doi.org/10.1021/acsnano.3c06207
P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24(25), 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
P. Lee, J. Ham, J. Lee, S. Hong, S. Han et al., Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 24(36), 5671–5678 (2014). https://doi.org/10.1002/adfm.201400972
J. Jung, H. Cho, R. Yuksel, D. Kim, H. Lee et al., Stretchable/flexible silver nanowire electrodes for energy device applications. Nanoscale 11(43), 20356–20378 (2019). https://doi.org/10.1039/c9nr04193a
X. Zhou, W. Cao, Flexible and stretchable carbon-based sensors and actuators for soft robots. Nanomaterials 13(2), 316 (2023). https://doi.org/10.3390/nano13020316
W. Akram, Q. Chen, G. Xia, J. Fang, A review of single electrode triboelectric nanogenerators. Nano Energy 106, 108043 (2023). https://doi.org/10.1016/j.nanoen.2022.108043
S. Yu, H.-J. Jeon, Free-standing ultra-thin film with semi-embedded metal nanofiber web for high-performance flexible transparent electrodes. Mater. Lett. 348, 134737 (2023). https://doi.org/10.1016/j.matlet.2023.134737
B. Feng, T. Sun, W. Wang, Y. Xiao, J. Huo et al., Venation-mimicking, ultrastretchable, room-temperature-attachable metal tapes for integrated electronic skins. Adv. Mater. 35(8), e2208568 (2023). https://doi.org/10.1002/adma.202208568
Z.-Y. Chen, D. Yin, Y.-P. Wang, H.-Y. Zhang, S.-X. Jia et al., Highly transparent and stretchable organic light-emitting diodes with ultrathin metal films as double electrodes. Appl. Phys. Lett. 122(5), 051105 (2023). https://doi.org/10.1063/5.0132938
J. Xu, Y. Li, H. Liu, J. Wang, J. Wang et al., Integration of patterned electrolyte film and sacrificial substrate serpentine electrode of low curvature for high stretch supercapacitor, physiological signal detection. Chem. Eng. J. 472, 144907 (2023). https://doi.org/10.1016/j.cej.2023.144907
T. Sun, B. Feng, J. Huo, Y. Xiao, J. Peng et al., Switching ultra-stretchability and sensitivity in metal films for electronic skins: a pufferfish-inspired, interlayer regulation strategy. Mater. Horiz. 10(7), 2525–2534 (2023). https://doi.org/10.1039/D3MH00252G
R. Muniramaiah, G. Maharana, J.M. Fernandes, M. Manivel Raja, D.B. Padmanaban et al., Sputter-deposited highly flexible noble metal multi-layer electrode viable for energy and luminescent devices. Surf. Interfaces 39, 102949 (2023). https://doi.org/10.1016/j.surfin.2023.102949
S.-H. Sunwoo, S.I. Han, D. Jung, M. Kim, S. Nam et al., Stretchable low-impedance conductor with Ag–Au–Pt core–shell–shell nanowires and in situ formed Pt nanops for wearable and implantable device. ACS Nano 17(8), 7550–7561 (2023). https://doi.org/10.1021/acsnano.2c12659
H. Cho, S. Chung, J. Jeong, Fabrication and characterization of low-sheet-resistance and stable stretchable electrodes employing metal and metal nanowire hybrid structure. Flex. Print. Electron. 6(4), 045013 (2021). https://doi.org/10.1088/2058-8585/ac3ffd
M. Mohammed Ali, D. Maddipatla, B.B. Narakathu, A.A. Chlaihawi, S. Emamian et al., Printed strain sensor based on silver nanowire/silver flake composite on flexible and stretchable TPU substrate. Sens. Actuators A 274, 109–115 (2018). https://doi.org/10.1016/j.sna.2018.03.003
I.M. Graz, D.P.J. Cotton, S.P. Lacour, Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94(7), 071902 (2009). https://doi.org/10.1063/1.3076103
S.P. Lacour, D. Chan, S. Wagner, T. Li, Z. Suo, Mechanisms of reversible stretchability of thin metal films on elastomeric substrates. Appl. Phys. Lett. 88(20), 204103 (2006). https://doi.org/10.1063/1.2201874
Q. Liao, W. Si, J. Zhang, H. Sun, L. Qin, In situ silver nanonets for flexible stretchable electrodes. Int. J. Mol. Sci. 24(11), 9319 (2023). https://doi.org/10.3390/ijms24119319
X. Chen, J. Chen, L. Huang, S. Nie, W. Xu et al., Highly conductive omnidirectionally stretchable 2D transparent copper mesh electrodes and applications in optoelectronic devices. Adv. Mater. Technol. 8(7), 2201406 (2023). https://doi.org/10.1002/admt.202201406
Z. Chen, S. Yang, J. Huang, Y. Gu, W. Huang et al., Flexible, transparent and conductive metal mesh films with ultra-high FoM for stretchable heating and electromagnetic interference shielding. Nano-Micro Lett. 16(1), 92 (2024). https://doi.org/10.1007/s40820-023-01295-z
M. Kim, P. Jae, C. Cho, K. Hwan, Liquid metal based stretchable room temperature soldering sticker patch for stretchable electronics integration. Adv. Funct. Mater. 33(36), 2303286 (2023). https://doi.org/10.1002/adfm.202303286
M. Kim, H. Lim, S.H. Ko, Liquid metal patterning and unique properties for next-generation soft electronics. Adv. Sci. 10(6), 2205795 (2023). https://doi.org/10.1002/advs.202205795
M.D. Dickey, Stretchable and soft electronics using liquid metals. Adv. Mater. 29(27), 1606425 (2017). https://doi.org/10.1002/adma.201606425
Y.R. Jeong, G. Lee, H. Park, J.S. Ha, Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res. 52(1), 91–99 (2019). https://doi.org/10.1021/acs.accounts.8b00508
J. Zhang, Q. Lu, Y. Li, T. Li, M.-H. Lu et al., An ultrastretchable reflective electrode based on a liquid metal film for deformable optoelectronics. ACS Mater. Lett. 3(8), 1104–1111 (2021). https://doi.org/10.1021/acsmaterialslett.1c00216
X. Yi, Z. Yu, X. Niu, J. Shang, G. Mao et al., Intrinsically stretchable resistive switching memory enabled by combining a liquid metal–based soft electrode and a metal–organic framework insulator. Adv. Electron. Mater. 5(2), 1800655 (2019). https://doi.org/10.1002/aelm.201800655
D. Wu, S. Wu, P. Narongdej, S. Duan, C. Chen et al., Fast and facile liquid metal printing via projection lithography for highly stretchable electronic circuits. Adv. Mater. 36(34), 2307632 (2024). https://doi.org/10.1002/adma.202307632
R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23(42), 5292–5296 (2013). https://doi.org/10.1002/adfm.201203589
C. Pan, K. Kumar, J. Li, E.J. Markvicka, P.R. Herman et al., Visually imperceptible liquid-metal circuits for transparent, stretchable electronics with direct laser writing. Adv. Mater. 30(12), 1706937 (2018). https://doi.org/10.1002/adma.201706937
S. Chen, S. Fan, J. Qi, Z. Xiong, Z. Qiao et al., Ultrahigh strain-insensitive integrated hybrid electronics using highly stretchable bilayer liquid metal based conductor. Adv. Mater. 35(5), 2208569 (2023). https://doi.org/10.1002/adma.202208569
J. Chen, J. Zhang, Z. Luo, J. Zhang, L. Li et al., Superelastic, sensitive, and low hysteresis flexible strain sensor based on wave-patterned liquid metal for human activity monitoring. ACS Appl. Mater. Interfaces 12(19), 22200–22211 (2020). https://doi.org/10.1021/acsami.0c04709
C. Xu, B. Ma, S. Yuan, C. Zhao, H. Liu, High-resolution patterning of liquid metal on hydrogel for flexible, stretchable, and self-healing electronics. Adv. Electron. Mater. 6(1), 1900721 (2020). https://doi.org/10.1002/aelm.201900721
B. Ma, C. Xu, J. Chi, J. Chen, C. Zhao et al., A versatile approach for direct patterning of liquid metal using magnetic field. Adv. Funct. Mater. 29(28), 1901370 (2019). https://doi.org/10.1002/adfm.201901370
B. Wang, J. Gao, J. Jiang, Z. Hu, K. Hjort et al., Liquid metal microscale deposition enabled high resolution and density epidermal microheater for localized ectopic expression in Drosophila. Adv. Mater. Technol. 7(3), 2100903 (2022). https://doi.org/10.1002/admt.202100903
Z. Wang, Y. Wu, B. Zhu, Q. Chen, Y. Zhang et al., Self-patterning of highly stretchable and electrically conductive liquid metal conductors by direct-write super-hydrophilic laser-induced graphene and electroless copper plating. ACS Appl. Mater. Interfaces 15(3), 4713–4723 (2023). https://doi.org/10.1021/acsami.2c18814
M. Kim, C. Cho, W. Shin, J.J. Park, J. Kim et al., Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces. NPJ Flex. Electron. 6, 99 (2022). https://doi.org/10.1038/s41528-022-00232-1
N. Ochirkhuyag, Y. Isano, K. Inoue, H. Ota, Biphasic liquid metal mixtures in stretchable and flexible applications. Sens. Diagn. 2(2), 290–306 (2023). https://doi.org/10.1039/d2sd00214k
Z. Zhou, Y. Yao, C. Zhang, Z. Deng, Q. Li et al., Liquid metal printed optoelectronics toward fast fabrication of customized and erasable patterned displays. Adv. Mater. Technol. 7(5), 2101010 (2022). https://doi.org/10.1002/admt.202101010
G. Shin, B. Jeon, Y.-L. Park, Direct printing of sub-30 μm liquid metal patterns on three-dimensional surfaces for stretchable electronics. J. Micromech. Microeng. 30(3), 034001 (2020). https://doi.org/10.1088/1361-6439/ab6dbc
S. Veerapandian, W. Jang, J.B. Seol, H. Wang, M. Kong et al., Hydrogen-doped viscoplastic liquid metal microps for stretchable printed metal lines. Nat. Mater. 20(4), 533–540 (2021). https://doi.org/10.1038/s41563-020-00863-7
G.-H. Lee, D.H. Lee, W. Jeon, J. Yoon, K. Ahn et al., Conductance stable and mechanically durable bi-layer EGaIn composite-coated stretchable fiber for 1D bioelectronics. Nat. Commun. 14, 4173 (2023). https://doi.org/10.1038/s41467-023-39928-x
W. Kong, N.U.H. Shah, T.V. Neumann, M.H. Vong, P. Kotagama et al., Oxide-mediated mechanisms of gallium foam generation and stabilization during shear mixing in air. Soft Matter 16(25), 5801–5805 (2020). https://doi.org/10.1039/D0SM00503G
H. Chang, P. Zhang, R. Guo, Y. Cui, Y. Hou et al., Recoverable liquid metal paste with reversible rheological characteristic for electronics printing. ACS Appl. Mater. Interfaces 12(12), 14125–14135 (2020). https://doi.org/10.1021/acsami.9b20430
C. Cho, W. Shin, M. Kim, J. Bang, P. Won et al., Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and metallic nanowire backbone. Small 18(37), 2202841 (2022). https://doi.org/10.1002/smll.202202841
Y. Chen, B. Ma, G. Chen, J. Zhang, D. Feng et al., Breakup-free and colorful liquid metal thin films via electrochemical oxidation. ACS Appl. Mater. Interfaces 15(44), 50898–50907 (2023). https://doi.org/10.1021/acsami.3c11966
S. Liu, S.N. Reed, M.J. Higgins, M.S. Titus, R. Kramer-Bottiglio, Oxide rupture-induced conductivity in liquid metal nanops by laser and thermal sintering. Nanoscale 11(38), 17615–17629 (2019). https://doi.org/10.1039/c9nr03903a
S. Han, K. Kim, S.Y. Lee, S. Moon, J.-Y. Lee, Stretchable electrodes based on over-layered liquid metal networks. Adv. Mater. 35(11), e2210112 (2023). https://doi.org/10.1002/adma.202210112
K. Schlingman, G.M. D’Amaral, R.S. Carmichael, T.B. Carmichael, Intrinsically conductive liquid metal-elastomer composites for stretchable and flexible electronics. Adv. Mater. Technol. 8(1), 2200374 (2023). https://doi.org/10.1002/admt.202200374
D.H. Lee, T. Lim, J. Pyeon, H. Park, S.-W. Lee et al., Self-mixed biphasic liquid metal composite with ultra-high stretchability and strain-insensitivity for neuromorphic circuits. Adv. Mater. 36(16), 2310956 (2024). https://doi.org/10.1002/adma.202310956
V. Vallem, V. Aggarwal, M.D. Dickey, Stretchable liquid metal films with high surface area and strain invariant resistance. Adv. Mater. Technol. 8(5), 2201233 (2023). https://doi.org/10.1002/admt.202201233
X. Gong, Z. Chu, G. Li, Y. Tan, Q. Dong et al., Efficient fabrication of carbon nanotube-based stretchable electrodes for flexible electronic devices. Macromol. Rapid Commun. 44(5), 2200795 (2023). https://doi.org/10.1002/marc.202200795
X. Li, J. Wang, K. Wang, J. Yao, H. Bian et al., Three-dimensional stretchable fabric-based electrode for supercapacitors prepared by electrostatic flocking. Chem. Eng. J. 390, 124442 (2020). https://doi.org/10.1016/j.cej.2020.124442
H.J. Yang, J.-W. Lee, S.H. Seo, B. Jeong, B. Lee et al., Fully stretchable self-charging power unit with micro-supercapacitor and triboelectric nanogenerator based on oxidized single-walled carbon nanotube/polymer electrodes. Nano Energy 86, 106083 (2021). https://doi.org/10.1016/j.nanoen.2021.106083
K. Liu, Y. Yao, T. Lv, H. Li, N. Li et al., Textile-like electrodes of seamless graphene/nanotubes for wearable and stretchable supercapacitors. J. Power. Sources 446, 227355 (2020). https://doi.org/10.1016/j.jpowsour.2019.227355
L. Lin, J. Chen, D. Liu, X. Li, G.G. Wallace et al., Engineering 2D materials: a viable pathway for improved electrochemical energy storage. Adv. Energy Mater. 10(45), 2002621 (2020). https://doi.org/10.1002/aenm.202002621
J. Tang, Y. Wu, S. Ma, T. Yan, Z. Pan, Strain-sensing composite nanofiber filament and regulation mechanism of shoulder peaks based on carbon nanomaterial dispersion. ACS Appl. Mater. Interfaces 15(5), 7392–7404 (2023). https://doi.org/10.1021/acsami.2c20390
P. Li, C. Wang, M. Li, X. Xuan, B. Zhou et al., Flexible silver/carbon nanotube-graphene oxide-polydimethylsiloxane electrode patch for electroencephalography language. Adv. Intell. Syst. 5(8), 2300018 (2023). https://doi.org/10.1002/aisy.202300018
Q. Liu, S. Zhao, T. Hu, C. Jiang, B. Sheng, Superstretchable and linear-response strain sensors with carbon nanotubes ultrasonically assembled on silicone rubber film. IEEE Sens. J. 23(8), 8268–8276 (2023). https://doi.org/10.1109/JSEN.2023.3254139
J. Jia, Y. Peng, X.-J. Zha, K. Ke, R.-Y. Bao et al., Seeding carbon nanotube microemulsions in elastomer films for hetero-structured porous stretchable composites. Carbon 214, 118379 (2023). https://doi.org/10.1016/j.carbon.2023.118379
W. Wang, T. Zhang, H. Fang, Z. Zhang, Z. Peng et al., Structural and dimensional engineering of three-dimensional carbon nanotube/polydimethylsiloxane composite for stretchable sensor. Compos. Commun. 44, 101755 (2023). https://doi.org/10.1016/j.coco.2023.101755
R. Zhang, S. Lv, Z. Li, Y. Dong, Y. Zhao et al., Low-power-consumption electronic skins based on carbon nanotube/graphene hybrid films for human–machine interactions and wearable devices. ACS Appl. Nano Mater. 6(13), 12338–12350 (2023). https://doi.org/10.1021/acsanm.3c02024
J. Tahalyani, M.J. Akhtar, K.K. Kar, Flexible, stretchable, and lightweight hierarchical carbon-nanotube-decorated carbon fiber structures for microwave absorption. ACS Appl. Nano Mater. 6(13), 11888–11901 (2023). https://doi.org/10.1021/acsanm.3c01746
C. Cao, Y. Zhou, S. Ubnoske, J. Zang, Y. Cao et al., Highly stretchable supercapacitors via crumpled vertically aligned carbon nanotube forests. Adv. Energy Mater. 9(22), 1900618 (2019). https://doi.org/10.1002/aenm.201900618
J. Zhang, M. Wang, Z. Yang, X. Zhang, Highly flexible and stretchable strain sensors based on conductive whisker carbon nanotube films. Carbon 176, 139–147 (2021). https://doi.org/10.1016/j.carbon.2021.01.130
Y. Chao, Y. Han, Z. Chen, D. Chu, Q. Xu et al., Multiscale structural design of 2D nanomaterials-based flexible electrodes for wearable energy storage applications. Adv. Sci. 11(9), 2305558 (2024). https://doi.org/10.1002/advs.202305558
N. Kumar, S. Ghosh, D. Thakur, C.-P. Lee, P.K. Sahoo, Recent advancements in zero- to three-dimensional carbon networks with a two-dimensional electrode material for high-performance supercapacitors. Nanoscale Adv. 5(12), 3146–3176 (2023). https://doi.org/10.1039/D3NA00094J
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887), 385–388 (2008). https://doi.org/10.1126/science.1157996
H. Kim, H.L. Zhao, A.M. van der Zande, Stretchable thin-film transistors based on wrinkled graphene and MoS2 heterostructures. Nano Lett. 24(4), 1454–1461 (2024). https://doi.org/10.1021/acs.nanolett.3c05091
M.M. Slepchenkov, P.V. Barkov, O.E. Glukhova, Island-type graphene-nanotube hybrid structures for flexible and stretchable electronics: in silico study. Micromachines 14(3), 671 (2023). https://doi.org/10.3390/mi14030671
Y. Wu, H. Tang, L. Wang, Y. Zong, J. Jia et al., Temperature-insensitive stretchable conductors based on hierarchical double-layer graphene foams/PEDOT: PSS networks. Compos. Sci. Technol. 242, 110190 (2023). https://doi.org/10.1016/j.compscitech.2023.110190
C.-H. Huang, H.-C. Wu, B.-F. Chen, Y.-C. Li, Graphene/silver nanowires/graphene sandwich composite for stretchable transparent electrodes and its fracture mechanism. Micromachines 12(5), 512 (2021). https://doi.org/10.3390/mi12050512
S. Zhang, M. Sharifuzzamn, S.M. Sohel Rana, M. Abu Zahed, S. Sharma et al., Highly conductive, stretchable, durable, skin-conformal dry electrodes based on thermoplastic elastomer-embedded 3D porous graphene for multifunctional wearable bioelectronics. Nano Res. 16(5), 7627–7637 (2023). https://doi.org/10.1007/s12274-023-5429-5
J.-W. Li, J.C. Lee, K.-C. Chuang, C.-W. Chiu, Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Prog. Org. Coat. 176, 107378 (2023). https://doi.org/10.1016/j.porgcoat.2022.107378
S.D. Kim, A. Sarkar, J.-H. Ahn, Graphene-based nanomaterials for flexible and stretchable batteries. Small 17(48), 2006262 (2021). https://doi.org/10.1002/smll.202006262
L. Bai, Y. Xu, Y. Jiang, H. Chen, X. Li et al., Transfer method of crumpled graphene and its application for human strain monitoring. Sens. Actuat. A Phys. 260, 153–160 (2017). https://doi.org/10.1016/j.sna.2017.04.028
R. Garg, N.R. Patra, S. Samal, S. Babbar, K. Parida, A review on accelerated development of skin-like MXene electrodes: from experimental to machine learning. Nanoscale 15(18), 8110–8133 (2023). https://doi.org/10.1039/D2NR05969J
Z. Cao, Y.-B. Zhu, K. Chen, Q. Wang, Y. Li et al., Super-stretchable and high-energy micro-pseudocapacitors based on MXene embedded Ag nanops. Adv. Mater. 36(26), 2401271 (2024). https://doi.org/10.1002/adma.202401271
C. Ma, M.-G. Ma, C. Si, X.-X. Ji, P. Wan, Flexible MXene-based composites for wearable devices. Adv. Funct. Mater. 31(22), 2009524 (2021). https://doi.org/10.1002/adfm.202009524
Y. Liu, G. Tian, Y. Du, P. Shi, N. Li et al., Highly stretchable, low-hysteresis, and adhesive TA@MXene-composited organohydrogels for durable wearable sensors. Adv. Funct. Mater. 34(30), 2315813 (2024). https://doi.org/10.1002/adfm.202315813
W.-T. Cao, H. Ouyang, W. Xin, S. Chao, C. Ma et al., A stretchable highoutput triboelectric nanogenerator improved by MXene liquid electrode with high electronegativity. Adv. Funct. Mater. 30(50), 2004181 (2020). https://doi.org/10.1002/adfm.202004181
W. Chen, M. Luo, K. Yang, C. Liu, D. Zhang et al., MXene loaded onto clean wiper by a dot-matrix drop-casting method as a free-standing electrode for stretchable and flexible supercapacitors. Chem. Eng. J. 423, 130242 (2021). https://doi.org/10.1016/j.cej.2021.130242
X. Luo, L. Zhu, Y.-C. Wang, J. Li, J. Nie et al., A flexible multifunctional triboelectric nanogenerator based on MXene/PVA hydrogel. Adv. Funct. Mater. 31(38), 2104928 (2021). https://doi.org/10.1002/adfm.202104928
J. Zhou, B. Tang, D. Li, C.-W. You, Y.-Y. Zhao et al., Binary-1D/2D nanomaterial-functionalization toward strong, stretchable, and anti-freezing electrically conductive organohydrogels for self-powered operation monitoring of robotic hand. Chem. Eng. J. 478, 147317 (2023). https://doi.org/10.1016/j.cej.2023.147317
Y. Zhou, K. Maleski, B. Anasori, J.O. Thostenson, Y. Pang et al., Ti3C2Tx MXene-reduced graphene oxide composite electrodes for stretchable supercapacitors. ACS Nano 14(3), 3576–3586 (2020). https://doi.org/10.1021/acsnano.9b10066
M. Wang, S. Feng, C. Bai, K. Ji, J. Zhang et al., Ultrastretchable MXene microsupercapacitors. Small 19(21), 2300386 (2023). https://doi.org/10.1002/smll.202300386
M. Jiang, D. Jiang, J. Wang, Y. Sun, J. Liu, Stretchable MXene based films towards achieving balanced electrical, mechanical and energy storage properties. Chem. Eng. J. 459, 141527 (2023). https://doi.org/10.1016/j.cej.2023.141527
J. Dong, S. Luo, S. Ning, G. Yang, D. Pan et al., MXene-coated wrinkled fabrics for stretchable and multifunctional electromagnetic interference shielding and electro/photo-thermal conversion applications. ACS Appl. Mater. Interfaces 13(50), 60478–60488 (2021). https://doi.org/10.1021/acsami.1c19890
S. Lee, E.H. Kim, S. Yu, H. Kim, C. Park et al., Polymer-laminated Ti3C2TX MXene electrodes for transparent and flexible field-driven electronics. ACS Nano 15(5), 8940–8952 (2021). https://doi.org/10.1021/acsnano.1c01621
S. Suh, K. Kim, J. Park, W. Kim, Ultrafast flexible PEDOT: PSS supercapacitor with outstanding volumetric capacitance for AC line filtering. Chem. Eng. J. 463, 142377 (2023). https://doi.org/10.1016/j.cej.2023.142377
M. Kim, H.-K. Um, H. Choi, J.S. Lee, J. Kim et al., Stretchable and biocompatible transparent electrodes for multimodal biosignal sensing from exposed skin. Adv. Electron. Mater. 9(7), 2300075 (2023). https://doi.org/10.1002/aelm.202300075
U. Boda, I. Petsagkourakis, V. Beni, P. Andersson Ersman, K. Tybrandt, Fully screen-printed stretchable organic electrochemical transistors. Adv. Mater. Technol. 8(16), 2300247 (2023). https://doi.org/10.1002/admt.202300247
I.K. Moon, B. Ki, J. Oh, Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT: PSS/graphene electrode. Chem. Eng. J. 392, 123794 (2020). https://doi.org/10.1016/j.cej.2019.123794
H. He, J. Ouyang, Enhancements in the mechanical stretchability and thermoelectric properties of PEDOT: PSS for flexible electronics applications. Acc. Mater. Res. 1(2), 146–157 (2020). https://doi.org/10.1021/accountsmr.0c00021
S. Devaraju, A.K. Mohanty, D.-H. Won, H.-J. Paik, One-step fabrication of highly stable, durable, adhesion enhanced, flexible, transparent conducting films based on silver nanowires and neutralized PEDOT: PSS. Mater. Adv. 4(7), 1769–1776 (2023). https://doi.org/10.1039/D3MA00031A
B. Adilbekova, A.D. Scaccabarozzi, H. Faber, M.I. Nugraha, V. Bruevich et al., Enhancing the electrical conductivity and long-term stability of PEDOT: PSS electrodes through sequential treatment with nitric acid and cesium chloride. Adv. Mater. 36(41), 2405094 (2024). https://doi.org/10.1002/adma.202405094
S.J.K. O’Neill, M. Ashizawa, A.M. McLean, R.R. Serrano, T. Shimura et al., Supramolecular conductive hydrogels with homogeneous ionic and electronic transport. Adv. Mater. 37(26), 2415687 (2025). https://doi.org/10.1002/adma.202415687
Y. Bai, W. Li, Y. Tie, Y. Kou, Y.-X. Wang et al., A stretchable polymer conductor through the mutual plasticization effect. Adv. Mater. 35(38), e2303245 (2023). https://doi.org/10.1002/adma.202303245
D.-H. Kim, J.-H. Kim, J.-H. So, H.-J. Koo, Optimization of fabrication process of stretchable, transparent PEDOT: PSS electrodes for optoelectronic applications. Korean J. Chem. Eng. 41(2), 453–459 (2024). https://doi.org/10.1007/s11814-024-00051-2
J. Yan, Y. Qin, W.-T. Fan, W.-T. Wu, S.-W. Lv et al., Plasticizer and catalyst co-functionalized PEDOT: PSS enables stretchable electrochemical sensing of living cells. Chem. Sci. 12(43), 14432–14440 (2021). https://doi.org/10.1039/D1SC04138J
H. He, L. Zhang, X. Guan, H. Cheng, X. Liu et al., Biocompatible conductive polymers with high conductivity and high stretchability. ACS Appl. Mater. Interfaces 11(29), 26185–26193 (2019). https://doi.org/10.1021/acsami.9b07325
H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
X. Fan, N.E. Stott, J. Zeng, Y. Li, J. Ouyang et al., PEDOT: PSS materials for optoelectronics, thermoelectrics, and flexible and stretchable electronics. J. Mater. Chem. A 11(35), 18561–18591 (2023). https://doi.org/10.1039/D3TA03213B
S. Hou, H. Chen, D. Lv, W. Li, X. Liu et al., Highly conductive inkjet-printed PEDOT: PSS film under cyclic stretching. ACS Appl. Mater. Interfaces 15(23), 28503–28515 (2023). https://doi.org/10.1021/acsami.3c03378
E. Dauzon, Y. Lin, H. Faber, E. Yengel, X. Sallenave et al., Stretchable and transparent conductive PEDOT: PSS-based electrodes for organic photovoltaics and strain sensors applications. Adv. Funct. Mater. 30(28), 2001251 (2020). https://doi.org/10.1002/adfm.202001251
N. Kim, S. Kee, S.H. Lee, B.H. Lee, Y.H. Kahng et al., Highly conductive PEDOT: PSS nanofibrils induced by solution-processed crystallization. Adv. Mater. 26(14), 2268–2272 (2014). https://doi.org/10.1002/adma.201304611
X. Fan, B. Xu, S. Liu, C. Cui, J. Wang et al., Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl. Mater. Interfaces 8(22), 14029–14036 (2016). https://doi.org/10.1021/acsami.6b01389
Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin et al., A highly stretchable, transparent, and conductive polymer. Sci. Adv. 3(3), e1602076 (2017). https://doi.org/10.1126/sciadv.1602076
J.Y. Oh, S. Kim, H.-K. Baik, U. Jeong, Conducting polymer dough for deformable electronics. Adv. Mater. 28(22), 4455–4461 (2016). https://doi.org/10.1002/adma.201502947
J. Song, G. Ma, F. Qin, L. Hu, B. Luo et al., High-conductivity, flexible and transparent PEDOT: PSS electrodes for high performance semi-transparent supercapacitors. Polymers 12(2), 450 (2020). https://doi.org/10.3390/polym12020450
N.A. Mohd Radzuan, A.B. Sulong, J. Sahari, A review of electrical conductivity models for conductive polymer composite. Int. J. Hydrog. Energy 42(14), 9262–9273 (2017). https://doi.org/10.1016/j.ijhydene.2016.03.045
M.L. Clingerman, J.A. King, K.H. Schulz, J.D. Meyers, Evaluation of electrical conductivity models for conductive polymer composites. J. Appl. Polym. Sci. 83(6), 1341–1356 (2002). https://doi.org/10.1002/app.10014
P. Wang, T. Ding, Conductivity and piezoresistivity of conductive carbon black filled polymer composite. J. Appl. Polym. Sci. 116(4), 2035–2039 (2010). https://doi.org/10.1002/app.31693
X. Meng, L. Mo, S. Han, J. Zhao, Y. Pan et al., Pressure-temperature dual-parameter flexible sensors based on conformal printing of conducting polymer PEDOT: PSS on microstructured substrate. Adv. Mater. Interfaces 10(5), 2201927 (2023). https://doi.org/10.1002/admi.202201927
N. Abhishek, A. Verma, A. Singh, T. Kumar, Metal-conducting polymer hybrid composites: a promising platform for electrochemical sensing. Inorg. Chem. Commun. 157, 111334 (2023). https://doi.org/10.1016/j.inoche.2023.111334
H.D. Kyomuhimbo, U. Feleni, Electroconductive green metal-polyaniline nanocomposites: synthesis and application in sensors. Electroanalysis 35(2), e202100636 (2023). https://doi.org/10.1002/elan.202100636
Y. Zhan, C. Santillo, Y. Meng, M. Lavorgna, Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding. J. Mater. Chem. C 11(3), 859–892 (2023). https://doi.org/10.1039/D2TC03821H
C. Li, K. Huang, T. Yuan, T. Cong, Z. Fan et al., Fabrication and conductive mechanism analysis of stretchable electrodes based on PDMS-Ag nanosheet composite with low resistance, stability, and durability. Nanomaterials 12(15), 2628 (2022). https://doi.org/10.3390/nano12152628
Z. Sang, K. Ke, I. Manas-Zloczower, Effect of carbon nanotube morphology on properties in thermoplastic elastomer composites for strain sensors. Compos. Part A Appl. Sci. Manuf. 121, 207–212 (2019). https://doi.org/10.1016/j.compositesa.2019.03.007
D. Niu, W. Jiang, G. Ye, K. Wang, L. Yin et al., Graphene-elastomer nanocomposites based flexible piezoresistive sensors for strain and pressure detection. Mater. Res. Bull. 102, 92–99 (2018). https://doi.org/10.1016/j.materresbull.2018.02.005
F. Dong, X. Yang, L. Guo, Y. Qian, P. Sun et al., A tough, healable, and recyclable conductive polyurethane/carbon nanotube composite. J. Colloid Interface Sci. 631, 239–248 (2023). https://doi.org/10.1016/j.jcis.2022.11.045
R. Luo, X. Li, H. Li, B. Du, S. Zhou, A stretchable and printable PEDOT: PSS/PDMS composite conductors and its application to wearable strain sensor. Prog. Org. Coat. 162, 106593 (2022). https://doi.org/10.1016/j.porgcoat.2021.106593
Y. Yang, G. Zhao, X. Cheng, H. Deng, Q. Fu, Stretchable and healable conductive elastomer based on PEDOT: PSS/natural rubber for self-powered temperature and strain sensing. ACS Appl. Mater. Interfaces 13(12), 14599–14611 (2021). https://doi.org/10.1021/acsami.1c00879
Y. Kim, S. Yoo, J.-H. Kim, Water-based highly stretchable PEDOT: PSS/nonionic WPU transparent electrode. Polymers 14(5), 949 (2022). https://doi.org/10.3390/polym14050949
F. Zhang, S. Wu, S. Peng, C.H. Wang, The effect of dual-scale carbon fibre network on sensitivity and stretchability of wearable sensors. Compos. Sci. Technol. 165, 131–139 (2018). https://doi.org/10.1016/j.compscitech.2018.06.019
K. Ke, V. Solouki Bonab, D. Yuan, I. Manas-Zloczower, Piezoresistive thermoplastic polyurethane nanocomposites with carbon nanostructures. Carbon 139, 52–58 (2018). https://doi.org/10.1016/j.carbon.2018.06.037
Y. Cheng, R. Wang, J. Sun, L. Gao, Highly conductive and ultrastretchable electric circuits from covered yarns and silver nanowires. ACS Nano 9(4), 3887–3895 (2015). https://doi.org/10.1021/nn5070937
Z.-Y. Wang, X. Sun, Y. Wang, J.-D. Liu, C. Zhang et al., A high-performance thermally conductive and electrically insulating silver@siloxane/graphene/epoxy composites at low filler content: fabrication, mechanism study of insulation and thermal conductivity enhancement. Ceram. Int. 49(2), 2871–2880 (2023). https://doi.org/10.1016/j.ceramint.2022.09.271
L.M. Al-Harbi, Q.A. Alsulami, M.O. Farea, A. Rajeh, Tuning optical, dielectric, and electrical properties of Polyethylene oxide/Carboxymethyl cellulose doped with mixed metal oxide nanops for flexible electronic devices. J. Mol. Struct. 1272, 134244 (2023). https://doi.org/10.1016/j.molstruc.2022.134244
Y.-I. Choi, B.-U. Hwang, M. Meeseepong, A. Hanif, S. Ramasundaram et al., Stretchable and transparent nanofiber-networked electrodes based on nanocomposites of polyurethane/reduced graphene oxide/silver nanops with high dispersion and fused junctions. Nanoscale 11(9), 3916–3924 (2019). https://doi.org/10.1039/C8NR10170A
D. Jung, C. Lim, C. Park, Y. Kim, M. Kim et al., Adaptive self-organization of nanomaterials enables strain-insensitive resistance of stretchable metallic nanocomposites. Adv. Mater. 34(23), 2200980 (2022). https://doi.org/10.1002/adma.202200980
D. Jung, Y. Kim, H. Lee, S. Jung, C. Park et al., Metal-like stretchable nanocomposite using locally-bundled nanowires for skin-mountable devices. Adv. Mater. 35(44), e2303458 (2023). https://doi.org/10.1002/adma.202303458
M. Nie, B. Li, Y.-L. Hsieh, K.K. Fu, J. Zhou, Stretchable one-dimensional conductors for wearable applications. ACS Nano 16(12), 19810–19839 (2022). https://doi.org/10.1021/acsnano.2c08166
B. Wang, K. Yang, H. Cheng, T. Ye, C. Wang, A hydrophobic conductive strip with outstanding one-dimensional stretchability for wearable heater and strain sensor. Chem. Eng. J. 404, 126393 (2021). https://doi.org/10.1016/j.cej.2020.126393
Q. Hua, G. Shen, Low-dimensional nanostructures for monolithic 3D-integrated flexible and stretchable electronics. Chem. Soc. Rev. 53(3), 1316–1353 (2024). https://doi.org/10.1039/d3cs00918a
T. Dey, I. Chauhan, S. Dutta, Flexible and stretchable electrodes in biofuel cells for sustainable power. ACS Appl. Electron. Mater. 6(6), 4016–4029 (2024). https://doi.org/10.1021/acsaelm.4c00607
Y. Sun, W.G. Chong, Structural engineering of electrodes for flexible energy storage devices. Mater. Horiz. 10(7), 2373–2397 (2023). https://doi.org/10.1039/d3mh00045a
B.S. Kim, H. Kwon, H.J. Kwon, J.B. Pyo, J. Oh et al., Buckling instability control of 1D nanowire networks for a large-area stretchable and transparent electrode. Adv. Funct. Mater. 30(21), 1910214 (2020). https://doi.org/10.1002/adfm.201910214
W. Meng, M. Nie, Z. Liu, J. Zhou, Buckled fiber conductors with resistance stability under strain. Adv. Fiber Mater. 3(3), 149–159 (2021). https://doi.org/10.1007/s42765-021-00067-x
K. Yoon, S. Lee, D. Shim, M. Lee, S. Cho et al., Strain-insensitive stretchable fiber conductors based on highly conductive buckled shells for wearable electronics. ACS Appl. Mater. Interfaces 15(14), 18281–18289 (2023). https://doi.org/10.1021/acsami.2c21959
Z.-J. Wang, X. Kong, Y. Huang, J. Li, L. Bao et al., Conversion of chirality to twisting via sequential one-dimensional and two-dimensional growth of graphene spirals. Nat. Mater. 23(3), 331–338 (2024). https://doi.org/10.1038/s41563-023-01632-y
W. Hou, Q. Liao, S. Xie, Y. Song, L. Qin, Prospects and challenges of flexible stretchable electrodes for electronics. Coatings 12(5), 558 (2022). https://doi.org/10.3390/coatings12050558
H. Kang, Q. Chen, Q. Ma, L. Zhang, Q. Yang et al., Coaxial spiral structural polymer/reduced graphene oxide composite as a high-performance anode for potassium ion batteries. J. Power. Sources 545, 231951 (2022). https://doi.org/10.1016/j.jpowsour.2022.231951
Q. Liang, J. Wan, P. Ji, D. Zhang, N. Sheng et al., Continuous and integrated PEDOT@Bacterial cellulose/CNT hybrid helical fiber with “reinforced cement-sand” structure for self-stretchable solid supercapacitor. Chem. Eng. J. 427, 131904 (2022). https://doi.org/10.1016/j.cej.2021.131904
B. Ma, J. Zhang, G. Chen, Y. Chen, C. Xu et al., Shape-programmable liquid metal fibers. Biosensors 13(1), 28 (2023). https://doi.org/10.3390/bios13010028
Y.-L. Liu, W.-H. Huang, Stretchable electrochemical sensors for cell and tissue detection. Angew. Chem. Int. Ed. 60(6), 2757–2767 (2021). https://doi.org/10.1002/anie.202007754
X. Gong, Q. Yang, C. Zhi, P.S. Lee, Stretchable energy storage devices: from materials and structural design to device assembly. Adv. Energy Mater. 11(15), 2003308 (2021). https://doi.org/10.1002/aenm.202003308
L. Li, Z. Lou, W. Han, D. Chen, K. Jiang et al., Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2(3), 1600282 (2017). https://doi.org/10.1002/admt.201600282
Y. Xie, Y. Liu, Y. Zhao, Y.H. Tsang, S.P. Lau et al., Stretchable all-solid-state supercapacitor with wavy shaped polyaniline/graphene electrode. J. Mater. Chem. A 2(24), 9142–9149 (2014). https://doi.org/10.1039/c4ta00734d
S. Yu, H. Yu, Capacitive stretchable strain sensor with low hysteresis based on wavy-shape interdigitated metal electrodes. IEEE Sens. J. 21(24), 27335–27342 (2021). https://doi.org/10.1109/JSEN.2021.3124517
Y. Xue, Z. Wang, A. Dutta, X. Chen, P. Gao et al., Superhydrophobic, stretchable kirigami pencil-on-paper multifunctional device platform. Chem. Eng. J. 465, 142774 (2023). https://doi.org/10.1016/j.cej.2023.142774
C. Kang, S.-W. Kim, W. Kim, D. Choi, H.-K. Kim, Stretchable and flexible snake skin patterned electrodes for wearable electronics inspired by kirigami structure. Adv. Mater. Interfaces 10(11), 2202477 (2023). https://doi.org/10.1002/admi.202202477
S.-H. Ha, J.-M. Kim, Boosted mechanosensitivity of stretchable conductive composite strain sensors based on kirigami cut design. J. Mater. Chem. C 11(37), 12616–12625 (2023). https://doi.org/10.1039/D3TC01751F
H. Choi, Y. Luo, G. Olson, P. Won, J.H. Shin et al., Highly stretchable and strain-insensitive liquid metal based elastic kirigami electrodes (LM-eKE). Adv. Funct. Mater. 33(30), 2301388 (2023). https://doi.org/10.1002/adfm.202301388
N. Swain, A. Tripathy, A. Thirumurugan, B. Saravanakumar, L. Schmidt-Mende et al., A brief review on stretchable, compressible, and deformable supercapacitor for smart devices. Chem. Eng. J. 446, 136876 (2022). https://doi.org/10.1016/j.cej.2022.136876
H. Yin, Y. Zhu, K. Youssef, Z. Yu, Q. Pei, Structures and materials in stretchable electroluminescent devices. Adv. Mater. 34(22), 2106184 (2022). https://doi.org/10.1002/adma.202106184
X. Li, J. Wang, One-dimensional and two-dimensional synergized nanostructures for high-performing energy storage and conversion. InfoMat 2(1), 3–32 (2020). https://doi.org/10.1002/inf2.12040
D.W. Kim, M. Kong, U. Jeong, Interface design for stretchable electronic devices. Adv. Sci. 8(8), 2004170 (2021). https://doi.org/10.1002/advs.202004170
Y. Zhang, C. Liu, B. Jia, D. Ma, X. Tian et al., Kirigami-inspired, three-dimensional piezoelectric pressure sensors assembled by compressive buckling. NPJ Flex. Electron. 8, 23 (2024). https://doi.org/10.1038/s41528-024-00310-6
J. Xu, Z. Xie, H. Yue, Y. Lu, F. Yang, A triboelectric multifunctional sensor based on the controlled buckling structure for motion monitoring and bionic tactile of soft robots. Nano Energy 104, 107845 (2022). https://doi.org/10.1016/j.nanoen.2022.107845
G. Lee, M. Zarei, Q. Wei, Y. Zhu, S.G. Lee, Surface wrinkling for flexible and stretchable sensors. Small 18(42), 2203491 (2022). https://doi.org/10.1002/smll.202203491
L. Zhao, P. Yang, S. Shi, X. Wang, S. Yu, Highly adaptable strain capacitive sensors with exceptional selectivity using spontaneous micrometer-pyramid electrodes. ACS Appl. Electron. Mater. 5(2), 977–984 (2023). https://doi.org/10.1021/acsaelm.2c01504
M. Jiang, D. Jiang, X. Cao, J. Wang, Y. Sun et al., Scalable 2D/2D assembly of ultrathin MOF/MXene sheets for stretchable and bendable energy storage devices. Adv. Funct. Mater. 34(11), 2312692 (2024). https://doi.org/10.1002/adfm.202312692
C.A. Silva, J. lv, L. Yin, I. Jeerapan, G. Innocenzi et al., Liquid metal based island-bridge architectures for all printed stretchable electrochemical devices. Adv. Funct. Mater. 30(30), 2002041 (2020). https://doi.org/10.1002/adfm.202002041
Y. Lu, G. Yang, S. Wang, Y. Zhang, Y. Jian et al., Stretchable graphene–hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 7(1), 51–65 (2024). https://doi.org/10.1038/s41928-023-01091-y
S. Jiang, J. Liu, W. Xiong, Z. Yang, L. Yin et al., A snakeskin-inspired, soft-hinge kirigami metamaterial for self-adaptive conformal electronic armor. Adv. Mater. 34(31), e2204091 (2022). https://doi.org/10.1002/adma.202204091
S. Wu, Z. Cui, G.L. Baker, S. Mahendran, Z. Xie et al., A biaxially stretchable and self-sensing textile heater using silver nanowire composite. ACS Appl. Mater. Interfaces 13(49), 59085–59091 (2021). https://doi.org/10.1021/acsami.1c17651
H.M. Lee, M.H. Kim, Y. Jin, Y. Jang, P.S. Lee et al., Hierarchically engineered unibody Au mesh for stretchable and transparent conductors. J. Mater. Chem. A 11(8), 4220–4229 (2023). https://doi.org/10.1039/d2ta08971h
J. Han, J.-Y. Lee, J. Lee, J.-S. Yeo, Highly stretchable and reliable, transparent and conductive entangled graphene mesh networks. Adv. Mater. 30(3), 1704626 (2018). https://doi.org/10.1002/adma.201704626
S. Zhang, H. Liu, J. Yu, B. Li, B. Ding, Multi-functional flexible 2D carbon nanostructured networks. Nat. Commun. 11(1), 5134 (2020). https://doi.org/10.1038/s41467-020-18977-6
Z. Xu, J. Chen, G. Wang, Y. Zhao, B. Shen et al., Stretchable and translucent liquid-metal composite mesh for multifunctional electromagnetic shielding/sensing and Joule heating. Compos. Sci. Technol. 249, 110512 (2024). https://doi.org/10.1016/j.compscitech.2024.110512
W. Zhou, Y. Li, P. Li, J. Chen, R. Xu et al., Metal mesh as a transparent omnidirectional strain sensor. Adv. Mater. Technol. 4(4), 1800698 (2019). https://doi.org/10.1002/admt.201800698
B. Lee, H. Cho, S. Moon, Y. Ko, Y.-S. Ryu et al., Omnidirectional printing of elastic conductors for three-dimensional stretchable electronics. Nat. Electron. 6(4), 307–318 (2023). https://doi.org/10.1038/s41928-023-00949-5
L. Lyu, W. Hooch Antink, Y.S. Kim, C.W. Kim, T. Hyeon et al., Recent development of flexible and stretchable supercapacitors using transition metal compounds as electrode materials. Small 17(36), 2101974 (2021). https://doi.org/10.1002/smll.202101974
Y. Zheng, X. Huang, J. Chen, K. Wu, J. Wang et al., A review of conductive carbon materials for 3D printing: materials, technologies, properties, and applications. Materials 14(14), 3911 (2021). https://doi.org/10.3390/ma14143911
A. John, L. Benny, A.R. Cherian, S.Y. Narahari, A. Varghese et al., Electrochemical sensors using conducting polymer/noble metal nanop nanocomposites for the detection of various analytes: a review. J. Nanostruct. Chem. 11(1), 1–31 (2021). https://doi.org/10.1007/s40097-020-00372-8
H. Kang, S. Jung, S. Jeong, G. Kim, K. Lee, Polymer-metal hybrid transparent electrodes for flexible electronics. Nat. Commun. 6, 6503 (2015). https://doi.org/10.1038/ncomms7503
C. Cho, P. Kang, A. Taqieddin, Y. Jing, K. Yong et al., Strain-resilient electrical functionality in thin-film metal electrodes using two-dimensional interlayers. Nat. Electron. 4(2), 126–133 (2021). https://doi.org/10.1038/s41928-021-00538-4
C. Zhang, C. Ji, Y.-B. Park, L.J. Guo, Thin-metal-film-based transparent conductors: material preparation, optical design, and device applications. Adv. Opt. Mater. 9(3), 2001298 (2021). https://doi.org/10.1002/adom.202001298
X. Lu, Y. Zhang, Z. Zheng, Metal-based flexible transparent electrodes: challenges and recent advances. Adv. Electron. Mater. 7(5), 2001121 (2021). https://doi.org/10.1002/aelm.202001121
D. Wang, Y. Zhang, X. Lu, Z. Ma, C. Xie et al., Chemical formation of soft metal electrodes for flexible and wearable electronics. Chem. Soc. Rev. 47(12), 4611–4641 (2018). https://doi.org/10.1039/c7cs00192d
C. Ji, D. Liu, C. Zhang, L.J. Guo, Ultrathin-metal-film-based transparent electrodes with relative transmittance surpassing 100. Nat. Commun. 11(1), 3367 (2020). https://doi.org/10.1038/s41467-020-17107-6
S. Wu, S. Peng, Y. Yu, C.-H. Wang, Strategies for designing stretchable strain sensors and conductors. Adv. Mater. Technol. 5(2), 1900908 (2020). https://doi.org/10.1002/admt.201900908
H. Wu, G. Yang, K. Zhu, S. Liu, W. Guo et al., Materials, devices, and systems of on-skin electrodes for electrophysiological monitoring and human-machine interfaces. Adv. Sci. 8(2), 2001938 (2020). https://doi.org/10.1002/advs.202001938
G. Chen, N. Matsuhisa, Z. Liu, D. Qi, P. Cai et al., Plasticizing silk protein for on-skin stretchable electrodes. Adv. Mater. 30(21), 1800129 (2018). https://doi.org/10.1002/adma.201800129
Y. Jeon, D. Lee, H. Yoo, Recent advances in metal-oxide thin-film transistors: flexible/stretchable devices, integrated circuits, biosensors, and neuromorphic applications. Coatings 12(2), 204 (2022). https://doi.org/10.3390/coatings12020204
G. Xu, Y. Li, Metal-microstructure based flexible transparent electrodes and their applications in electronic devices. Nano Select 1(2), 169–182 (2020). https://doi.org/10.1002/nano.202000006
F.-T. Zhang, L. Xu, J.-H. Chen, B. Zhao, X.-Z. Fu et al., Electroless deposition metals on poly(dimethylsiloxane) with strong adhesion as flexible and stretchable conductive materials. ACS Appl. Mater. Interfaces 10(2), 2075–2082 (2018). https://doi.org/10.1021/acsami.7b15726
D.J. Lipomi, M. Vosgueritchian, B.C. Tee, S.L. Hellstrom, J.A. Lee et al., Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 6(12), 788–792 (2011). https://doi.org/10.1038/nnano.2011.184
H. Min, S. Baik, J. Kim, J. Lee, B.-G. Bok et al., Tough carbon nanotube-implanted bioinspired three-dimensional electrical adhesive for isotropically stretchable water-repellent bioelectronics. Adv. Funct. Mater. 32(8), 2107285 (2022). https://doi.org/10.1002/adfm.202107285
A. Nag, M.E.E. Alahi, S.C. Mukhopadhyay, Z. Liu, Multi-walled carbon nanotubes-based sensors for strain sensing applications. Sensors 21(4), 1261 (2021). https://doi.org/10.3390/s21041261
Y. Liu, T. Wang, J. Wang, X. Chen, J. Chen et al., A super-stretchable conductive film with strain-insensitive conductivity for stretchable EMI shielding materials and wearable capacitive strain sensors. Compos. Sci. Technol. 258, 110877 (2024). https://doi.org/10.1016/j.compscitech.2024.110877
C. Rong, T. Su, Z. Li, T. Chu, M. Zhu et al., Elastic properties and tensile strength of 2D Ti3C2Tx MXene monolayers. Nat. Commun. 15, 1566 (2024). https://doi.org/10.1038/s41467-024-45657-6
H. Zhang, C. Hao, T. Fu, D. Yu, J. Howe et al., Gradient-layered MXene/hollow lignin nanospheres architecture design for flexible and stretchable supercapacitors. Nano-Micro Lett. 17(1), 43 (2024). https://doi.org/10.1007/s40820-024-01512-3
I. Hussain, S. Sahoo, M.S. Javed, J. Lu, K. Zhang, Flexible 2D MXenes for wearable next-generation energy storage applications. Mater. Sci. Eng. R. Rep. 160, 100814 (2024). https://doi.org/10.1016/j.mser.2024.100814
N. Liu, A. Chortos, T. Lei, L. Jin, T.R. Kim et al., Ultratransparent and stretchable graphene electrodes. Sci. Adv. 3(9), e1700159 (2017). https://doi.org/10.1126/sciadv.1700159
M. Vosgueritchian, D.J. Lipomi, Z. Bao, Highly conductive and transparent PEDOT: PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Adv. Funct. Mater. 22(2), 421–428 (2012). https://doi.org/10.1002/adfm.201101775
J. Ouyang, Application of intrinsically conducting polymers in flexible electronics. SmartMat 2(3), 263–285 (2021). https://doi.org/10.1002/smm2.1059
S. Peng, Y. Yu, S. Wu, C.-H. Wang, Conductive polymer nanocomposites for stretchable electronics: material selection, design, and applications. ACS Appl. Mater. Interfaces 13(37), 43831–43854 (2021). https://doi.org/10.1021/acsami.1c15014
P. Tan, H. Wang, F. Xiao, X. Lu, W. Shang et al., Solution-processable, soft, self-adhesive, and conductive polymer composites for soft electronics. Nat. Commun. 13(1), 358 (2022). https://doi.org/10.1038/s41467-022-28027-y
D. Wu, L. Weng, X. Zhang, L. Guan, Z. Wu, Flexible and wearable piezoresistive sensors based on double wrinkled layers for motion monitoring and human physiological signal monitoring. ACS Appl. Electron. Mater. 5(11), 6433–6445 (2023). https://doi.org/10.1021/acsaelm.3c01301
Y. Liang, J. Gao, Q. Wang, N. Lu, Y.-C. Zhang et al., Self-healing micro-supercapacitor based on robust liquid metal-CNT-PEDOT: PSS film for wireless powering of integrated strain sensor. Small Methods 9(4), 2401581 (2025). https://doi.org/10.1002/smtd.202401581
Y. Tian, M. Huang, Y. Wang, Y. Zheng, R. Yin et al., Ultra-stretchable, sensitive and breathable electronic skin based on TPU electrospinning fibrous membrane with microcrack structure for human motion monitoring and self-powered application. Chem. Eng. J. 480, 147899 (2024). https://doi.org/10.1016/j.cej.2023.147899
J. Kim, D. Won, T.H. Kim, C.-Y. Kim, S.H. Ko, Rapid prototyping and facile customization of conductive hydrogel bioelectronics based on all laser process. Biosens. Bioelectron. 258, 116327 (2024). https://doi.org/10.1016/j.bios.2024.116327
S. Duan, Z. Wang, L. Zhang, J. Liu, C. Li, Three-dimensional highly stretchable conductors from elastic fiber mat with conductive polymer coating. ACS Appl. Mater. Interfaces 9(36), 30772–30778 (2017). https://doi.org/10.1021/acsami.7b08453
J.H. Shin, J.Y. Choi, K. June, H. Choi, T.-I. Kim, Polymeric conductive adhesive-based ultrathin epidermal electrodes for long-term monitoring of electrophysiological signals. Adv. Mater. 36(23), 2313157 (2024). https://doi.org/10.1002/adma.202313157
F. Nie, Y.-L. Gu, L. Zhao, L.-T. Li, F.-X. Shen et al., Construction of conductive polymer coatings onto flexible PDMS foam composites with exceptional mechanical robustness for sensitive strain sensing applications. Adv. Sensor Res. 3(4), 2300140 (2024). https://doi.org/10.1002/adsr.202300140
L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31(10), 1806133 (2019). https://doi.org/10.1002/adma.201806133
H. He, R. Chen, S. Yue, S. Yu, J. Wei et al., Salt-induced ductilization and strain-insensitive resistance of an intrinsically conducting polymer. Sci. Adv. 8(47), eabq8160 (2022). https://doi.org/10.1126/sciadv.abq8160
Y. Wang, S. Zeng, S. Shi, Y. Jiang, Z. Du et al., Hybrid assembly of conducting nanofiber network for ultra-stretchable and highly sensitive conductive hydrogels. J. Mater. Sci. Technol. 169, 1–10 (2024). https://doi.org/10.1016/j.jmst.2023.05.064
C. Li, J. Mu, Y. Song, S. Chen, F. Xu, Highly aligned cellulose/polypyrrole composite nanofibers via electrospinning and in situ polymerization for anisotropic flexible strain sensor. ACS Appl. Mater. Interfaces 15(7), 9820–9829 (2023). https://doi.org/10.1021/acsami.2c20464
Y. Li, M. Shan, J. Peng, L. Lan, L. Wei et al., A highly stretchable and conductive continuous composite filament with buckled polypyrrole coating for stretchy electronic textiles. Appl. Surf. Sci. 610, 155515 (2023). https://doi.org/10.1016/j.apsusc.2022.155515
D. Won, H. Kim, J. Kim, H. Kim, M.W. Kim et al., Laser-induced wet stability and adhesion of pure conducting polymer hydrogels. Nat. Electron. 7(6), 475–486 (2024). https://doi.org/10.1038/s41928-024-01161-9
Y. Hao, Q. Yan, H. Liu, X. He, P. Zhang et al., A stretchable, breathable, and self-adhesive electronic skin with multimodal sensing capabilities for human-centered healthcare. Adv. Funct. Mater. 33(44), 2303881 (2023). https://doi.org/10.1002/adfm.202303881
E. Bertran-Serra, S. Rodriguez-Miguel, Z. Li, Y. Ma, G. Farid et al., Advancements in plasma-enhanced chemical vapor deposition for producing vertical graphene nanowalls. Nanomaterials 13(18), 2533 (2023). https://doi.org/10.3390/nano13182533
T. Cheng, Y.-Z. Zhang, S. Wang, Y.-L. Chen, S.-Y. Gao et al., Conductive hydrogel-based electrodes and electrolytes for stretchable and self-healable supercapacitors. Adv. Funct. Mater. 31(24), 2101303 (2021). https://doi.org/10.1002/adfm.202101303
L.-W. Lo, J. Zhao, H. Wan, Y. Wang, S. Chakrabartty et al., An inkjet-printed PEDOT: PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces 13(18), 21693–21702 (2021). https://doi.org/10.1021/acsami.1c00537
W. Wang, J. Cao, J. Yu, F. Tian, X. Luo et al., Flexible supercapacitors based on stretchable conducting polymer electrodes. Polymers 15(8), 1856 (2023). https://doi.org/10.3390/polym15081856
H. Duzcukoglu, H.B. Kaybal, R. Asmatulu, Enhancing the coating durability and electrical stability of fiber composites with SPEEK/PEDOT: PSS permanent coatings: a novel approach. Polym. Degrad. Stab. 228, 110908 (2024). https://doi.org/10.1016/j.polymdegradstab.2024.110908
J. Zhuang, X. Jiang, J. Wang, C. Yang, H. Yang, Stretchable electrode composed of carbon nanotube-SBS hybrid film and its application on biosensor. J. Electrochem. Soc. 164(14), H1028–H1032 (2017). https://doi.org/10.1149/2.0741714jes
L. Hu, W. Yuan, P. Brochu, G. Gruner, Q. Pei, Highly stretchable, conductive, and transparent nanotube thin films. Appl. Phys. Lett. 94(16), 161108 (2009). https://doi.org/10.1063/1.3114463
S. Ahn, T.-H. Han, K. Maleski, J. Song, Y.-H. Kim et al., A 2D titanium carbide MXene flexible electrode for high-efficiency light-emitting diodes. Adv. Mater. 32(23), 2000919 (2020). https://doi.org/10.1002/adma.202000919
M. Kim, H. Lee, S. Nam, D.-H. Kim, G.D. Cha, Soft bioelectronics using nanomaterials and nanostructures for neuroengineering. Acc. Chem. Res. 57(11), 1633–1647 (2024). https://doi.org/10.1021/acs.accounts.4c00163
K.-K. Sheng, Y.-F. Lu, W.-T. Fan, Y.-L. Liu, Flexible and stretchable electrodes for in vivo electrophysiological and electrochemical monitoring. Chin. J. Chem. 42(13), 1523–1545 (2024). https://doi.org/10.1002/cjoc.202300652
Y. Li, Y. Sun, Q. Lu, Y. Lu, D. Kong, Recent advances in stretchable and permeable electrodes for epidermal electronics. Adv. Sens. Res. 3(6), 2300195 (2024). https://doi.org/10.1002/adsr.202300195
G.K. Sharma, N.R. James, Highly flexible, PEDOT: PSS-polyvinylpyrrolidone coated carbon nanofiber-polydimethylsiloxane composite for electromagnetic interference shielding. Synth. Met. 296, 117376 (2023). https://doi.org/10.1016/j.synthmet.2023.117376
S. Li, J. Tang, Y. Liu, J. Hua, J. Liu, Electrostatically self-assembled three-dimensional conductive network for highly sensitive and reliable skin-like strain sensor. Compos. Sci. Technol. 249, 110493 (2024). https://doi.org/10.1016/j.compscitech.2024.110493
K. Xu, L. Wang, W. Shan, K. Gao, J. Wang et al., Highly stretchable and self-adhesive wearable biosensor based on nanozyme-catalyzed conductive hydrogels. ACS Appl. Polym. Mater. 6(4), 2188–2200 (2024). https://doi.org/10.1021/acsapm.3c02623
R. Luo, H. Li, B. Du, S. Zhou, Y. Zhu, A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT: PSS-PDMS blends. Org. Electron. 76, 105451 (2020). https://doi.org/10.1016/j.orgel.2019.105451
J. Ahn, S. Noh, D. Kim, B.-S. Kim, S. Kim et al., Structural conductive carbon nanotube nanocomposites for stretchable electronics. Mater. Res. Express 10(3), 036304 (2023). https://doi.org/10.1088/2053-1591/acc1c6
H.V. Padi, N. Nanattil, S. Sulaiman, R.M. Ramakrishnan, B.N. Narayanan, High-quality graphene devoid of oxygen functionalities as conductive ink for flexible electronics and bendable all-solid-state supercapacitors. J. Energy Storage 86, 111297 (2024). https://doi.org/10.1016/j.est.2024.111297
X. Qiao, Y. Zhang, L. Wang, S. Zhou, X. Pang, Simple preparation of lignosulfonate stabilized eutectic gallium/indium liquid metal nanodroplets through ball milling process. Int. J. Biol. Macromol. 254, 127809 (2024). https://doi.org/10.1016/j.ijbiomac.2023.127809
P. Xu, S. Wang, A. Lin, H.-K. Min, Z. Zhou et al., Conductive and elastic bottlebrush elastomers for ultrasoft electronics. Nat. Commun. 14(1), 623 (2023). https://doi.org/10.1038/s41467-023-36214-8
J.-W. Li, H.-F. Chen, Y.-Z. Liu, J.-H. Wang, M.-C. Lu et al., Photocurable 3D-printed AgNPs/Graphene/Polymer nanocomposites with high flexibility and stretchability for ECG and EMG smart clothing. Chem. Eng. J. 484, 149452 (2024). https://doi.org/10.1016/j.cej.2024.149452
Y. Lu, Y. Chen, H. Sun, F. Deng, C. Mei et al., Resilient, environment tolerant and biocompatible electroluminescent devices with enhanced luminance based on compliant and self-adhesive electrodes. npj Flex. Electron. 8, 37 (2024). https://doi.org/10.1038/s41528-024-00322-2
W. Chen, S. Jiang, H. Xiao, X. Zhou, X. Xu et al., Graphene modified