Nature-Inspired Redox Shuttle with Regenerable Antioxidant for Efficient All-Perovskite Tandem Solar Cells
Corresponding Author: Can Li
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 165
Abstract
Pb–Sn mixed perovskite solar cells (PSCs) are crucial components for realizing efficient all-perovskite tandem devices. However, their efficiency and stability are severely limited by oxidative degradation (Sn4+ formation) and metallic defects (Sn0/Pb0). In addition, the rapid and uncontrolled Sn2+ nucleation kinetics result in nonuniform crystallization. Herein, we introduce a natural redox shuttle glutathione (GSH) in Pb–Sn mixed PSCs, achieving regenerable antioxidation and crystallization regulation simultaneously. The reversible redox reactions between GSH and glutathione disulfide (GSSG) enable the self-healing of Sn4+ and Sn0/Pb0 impurities, creating a regenerable antioxidation protective shell at the perovskite interfaces. Meanwhile, the strong coordination between GSH and perovskite regulates the crystallization process, optimizing the nucleation and crystallization kinetics. Furthermore, the GSH incorporation creates a high-quality charge separation junction at the perovskite/hole transport layer, facilitating carrier separation and extraction. The optimized Pb–Sn PSCs exhibit impressive power conversion efficiencies (PCEs) of up to 23.71%. The champion all-perovskite tandem PSCs with GSH achieve a PCE of 28.49% and retain 90% of the initial PCE after 560 h of continuous illumination. This work establishes a new nature-inspired redox shuttling strategy and elucidates its working mechanism, advancing the development of efficient and stable all-perovskite tandem solar cells.
Highlights:
1 A natural and regenerable redox shuttle is established using glutathione (GSH) to eliminate harmful Sn4+ and Sn0/Pb0 impurities.
2 The GSH incorporation regulates the perovskite crystallization process and leads to the formation of a high-quality charge separation junction.
3 The GSH-modified Pb-Sn perovskite solar cells achieve a champion power conversion efficiency (PCE) of 23.71%. Furthermore, the resulting all-perovskite tandem solar cells exhibit a PCE of 28.49% and retain 90% of the initial PCE after 560 h of continuous operation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Wang, B. Jiao, R. Tian, K. Sun, Y. Meng et al., Less-acidic boric acid-functionalized self-assembled monolayer for mitigating NiOx corrosion for efficient all-perovskite tandem solar cells. Nat. Commun. 16, 4148 (2025). https://doi.org/10.1038/s41467-025-59515-6
- J. Wang, S. Hu, H. Zhu, S. Liu, Z. Zhang et al., Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics. Nat. Commun. 16(1), 4917 (2025). https://doi.org/10.1038/s41467-025-59891-z
- M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, D. Hinken, M. Rauer, J. Hohl‐Ebinger, X. Hao, Solar cell efficiency tables (Version 64). Prog. Photovoltaics Res. Appl. 32(7), 425–441 (2024). https://doi.org/10.1002/pip.3831
- C. Duan, K. Zhang, Z. Peng, S. Li, F. Zou et al., Durable all-inorganic perovskite tandem photovoltaics. Nature 637(8048), 1111–1117 (2025). https://doi.org/10.1038/s41586-024-08432-7
- R. Liu, C. Lan, M. Zeng, Z. Zheng, X. Zheng, R. Guo, J. Guo, S. Yang, Z. Wang, X. Li, Precisely tuning 3D/quasi-2D perovskite heterojunctions in wide-bandgap perovskites for high-performance tandem solar cells. Adv. Mater. 37(34), 2504321 (2025). https://doi.org/10.1002/adma.202504321
- Z. Lin, J. Chen, K. Fan, J. Yi, H. Chen, S. Zou, H. Min, Y. Xu, M. Yu Lam, S.A. Aleksandr, K.S. Wong, He. Yan, K. Yan, Suppressing the interface photodegradation towards efficient and stable all perovskite tandem solar cells. Angew. Chem. Int. Ed. 64(31), e202424825 (2025). https://doi.org/10.1002/anie.202424825
- P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15(1), 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
- K.-W. Yeom, D.-K. Lee, N.-G. Park, Hard and soft acid and base (HSAB) engineering for efficient and stable Sn-Pb perovskite solar cells. Adv. Energy Mater. 12(48), 2202496 (2022). https://doi.org/10.1002/aenm.202202496
- J. Cao, H.-L. Loi, Y. Xu, X. Guo, N. Wang, H.-L. Loi, C.-k Liu, T. Wang, H. Cheng, Ye. Zhu, M.G. Li, W.-Y. Wong, F. Yan, High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34(6), e2107729 (2022). https://doi.org/10.1002/adma.202107729
- B. Li, B. Chang, L. Pan, Z. Li, L. Fu et al., Tin-based defects and passivation strategies in tin-related perovskite solar cells. ACS Energy Lett. 5(12), 3752–3772 (2020). https://doi.org/10.1021/acsenergylett.0c01796
- S. Fu, N. Sun, Y. Xian, L. Chen, Y. Li et al., Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells. Joule 8(8), 2220–2237 (2024). https://doi.org/10.1016/j.joule.2024.05.007
- R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
- X. Xu, C.-C. Chueh, Z. Yang, A. Rajagopal, J. Xu et al., Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 34, 392–398 (2017). https://doi.org/10.1016/j.nanoen.2017.02.040
- H. Liu, L. Wang, R. Li, B. Shi, P. Wang et al., Modulated crystallization and reduced VOC deficit of mixed lead–tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Lett. 6(8), 2907–2916 (2021). https://doi.org/10.1021/acsenergylett.1c01217
- Z. Lin, J. Chen, C. Duan, K. Fan, J. Li et al., Self-assembly construction of a homojunction of Sn–Pb perovskite using an antioxidant for all-perovskite tandem solar cells with improved efficiency and stability. Energy Environ. Sci. 17(17), 6314–6322 (2024). https://doi.org/10.1039/D4EE01539H
- D. Yu, M. Pan, G. Liu, X. Jiang, X. Wen et al., Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat. Energy 9(3), 298–307 (2024). https://doi.org/10.1038/s41560-023-01441-2
- W. Zhou, Y. Chen, N. Li, Z. Huang, Y. Zhang, Z. Zhang, Z. Guo, R. Yin, Y. Ma, F. Pei, H. Xie, H. Zai, L. Wang, Z. Qiu, Q. Chen, H. Zhou, A soldering flux tackles complex defects chemistry in Sn-Pb perovskite solar cells. Adv. Mater. 36(35), 2405807 (2024). https://doi.org/10.1002/adma.202405807
- X. Ding, M. Yan, C. Chen, M. Zhai, H. Wang, Y. Tian, L. Wang, L. Sun, M. Cheng, Efficient and stable tin-lead mixed perovskite solar cells using post-treatment additive with synergistic effects. Angew. Chem. Int. Ed. 63(8), e202317676 (2024). https://doi.org/10.1002/anie.202317676
- F. Zheng, N. Yang, S. Li, X. Xue, J. Ren, Y. Hao, 3-hydrazinylpyridine hydrochloride regulating crystallization kinetics of tin-lead perovskite prepared by two-step method. Adv. Funct. Mater. 35(10), 2416545 (2025). https://doi.org/10.1002/adfm.202416545
- Y. Zhang, C. Li, H. Zhao, Z. Yu, X. Tang et al., Synchronized crystallization in tin-lead perovskite solar cells. Nat. Commun. 15, 6887 (2024). https://doi.org/10.1038/s41467-024-51361-2
- J. Zhou, S. Fu, S. Zhou, L. Huang, C. Wang et al., Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells. Nat. Commun. 15(1), 2324 (2024). https://doi.org/10.1038/s41467-024-46679-w
- S. Hu, J. Wang, P. Zhao, J. Pascual, J. Wang et al., Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639(8053), 93–101 (2025). https://doi.org/10.1038/s41586-024-08546-y
- S. Zhou, S. Fu, C. Wang, W. Meng, J. Zhou et al., Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624(7990), 69–73 (2023). https://doi.org/10.1038/s41586-023-06707-z
- I.S. Harris, A.E. Treloar, S. Inoue, M. Sasaki, C. Gorrini et al., Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27(2), 211–222 (2015). https://doi.org/10.1016/j.ccell.2014.11.019
- C. Wang, W. Sui, W. Chen, Y. Zhang, J. Xing et al., Recent advances in polysulfide-based prodrug nanomedicines for cancer therapy. Coord. Chem. Rev. 519, 216138 (2024). https://doi.org/10.1016/j.ccr.2024.216138
- X. Gong, L. Sui, J. Morton, M.A. Brennan, C.S. Brennan, Investigation of nutritional and functional effects of rice bran protein hydrolysates by using preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines: a review. Trends Food Sci. Technol. 110, 798–811 (2021). https://doi.org/10.1016/j.tifs.2021.01.089
- L. Wang, X. Zhang, P. Xu, J. Yan, Y. Zhang et al., Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact. Mater. 10, 504–514 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.021
- Y.-M. Go, D.P. Jones, Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation 111(22), 2973–2980 (2005). https://doi.org/10.1161/CIRCULATIONAHA.104.515155
- S. Stringer, C.A. Rhoads, A. Ekshyyan, L. Coe, T.Y. Aw, Maintenance of cellular NADPH is critical to intestinal cell survival during oxidative challenge: role of glucose and pentose phosphate shunt activity. Gastroenterology 124(4), A601 (2003). https://doi.org/10.1016/S0016-5085(03)83045-7
- J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
- U.R. Pendurthi, S. Ghosh, S.K. Mandal, L.V.M. Rao, Tissue factor activation: is disulfide bond switching a regulatory mechanism? Blood 110(12), 3900–3908 (2007). https://doi.org/10.1182/blood-2007-07-101469
- P. Bull, U. Wyneken, P. Valenzuela, The reactivity of sulfhydryl groups of yeast DNA dependent RNA polymerase I. Nucleic Acids Res. 10(17), 5149–5160 (1982). https://doi.org/10.1093/nar/10.17.5149
- H. Liu, Z. Zhang, W. Zuo, R. Roy, M. Li, M.M. Byranvand, M. Saliba, Pure tin halide perovskite solar cells: focusing on preparation and strategies. Adv. Energy Mater. 13(3), 2202209 (2023). https://doi.org/10.1002/aenm.202202209
- X. Jin, S. Kang, S. Tanaka, S. Park, Monitoring the glutathione redox reaction in living human cells by combining metabolic labeling with heteronuclear NMR. Angew. Chem. Int. Ed. 55(28), 7939–7942 (2016). https://doi.org/10.1002/anie.201601026
- G.A. Nagana Gowda, V. Pascua, D. Raftery, Extending the scope of 1H NMR-based blood metabolomics for the analysis of labile antioxidants: reduced and oxidized glutathione. Anal. Chem. 93(44), 14844–14850 (2021). https://doi.org/10.1021/acs.analchem.1c03763
- E. Gaggelli, F. Berti, N. D’Amelio, N. Gaggelli, G. Valensin et al., Metabolic pathways of carcinogenic chromium. Environ. Health Perspect. 110(suppl 5), 733–738 (2002). https://doi.org/10.1289/ehp.02110s5733
- Y. Bai, R. Tian, K. Sun, C. Liu, X. Lang et al., Decoupling light- and oxygen-induced degradation mechanisms of Sn–Pb perovskites in all perovskite tandem solar cells. Energy Environ. Sci. 17(22), 8557–8569 (2024). https://doi.org/10.1039/D4EE02427C
- M. Yang, Y. Bai, Y. Meng, R. Tian, K. Sun, X. Lu, H. Pan, J. Wang, S. Zhou, J. Zhang, Z. Song, Y. Wang, C. Liu, Z. Ge, Sn-Pb perovskite with strong light and oxygen stability for all-perovskite tandem solar cells. Adv. Mater. 37(4), 2415627 (2025). https://doi.org/10.1002/adma.202415627
- H. Tai, K. Nishikawa, Y. Higuchi, Z.-W. Mao, S. Hirota, Cysteine SH and glutamate COOH contributions to [NiFe] hydrogenase proton transfer revealed by highly sensitive FTIR spectroscopy. Angew. Chem. Int. Ed. 58(38), 13285–13290 (2019). https://doi.org/10.1002/anie.201904472
- H. Li, B. Chang, L. Wang, Z. Wang, L. Pan et al., Surface reconstruction for tin-based perovskite solar cells. ACS Energy Lett. 7(11), 3889–3899 (2022). https://doi.org/10.1021/acsenergylett.2c01624
- D. Wang, M. Chen, X. Lei, Y. Wang, Y. Bao, X. Huang, P. Zhu, J. Zeng, X. Wang, SaiWing Tsang, F. Li, B. Xu, A.-Y. Jen, All-in-one additive enabled efficient and stable narrow-bandgap perovskites for monolithic all-perovskite tandem solar cells. Adv. Mater. 36(52), 2411677 (2024). https://doi.org/10.1002/adma.202411677
- M. Xie, Z. Lv, W. Zhao, Y. Fang, J. Huang et al., Intercalated hydrates stabilize bulky MoS2 anode for lithium-ion battery. Chem. Eng. J. 470, 144282 (2023). https://doi.org/10.1016/j.cej.2023.144282
- M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang, S. Wu, C. Liu, Y. Mai, Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
- H. Liu, G. Jin, J. Wang, W. Zhang, L. Qing et al., Quantum dots mediated crystallization enhancement in two-step processed perovskite solar cells. Nano-Micro Lett. 17(1), 169 (2025). https://doi.org/10.1007/s40820-025-01677-5
- L. Liu, Y. Ma, Y. Wang, Q. Ma, Z. Wang et al., Hole-transport management enables 23%-efficient and stable inverted perovskite solar cells with 84% fill factor. Nano-Micro Lett. 15(1), 117 (2023). https://doi.org/10.1007/s40820-023-01088-4
- Y.-H. Huang, S.-Y. Zou, C.-Y. Sheng, Y.-C. Fang, X.-D. Wang, W. Wei, W.-G. Li, D.-B. Kuang, Lattice anchoring stabilizes α-FAPbI3 perovskite for high-performance X-ray detectors. Nano-Micro Lett. 18(1), 14 (2025). https://doi.org/10.1007/s40820-025-01856-4
- H. Zheng, G. Liu, X. Dong, F. Chen, C. Wang et al., Self-regulated bilateral anchoring enables efficient charge transport pathways for high-performance rigid and flexible perovskite solar cells. Nano-Micro Lett. 17(1), 328 (2025). https://doi.org/10.1007/s40820-025-01846-6
- Y. Chang, L. Liu, L. Qi, J. Du, Q. Du et al., Highly oriented and ordered co-assembly monolayers for inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(5), e202418883 (2025). https://doi.org/10.1002/anie.202418883
- S. Wang, T. Yang, Y. Yang, Y. Du, W. Huang, L. Cheng, H. Li, P. Wang, Y. Wang, Yi. Zhang, C. Ma, P. Liu, G. Zhao, Z. Ding, S (Frank). Liu, K. Zhao, In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells. Adv. Mater. 35(42), 2305314 (2023). https://doi.org/10.1002/adma.202305314
- S. Pratap, F. Babbe, N.S. Barchi, Z. Yuan, T. Luong et al., Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating. Nat. Commun. 12(1), 5624 (2021). https://doi.org/10.1038/s41467-021-25898-5
- M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33(51), 2105290 (2021). https://doi.org/10.1002/adma.202105290
- L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei, B. Zhang, C. Chen, S. Zheng, H. Song, J. Chen, Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 11(20), 2100529 (2021). https://doi.org/10.1002/aenm.202100529
- K. Li, L. Zhang, Y. Ma, Y. Gao, X. Feng, Q. Li, Li. Shang, N. Yuan, J. Ding, A.K.Y. Jen, J. You, S (Frank). Liu, Au nanocluster assisted microstructural reconstruction for buried interface healing for enhanced perovskite solar cell performance. Adv. Mater. 36(8), 2310651 (2024). https://doi.org/10.1002/adma.202310651
- T. Imran, H.S. Aziz, T. Iftikhar, M. Ahmad, H. Xie et al., Interfacial band bending and suppressing deep level defects via Eu-MOF-mediated cathode buffer layer in an MA-free inverted perovskite solar cell with high fill factor. Energy Environ. Sci. 17(19), 7234–7246 (2024). https://doi.org/10.1039/d4ee02894e
- X. Zhang, F. Liu, Y. Guan, Y. Zou, C. Wu et al., Reducing the V(oc) loss of hole transport layer-free carbon-based perovskite solar cells via dual interfacial passivation. Nano-Micro Lett. 17(1), 258 (2025). https://doi.org/10.1007/s40820-025-01775-4
- L. Huang, H. Cui, W. Zhang, D. Pu, G. Zeng, Y. Liu, S. Zhou, C. Wang, J. Zhou, H. Guan, W. Shen, G. Li, Ti. Wang, W. Zheng, G. Fang, W. Ke, Efficient narrow-bandgap mixed tin-lead perovskite solar cells via natural tin oxide doping. Adv. Mater. 35(32), 2301125 (2023). https://doi.org/10.1002/adma.202301125
- X. Li, Z. Ying, S. Li, L. Chen, M. Zhang et al., Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 141 (2025). https://doi.org/10.1007/s40820-024-01631-x
- Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
- C. Xiao, Y. Zhai, Z. Song, K. Wang, C. Wang et al., Operando characterizations of light-induced junction evolution in perovskite solar cells. ACS Appl. Mater. Interfaces 15(17), 20909–20916 (2023). https://doi.org/10.1021/acsami.2c22801
- C. Xiao, Q. Zhao, C.-S. Jiang, Y. Sun, M.M. Al-Jassim, S.U. Nanayakkara, J.M. Luther, Perovskite quantum dot solar cells: mapping interfacial energetics for improving charge separation. Nano Energy 78, 105319 (2020). https://doi.org/10.1016/j.nanoen.2020.105319
- S. Jeong, S. Seo, H. Yang, H. Park, S. Shin et al., Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11(42), 2102236 (2021). https://doi.org/10.1002/aenm.202102236
- H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15(1), 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
- C. Geng, K. Zhang, C. Wang, C.H. Wu, J. Jiang, F. Long, L. Han, Q. Han, Y.-B. Cheng, Y. Peng, Crystallization modulation and holistic passivation enables efficient two-terminal perovskite/CuIn(Ga)Se2 tandem solar cells. Nano-Micro Lett. 17(1), 8 (2024). https://doi.org/10.1007/s40820-024-01514-1
- Y. Wang, Y. Cheng, C. Yin, J. Zhang, J. You et al., Manipulating crystal growth and secondary phase PbI2 to enable efficient and stable perovskite solar cells with natural additives. Nano-Micro Lett. 16(1), 183 (2024). https://doi.org/10.1007/s40820-024-01400-w
- T. Hu, Y. Wang, K. Liu, J. Liu, H. Zhang et al., Understanding the decoupled effects of cations and anions doping for high-performance perovskite solar cells. Nano-Micro Lett. 17(1), 145 (2025). https://doi.org/10.1007/s40820-025-01655-x
- P. Wu, S. Wang, J.H. Heo, H. Liu, X. Chen et al., Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 114 (2023). https://doi.org/10.1007/s40820-023-01085-7
- C. Li, Z.S. Wang, H.L. Zhu, D. Zhang, J. Cheng, H. Lin, D. Ouyang, W.C.H. Choy, Thermionic emission–based interconnecting layer featuring solvent resistance for monolithic tandem solar cells with solution-processed perovskites. Adv. Energy Mater. 8(36), 1801954 (2018). https://doi.org/10.1002/aenm.201801954
- C. Li, Y. Wang, W.C.H. Choy, Efficient interconnection in perovskite tandem solar cells. Small Methods 4(7), 2000093 (2020). https://doi.org/10.1002/smtd.202000093
- L. Du, C. Li, Y. Jiang, F. Cao, C. Jia et al., Indium oxide buffer layer for perovskite/Si 4-terminal tandem solar cells with efficiency exceeding 30%. J. Energy Chem. 102, 189–196 (2025). https://doi.org/10.1016/j.jechem.2024.10.037
References
J. Wang, B. Jiao, R. Tian, K. Sun, Y. Meng et al., Less-acidic boric acid-functionalized self-assembled monolayer for mitigating NiOx corrosion for efficient all-perovskite tandem solar cells. Nat. Commun. 16, 4148 (2025). https://doi.org/10.1038/s41467-025-59515-6
J. Wang, S. Hu, H. Zhu, S. Liu, Z. Zhang et al., Mercapto-functionalized scaffold improves perovskite buried interfaces for tandem photovoltaics. Nat. Commun. 16(1), 4917 (2025). https://doi.org/10.1038/s41467-025-59891-z
M.A. Green, E.D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer, D. Hinken, M. Rauer, J. Hohl‐Ebinger, X. Hao, Solar cell efficiency tables (Version 64). Prog. Photovoltaics Res. Appl. 32(7), 425–441 (2024). https://doi.org/10.1002/pip.3831
C. Duan, K. Zhang, Z. Peng, S. Li, F. Zou et al., Durable all-inorganic perovskite tandem photovoltaics. Nature 637(8048), 1111–1117 (2025). https://doi.org/10.1038/s41586-024-08432-7
R. Liu, C. Lan, M. Zeng, Z. Zheng, X. Zheng, R. Guo, J. Guo, S. Yang, Z. Wang, X. Li, Precisely tuning 3D/quasi-2D perovskite heterojunctions in wide-bandgap perovskites for high-performance tandem solar cells. Adv. Mater. 37(34), 2504321 (2025). https://doi.org/10.1002/adma.202504321
Z. Lin, J. Chen, K. Fan, J. Yi, H. Chen, S. Zou, H. Min, Y. Xu, M. Yu Lam, S.A. Aleksandr, K.S. Wong, He. Yan, K. Yan, Suppressing the interface photodegradation towards efficient and stable all perovskite tandem solar cells. Angew. Chem. Int. Ed. 64(31), e202424825 (2025). https://doi.org/10.1002/anie.202424825
P. Li, X. Cao, J. Li, B. Jiao, X. Hou et al., Ligand engineering in tin-based perovskite solar cells. Nano-Micro Lett. 15(1), 167 (2023). https://doi.org/10.1007/s40820-023-01143-0
K.-W. Yeom, D.-K. Lee, N.-G. Park, Hard and soft acid and base (HSAB) engineering for efficient and stable Sn-Pb perovskite solar cells. Adv. Energy Mater. 12(48), 2202496 (2022). https://doi.org/10.1002/aenm.202202496
J. Cao, H.-L. Loi, Y. Xu, X. Guo, N. Wang, H.-L. Loi, C.-k Liu, T. Wang, H. Cheng, Ye. Zhu, M.G. Li, W.-Y. Wong, F. Yan, High-performance tin-lead mixed-perovskite solar cells with vertical compositional gradient. Adv. Mater. 34(6), e2107729 (2022). https://doi.org/10.1002/adma.202107729
B. Li, B. Chang, L. Pan, Z. Li, L. Fu et al., Tin-based defects and passivation strategies in tin-related perovskite solar cells. ACS Energy Lett. 5(12), 3752–3772 (2020). https://doi.org/10.1021/acsenergylett.0c01796
S. Fu, N. Sun, Y. Xian, L. Chen, Y. Li et al., Suppressed deprotonation enables a durable buried interface in tin-lead perovskite for all-perovskite tandem solar cells. Joule 8(8), 2220–2237 (2024). https://doi.org/10.1016/j.joule.2024.05.007
R. Lin, K. Xiao, Z. Qin, Q. Han, C. Zhang et al., Monolithic all-perovskite tandem solar cells with 24.8% efficiency exploiting comproportionation to suppress Sn(ii) oxidation in precursor ink. Nat. Energy 4(10), 864–873 (2019). https://doi.org/10.1038/s41560-019-0466-3
X. Xu, C.-C. Chueh, Z. Yang, A. Rajagopal, J. Xu et al., Ascorbic acid as an effective antioxidant additive to enhance the efficiency and stability of Pb/Sn-based binary perovskite solar cells. Nano Energy 34, 392–398 (2017). https://doi.org/10.1016/j.nanoen.2017.02.040
H. Liu, L. Wang, R. Li, B. Shi, P. Wang et al., Modulated crystallization and reduced VOC deficit of mixed lead–tin perovskite solar cells with antioxidant caffeic acid. ACS Energy Lett. 6(8), 2907–2916 (2021). https://doi.org/10.1021/acsenergylett.1c01217
Z. Lin, J. Chen, C. Duan, K. Fan, J. Li et al., Self-assembly construction of a homojunction of Sn–Pb perovskite using an antioxidant for all-perovskite tandem solar cells with improved efficiency and stability. Energy Environ. Sci. 17(17), 6314–6322 (2024). https://doi.org/10.1039/D4EE01539H
D. Yu, M. Pan, G. Liu, X. Jiang, X. Wen et al., Electron-withdrawing organic ligand for high-efficiency all-perovskite tandem solar cells. Nat. Energy 9(3), 298–307 (2024). https://doi.org/10.1038/s41560-023-01441-2
W. Zhou, Y. Chen, N. Li, Z. Huang, Y. Zhang, Z. Zhang, Z. Guo, R. Yin, Y. Ma, F. Pei, H. Xie, H. Zai, L. Wang, Z. Qiu, Q. Chen, H. Zhou, A soldering flux tackles complex defects chemistry in Sn-Pb perovskite solar cells. Adv. Mater. 36(35), 2405807 (2024). https://doi.org/10.1002/adma.202405807
X. Ding, M. Yan, C. Chen, M. Zhai, H. Wang, Y. Tian, L. Wang, L. Sun, M. Cheng, Efficient and stable tin-lead mixed perovskite solar cells using post-treatment additive with synergistic effects. Angew. Chem. Int. Ed. 63(8), e202317676 (2024). https://doi.org/10.1002/anie.202317676
F. Zheng, N. Yang, S. Li, X. Xue, J. Ren, Y. Hao, 3-hydrazinylpyridine hydrochloride regulating crystallization kinetics of tin-lead perovskite prepared by two-step method. Adv. Funct. Mater. 35(10), 2416545 (2025). https://doi.org/10.1002/adfm.202416545
Y. Zhang, C. Li, H. Zhao, Z. Yu, X. Tang et al., Synchronized crystallization in tin-lead perovskite solar cells. Nat. Commun. 15, 6887 (2024). https://doi.org/10.1038/s41467-024-51361-2
J. Zhou, S. Fu, S. Zhou, L. Huang, C. Wang et al., Mixed tin-lead perovskites with balanced crystallization and oxidation barrier for all-perovskite tandem solar cells. Nat. Commun. 15(1), 2324 (2024). https://doi.org/10.1038/s41467-024-46679-w
S. Hu, J. Wang, P. Zhao, J. Pascual, J. Wang et al., Steering perovskite precursor solutions for multijunction photovoltaics. Nature 639(8053), 93–101 (2025). https://doi.org/10.1038/s41586-024-08546-y
S. Zhou, S. Fu, C. Wang, W. Meng, J. Zhou et al., Aspartate all-in-one doping strategy enables efficient all-perovskite tandems. Nature 624(7990), 69–73 (2023). https://doi.org/10.1038/s41586-023-06707-z
I.S. Harris, A.E. Treloar, S. Inoue, M. Sasaki, C. Gorrini et al., Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression. Cancer Cell 27(2), 211–222 (2015). https://doi.org/10.1016/j.ccell.2014.11.019
C. Wang, W. Sui, W. Chen, Y. Zhang, J. Xing et al., Recent advances in polysulfide-based prodrug nanomedicines for cancer therapy. Coord. Chem. Rev. 519, 216138 (2024). https://doi.org/10.1016/j.ccr.2024.216138
X. Gong, L. Sui, J. Morton, M.A. Brennan, C.S. Brennan, Investigation of nutritional and functional effects of rice bran protein hydrolysates by using preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines: a review. Trends Food Sci. Technol. 110, 798–811 (2021). https://doi.org/10.1016/j.tifs.2021.01.089
L. Wang, X. Zhang, P. Xu, J. Yan, Y. Zhang et al., Exploration of sea anemone-inspired high-performance biomaterials with enhanced antioxidant activity. Bioact. Mater. 10, 504–514 (2022). https://doi.org/10.1016/j.bioactmat.2021.08.021
Y.-M. Go, D.P. Jones, Intracellular proatherogenic events and cell adhesion modulated by extracellular thiol/disulfide redox state. Circulation 111(22), 2973–2980 (2005). https://doi.org/10.1161/CIRCULATIONAHA.104.515155
S. Stringer, C.A. Rhoads, A. Ekshyyan, L. Coe, T.Y. Aw, Maintenance of cellular NADPH is critical to intestinal cell survival during oxidative challenge: role of glucose and pentose phosphate shunt activity. Gastroenterology 124(4), A601 (2003). https://doi.org/10.1016/S0016-5085(03)83045-7
J. Liang, X. Hu, C. Wang, C. Liang, C. Chen et al., Origins and influences of metallic lead in perovskite solar cells. Joule 6(4), 816–833 (2022). https://doi.org/10.1016/j.joule.2022.03.005
U.R. Pendurthi, S. Ghosh, S.K. Mandal, L.V.M. Rao, Tissue factor activation: is disulfide bond switching a regulatory mechanism? Blood 110(12), 3900–3908 (2007). https://doi.org/10.1182/blood-2007-07-101469
P. Bull, U. Wyneken, P. Valenzuela, The reactivity of sulfhydryl groups of yeast DNA dependent RNA polymerase I. Nucleic Acids Res. 10(17), 5149–5160 (1982). https://doi.org/10.1093/nar/10.17.5149
H. Liu, Z. Zhang, W. Zuo, R. Roy, M. Li, M.M. Byranvand, M. Saliba, Pure tin halide perovskite solar cells: focusing on preparation and strategies. Adv. Energy Mater. 13(3), 2202209 (2023). https://doi.org/10.1002/aenm.202202209
X. Jin, S. Kang, S. Tanaka, S. Park, Monitoring the glutathione redox reaction in living human cells by combining metabolic labeling with heteronuclear NMR. Angew. Chem. Int. Ed. 55(28), 7939–7942 (2016). https://doi.org/10.1002/anie.201601026
G.A. Nagana Gowda, V. Pascua, D. Raftery, Extending the scope of 1H NMR-based blood metabolomics for the analysis of labile antioxidants: reduced and oxidized glutathione. Anal. Chem. 93(44), 14844–14850 (2021). https://doi.org/10.1021/acs.analchem.1c03763
E. Gaggelli, F. Berti, N. D’Amelio, N. Gaggelli, G. Valensin et al., Metabolic pathways of carcinogenic chromium. Environ. Health Perspect. 110(suppl 5), 733–738 (2002). https://doi.org/10.1289/ehp.02110s5733
Y. Bai, R. Tian, K. Sun, C. Liu, X. Lang et al., Decoupling light- and oxygen-induced degradation mechanisms of Sn–Pb perovskites in all perovskite tandem solar cells. Energy Environ. Sci. 17(22), 8557–8569 (2024). https://doi.org/10.1039/D4EE02427C
M. Yang, Y. Bai, Y. Meng, R. Tian, K. Sun, X. Lu, H. Pan, J. Wang, S. Zhou, J. Zhang, Z. Song, Y. Wang, C. Liu, Z. Ge, Sn-Pb perovskite with strong light and oxygen stability for all-perovskite tandem solar cells. Adv. Mater. 37(4), 2415627 (2025). https://doi.org/10.1002/adma.202415627
H. Tai, K. Nishikawa, Y. Higuchi, Z.-W. Mao, S. Hirota, Cysteine SH and glutamate COOH contributions to [NiFe] hydrogenase proton transfer revealed by highly sensitive FTIR spectroscopy. Angew. Chem. Int. Ed. 58(38), 13285–13290 (2019). https://doi.org/10.1002/anie.201904472
H. Li, B. Chang, L. Wang, Z. Wang, L. Pan et al., Surface reconstruction for tin-based perovskite solar cells. ACS Energy Lett. 7(11), 3889–3899 (2022). https://doi.org/10.1021/acsenergylett.2c01624
D. Wang, M. Chen, X. Lei, Y. Wang, Y. Bao, X. Huang, P. Zhu, J. Zeng, X. Wang, SaiWing Tsang, F. Li, B. Xu, A.-Y. Jen, All-in-one additive enabled efficient and stable narrow-bandgap perovskites for monolithic all-perovskite tandem solar cells. Adv. Mater. 36(52), 2411677 (2024). https://doi.org/10.1002/adma.202411677
M. Xie, Z. Lv, W. Zhao, Y. Fang, J. Huang et al., Intercalated hydrates stabilize bulky MoS2 anode for lithium-ion battery. Chem. Eng. J. 470, 144282 (2023). https://doi.org/10.1016/j.cej.2023.144282
M. Ma, C. Zhang, Y. Ma, W. Li, Y. Wang, S. Wu, C. Liu, Y. Mai, Efficient and stable perovskite solar cells and modules enabled by tailoring additive distribution according to the film growth dynamics. Nano-Micro Lett. 17(1), 39 (2024). https://doi.org/10.1007/s40820-024-01538-7
H. Liu, G. Jin, J. Wang, W. Zhang, L. Qing et al., Quantum dots mediated crystallization enhancement in two-step processed perovskite solar cells. Nano-Micro Lett. 17(1), 169 (2025). https://doi.org/10.1007/s40820-025-01677-5
L. Liu, Y. Ma, Y. Wang, Q. Ma, Z. Wang et al., Hole-transport management enables 23%-efficient and stable inverted perovskite solar cells with 84% fill factor. Nano-Micro Lett. 15(1), 117 (2023). https://doi.org/10.1007/s40820-023-01088-4
Y.-H. Huang, S.-Y. Zou, C.-Y. Sheng, Y.-C. Fang, X.-D. Wang, W. Wei, W.-G. Li, D.-B. Kuang, Lattice anchoring stabilizes α-FAPbI3 perovskite for high-performance X-ray detectors. Nano-Micro Lett. 18(1), 14 (2025). https://doi.org/10.1007/s40820-025-01856-4
H. Zheng, G. Liu, X. Dong, F. Chen, C. Wang et al., Self-regulated bilateral anchoring enables efficient charge transport pathways for high-performance rigid and flexible perovskite solar cells. Nano-Micro Lett. 17(1), 328 (2025). https://doi.org/10.1007/s40820-025-01846-6
Y. Chang, L. Liu, L. Qi, J. Du, Q. Du et al., Highly oriented and ordered co-assembly monolayers for inverted perovskite solar cells. Angew. Chem. Int. Ed. 64(5), e202418883 (2025). https://doi.org/10.1002/anie.202418883
S. Wang, T. Yang, Y. Yang, Y. Du, W. Huang, L. Cheng, H. Li, P. Wang, Y. Wang, Yi. Zhang, C. Ma, P. Liu, G. Zhao, Z. Ding, S (Frank). Liu, K. Zhao, In situ self-elimination of defects via controlled perovskite crystallization dynamics for high-performance solar cells. Adv. Mater. 35(42), 2305314 (2023). https://doi.org/10.1002/adma.202305314
S. Pratap, F. Babbe, N.S. Barchi, Z. Yuan, T. Luong et al., Out-of-equilibrium processes in crystallization of organic-inorganic perovskites during spin coating. Nat. Commun. 12(1), 5624 (2021). https://doi.org/10.1038/s41467-021-25898-5
M. Qin, P.F. Chan, X. Lu, A systematic review of metal halide perovskite crystallization and film formation mechanism unveiled by in situ GIWAXS. Adv. Mater. 33(51), 2105290 (2021). https://doi.org/10.1002/adma.202105290
L. Zhu, X. Zhang, M. Li, X. Shang, K. Lei, B. Zhang, C. Chen, S. Zheng, H. Song, J. Chen, Trap state passivation by rational ligand molecule engineering toward efficient and stable perovskite solar cells exceeding 23% efficiency. Adv. Energy Mater. 11(20), 2100529 (2021). https://doi.org/10.1002/aenm.202100529
K. Li, L. Zhang, Y. Ma, Y. Gao, X. Feng, Q. Li, Li. Shang, N. Yuan, J. Ding, A.K.Y. Jen, J. You, S (Frank). Liu, Au nanocluster assisted microstructural reconstruction for buried interface healing for enhanced perovskite solar cell performance. Adv. Mater. 36(8), 2310651 (2024). https://doi.org/10.1002/adma.202310651
T. Imran, H.S. Aziz, T. Iftikhar, M. Ahmad, H. Xie et al., Interfacial band bending and suppressing deep level defects via Eu-MOF-mediated cathode buffer layer in an MA-free inverted perovskite solar cell with high fill factor. Energy Environ. Sci. 17(19), 7234–7246 (2024). https://doi.org/10.1039/d4ee02894e
X. Zhang, F. Liu, Y. Guan, Y. Zou, C. Wu et al., Reducing the V(oc) loss of hole transport layer-free carbon-based perovskite solar cells via dual interfacial passivation. Nano-Micro Lett. 17(1), 258 (2025). https://doi.org/10.1007/s40820-025-01775-4
L. Huang, H. Cui, W. Zhang, D. Pu, G. Zeng, Y. Liu, S. Zhou, C. Wang, J. Zhou, H. Guan, W. Shen, G. Li, Ti. Wang, W. Zheng, G. Fang, W. Ke, Efficient narrow-bandgap mixed tin-lead perovskite solar cells via natural tin oxide doping. Adv. Mater. 35(32), 2301125 (2023). https://doi.org/10.1002/adma.202301125
X. Li, Z. Ying, S. Li, L. Chen, M. Zhang et al., Top-down dual-interface carrier management for highly efficient and stable perovskite/silicon tandem solar cells. Nano-Micro Lett. 17(1), 141 (2025). https://doi.org/10.1007/s40820-024-01631-x
Q. Zhang, Q. Zhao, H. Wang, Y. Yao, L. Li et al., Tuning isomerism effect in organic bulk additives enables efficient and stable perovskite solar cells. Nano-Micro Lett. 17(1), 107 (2025). https://doi.org/10.1007/s40820-024-01613-z
C. Xiao, Y. Zhai, Z. Song, K. Wang, C. Wang et al., Operando characterizations of light-induced junction evolution in perovskite solar cells. ACS Appl. Mater. Interfaces 15(17), 20909–20916 (2023). https://doi.org/10.1021/acsami.2c22801
C. Xiao, Q. Zhao, C.-S. Jiang, Y. Sun, M.M. Al-Jassim, S.U. Nanayakkara, J.M. Luther, Perovskite quantum dot solar cells: mapping interfacial energetics for improving charge separation. Nano Energy 78, 105319 (2020). https://doi.org/10.1016/j.nanoen.2020.105319
S. Jeong, S. Seo, H. Yang, H. Park, S. Shin et al., Cyclohexylammonium-based 2D/3D perovskite heterojunction with funnel-like energy band alignment for efficient solar cells (23.91%). Adv. Energy Mater. 11(42), 2102236 (2021). https://doi.org/10.1002/aenm.202102236
H. Liu, Z. Lu, W. Zhang, H. Zhou, Y. Xia et al., Synergistic optimization of buried interface by multifunctional organic-inorganic complexes for highly efficient planar perovskite solar cells. Nano-Micro Lett. 15(1), 156 (2023). https://doi.org/10.1007/s40820-023-01130-5
C. Geng, K. Zhang, C. Wang, C.H. Wu, J. Jiang, F. Long, L. Han, Q. Han, Y.-B. Cheng, Y. Peng, Crystallization modulation and holistic passivation enables efficient two-terminal perovskite/CuIn(Ga)Se2 tandem solar cells. Nano-Micro Lett. 17(1), 8 (2024). https://doi.org/10.1007/s40820-024-01514-1
Y. Wang, Y. Cheng, C. Yin, J. Zhang, J. You et al., Manipulating crystal growth and secondary phase PbI2 to enable efficient and stable perovskite solar cells with natural additives. Nano-Micro Lett. 16(1), 183 (2024). https://doi.org/10.1007/s40820-024-01400-w
T. Hu, Y. Wang, K. Liu, J. Liu, H. Zhang et al., Understanding the decoupled effects of cations and anions doping for high-performance perovskite solar cells. Nano-Micro Lett. 17(1), 145 (2025). https://doi.org/10.1007/s40820-025-01655-x
P. Wu, S. Wang, J.H. Heo, H. Liu, X. Chen et al., Mixed cations enabled combined bulk and interfacial passivation for efficient and stable perovskite solar cells. Nano-Micro Lett. 15, 114 (2023). https://doi.org/10.1007/s40820-023-01085-7
C. Li, Z.S. Wang, H.L. Zhu, D. Zhang, J. Cheng, H. Lin, D. Ouyang, W.C.H. Choy, Thermionic emission–based interconnecting layer featuring solvent resistance for monolithic tandem solar cells with solution-processed perovskites. Adv. Energy Mater. 8(36), 1801954 (2018). https://doi.org/10.1002/aenm.201801954
C. Li, Y. Wang, W.C.H. Choy, Efficient interconnection in perovskite tandem solar cells. Small Methods 4(7), 2000093 (2020). https://doi.org/10.1002/smtd.202000093
L. Du, C. Li, Y. Jiang, F. Cao, C. Jia et al., Indium oxide buffer layer for perovskite/Si 4-terminal tandem solar cells with efficiency exceeding 30%. J. Energy Chem. 102, 189–196 (2025). https://doi.org/10.1016/j.jechem.2024.10.037