Synaptic Plasticity Engineering for Neural Precision, Temporal Learning, and Scalable Neuromorphic Systems
Corresponding Author: Chun Zhao
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 196
Abstract
Manipulating the expression of synaptic plasticity in neuromorphic devices provides essential foundations for developing intelligent, adaptive hardware systems. In recent years, advances have shifted from static emulation toward dynamic, network-oriented plasticity design, offering enhanced computational accuracy and functional relevance. This review highlights how diversified plasticity behaviors, including multilevel long-term potentiation and depression for spatial models, tunable short-term memory for temporal models, as well as wavelength-selective response, excitatory and inhibitory synergy, and adaptive threshold modulation, collectively support key tasks such as stable learning, temporal processing, and context-aware adaptation. Beyond behavioral innovations, strategies such as multifunctional single-device integration, multimodal fusion, and heterogeneous system assembly enable compact, energy-efficient, and versatile neuromorphic architectures. Recent developments at the array level further demonstrate high-performance scalability and system-level applicability. Despite notable progress, current modulation strategies remain constrained in flexibility, diversity, and large-scale coordination. Future research should focus on enriching the behavioral repertoire of plasticity, advancing cross-modal convergence, and improving array-level uniformity, paving the way toward deployable, high-efficiency neuromorphic intelligence.
Highlights:
1 This review provides an in-depth discussion of computing-unit optimization through synaptic plasticity engineering, enabling precise weight modulation in spatial models and effective temporal information processing in dynamic neural networks.
2 It delves into algorithmic advancement through plasticity modulation, improving accuracy, stability, and convergence in neuromorphic computing models.
3 It explores resource-efficient neuromorphic architectures, integrating multifunctional devices, multimodal fusion, and heterogeneous arrays for scalable, low-power, and generalizable intelligent systems.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- K. Lu, X. Li, Q. Sun, X. Pang, J. Chen et al., Solution-processed electronics for artificial synapses. Mater. Horiz. 8(2), 447–470 (2021). https://doi.org/10.1039/d0mh01520b
- J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). https://doi.org/10.1038/nnano.2012.240
- L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2(5), 1900167 (2020). https://doi.org/10.1002/aisy.201900167
- G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31(4), 2005443 (2021). https://doi.org/10.1002/adfm.202005443
- S. Meng, J. Jiang, Q. Ju, Y. Wang, D. Wu et al., Adaptive sub-nanometer control of a piezoelectric positioning platform. IEEE Trans. Autom. Sci. Eng. 22, 22755–22765 (2025). https://doi.org/10.1109/TASE.2025.3615572
- Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang et al., Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3
- X. Zou, S. Xu, X. Chen, L. Yan, Y. Han, Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci. China Inf. Sci. 64(6), 160404 (2021). https://doi.org/10.1007/s11432-020-3227-1
- R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), e2202590 (2022). https://doi.org/10.1002/smll.202202590
- L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3(S11), 1178–1183 (2000). https://doi.org/10.1038/81453
- L. Lu, B. Sun, Z. Wang, J. Meng, T. Wang, Two-dimensional MXene-based advanced sensors for neuromorphic computing intelligent application. Nano-Micro Lett. 18(1), 64 (2025). https://doi.org/10.1007/s40820-025-01902-1
- Z. Zhu, J. Shui, T. Wang, J. Meng, Mechanical properties analysis of flexible memristors for neuromorphic computing. Nano-Micro Lett. 18(1), 2 (2025). https://doi.org/10.1007/s40820-025-01825-x
- I. Boybat, M. Le Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9(1), 2514 (2018). https://doi.org/10.1038/s41467-018-04933-y
- Z. Liu, Y. Fang, Z. Cai, Y. Liu, X. Zhao et al., Constructing a complex hybrid neural network for biomimetic spatial and temporal perception. Small 21(35), e2506100 (2025). https://doi.org/10.1002/smll.202506100
- F. Chen, Y. Zhou, Y. Zhu, R. Zhu, P. Guan et al., Recent progress in artificial synaptic devices: materials, processing and applications. J. Mater. Chem. C 9(27), 8372–8394 (2021). https://doi.org/10.1039/d1tc01211h
- Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017). https://doi.org/10.1038/nmat4756
- R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li et al., Anatomy of Ag/Hafnia-based selectors with 10(10) nonlinearity. Adv. Mater. 29(12), 1604457 (2017). https://doi.org/10.1002/adma.201604457
- S. Yan, J. Zang, P. Xu, Y. Zhu, G. Li et al., Recent progress in ferroelectric synapses and their applications. Sci. China Mater. 66(3), 877–894 (2023). https://doi.org/10.1007/s40843-022-2318-9
- J. Zeng, G. Feng, G. Wu, J. Liu, Q. Zhao et al., Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34(19), 2313010 (2024). https://doi.org/10.1002/adfm.202313010
- R.D. Nikam, M. Kwak, H. Hwang, All-solid-state oxygen ion electrochemical random-access memory for neuromorphic computing. Adv. Electron. Mater. 7(5), 2100142 (2021). https://doi.org/10.1002/aelm.202100142
- J.-M. Yu, C. Lee, D.-J. Kim, H. Park, J.-K. Han et al., All-solid-state ion synaptic transistor for wafer-scale integration with electrolyte of a nanoscale thickness. Adv. Funct. Mater. 31(23), 2010971 (2021). https://doi.org/10.1002/adfm.202010971
- W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002). https://doi.org/10.1162/089976602760407955
- R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
- M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12(2), 1680–1687 (2018). https://doi.org/10.1021/acsnano.7b08331
- Y. He, Z. Ge, Z. Li, Z. Li, R. Liu et al., All-polymer organic electrochemical synaptic transistor with controlled ionic dynamics for high-performance wearable and sustainable reservoir computing. Adv. Funct. Mater. 35(8), 2415595 (2025). https://doi.org/10.1002/adfm.202415595
- P. Guo, J. Zhang, J. Huang, Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration. J. Semicond. 46(2), 021405 (2025). https://doi.org/10.1088/1674-4926/24120017
- Y. Xu, W. Liu, Y. Huang, C. Jin, B. Zhou et al., Recent advances in flexible organic synaptic transistors. Adv. Electron. Mater. 7(11), 2100336 (2021). https://doi.org/10.1002/aelm.202100336
- S. Saïghi, C.G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf et al., Plasticity in memristive devices for spiking neural networks. Front. Neurosci. 9, 51 (2015). https://doi.org/10.3389/fnins.2015.00051
- S. Wang, H. Chen, T. Liu, Y. Wei, G. Yao et al., Retina-inspired organic photonic synapses for selective detection of SWIR light. Angew. Chem. Int. Ed. 62(6), e202213733 (2023). https://doi.org/10.1002/anie.202213733
- J. Zhang, P. Guo, Z. Guo, L. Li, T. Sun et al., Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv. Funct. Mater. 33(32), 2302885 (2023). https://doi.org/10.1002/adfm.202302885
- Z. Guo, J. Zhang, J. Wang, X. Liu, P. Guo et al., Organic synaptic transistors with environmentally friendly core/shell quantum dots for wavelength-selective memory and neuromorphic functions. Nano Lett. 24(20), 6139–6147 (2024). https://doi.org/10.1021/acs.nanolett.4c01606
- D. Kim, J.-S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32(21), 2200497 (2022). https://doi.org/10.1002/adfm.202200497
- Y.-C. Mi, C.-H. Yang, L.-C. Shih, J.-S. Chen, All-optical-controlled excitatory and inhibitory synaptic signaling through bipolar photoresponse of an oxide-based phototransistor. Adv. Opt. Mater. 11(14), 2300089 (2023). https://doi.org/10.1002/adom.202300089
- Z. Wang, M. Li, H. Yang, S. Shao, J. Li et al., Enhancement-mode carbon nanotube optoelectronic synaptic transistors with large and controllable threshold voltage modulation window for broadband flexible vision systems. ACS Nano 18(22), 14298–14311 (2024). https://doi.org/10.1021/acsnano.4c00166
- J.-K. Han, M.-W. Lee, J.-M. Yu, Y.-K. Choi, A single transistor-based threshold switch for a bio-inspired reconfigurable threshold logic. Adv. Electron. Mater. 7(5), 2100117 (2021). https://doi.org/10.1002/aelm.202100117
- J. Jiang, W. Xu, Z. Sun, L. Fu, S. Zhang et al., Wavelength-controlled photoconductance polarity switching via harnessing defects in doped PdSe2 for artificial synaptic features. Small 20(13), 2306068 (2024). https://doi.org/10.1002/smll.202306068
- Z. Wang, L. Lu, J. Meng, T. Wang, Emerging negative photoconductivity effect-based synaptic device for optoelectronic in-sensor computing. Adv. Mater. 37(32), e2504710 (2025). https://doi.org/10.1002/adma.202504710
- W.-A. Mo, G. Ding, Z. Nie, Z. Feng, K. Zhou et al., Spatiotemporal modulation of plasticity in multi-terminal tactile synaptic transistor. Adv. Electron. Mater. 9(1), 2200733 (2023). https://doi.org/10.1002/aelm.202200733
- X. Liu, S. Wang, Z. Di, H. Wu, C. Liu et al., An optoelectronic synapse based on two-dimensional violet phosphorus heterostructure. Adv. Sci. 10(22), 2301851 (2023). https://doi.org/10.1002/advs.202301851
- P. Langner, F. Chiabrera, N. Alayo, P. Nizet, L. Morrone et al., Solid-state oxide-ion synaptic transistor for neuromorphic computing. Adv. Mater. 37(7), e2415743 (2025). https://doi.org/10.1002/adma.202415743
- Q. Lin, Y. Zhu, J. Sun, S. Peng, Z. Wang et al., A full-quantum-dot optoelectronic memristor for in-sensor reservoir computing system with integrated functions. Adv. Funct. Mater. 35(30), 2423548 (2025). https://doi.org/10.1002/adfm.202423548
- Y.-B. Leng, Z. Lv, S. Huang, P. Xie, H.-X. Li et al., A near-infrared retinomorphic device with high dimensionality reservoir expression. Adv. Mater. 36(48), 2411225 (2024). https://doi.org/10.1002/adma.202411225
- H. Choi, S. Baek, H. Jung, T. Kang, S. Lee et al., Spiking neural network integrated with impact ionization field-effect transistor neuron and a ferroelectric field-effect transistor synapse. Adv. Mater. 37(26), 2406970 (2025). https://doi.org/10.1002/adma.202406970
- M. Yan, Q. Zhu, S. Wang, Y. Ren, G. Feng et al., Ferroelectric synaptic transistor network for associative memory. Adv. Electron. Mater. 7(4), 2001276 (2021). https://doi.org/10.1002/aelm.202001276
- M. Huang, X. Liu, F. Yu, J. Li, J. Huang et al., Plasmon-enhanced optoelectronic graded neurons for dual-waveband image fusion and motion perception. Adv. Mater. 37(4), 2412993 (2025). https://doi.org/10.1002/adma.202412993
- J. Jiang, X. Shan, J. Xu, Y. Sun, T.-F. Xiang et al., Retina-like chlorophyll heterojunction-based optoelectronic memristor with all-optically modulated synaptic plasticity enabling neuromorphic edge detection. Adv. Funct. Mater. 34(51), 2409677 (2024). https://doi.org/10.1002/adfm.202409677
- D. Li, G. Liu, F. Li, H. Ren, Y. Tang et al., Double-opponent spiking neuron array with orientation selectivity for encoding and spatial-chromatic processing. Sci. Adv. 11(7), eadt3584 (2025). https://doi.org/10.1126/sciadv.adt3584
- S. Woo, D. Moon, Y. Won, C. Kyung, J. Yoo et al., A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10(21), eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
- J. Hu, H. Li, Y. Zhang, J. Zhou, Y. Zhao et al., Reconfigurable neuromorphic computing with 2D material heterostructures for versatile neural information processing. Nano Lett. 24(30), 9391–9398 (2024). https://doi.org/10.1021/acs.nanolett.4c02658
- Y. Chen, H. Wang, H. Chen, W. Zhang, M. Pätzel et al., Li promoting long afterglow organic light-emitting transistor for memory optocoupler module. Adv. Mater. 36(27), 2402515 (2024). https://doi.org/10.1002/adma.202402515
- R. Li, Z. Yue, H. Luan, Y. Dong, X. Chen et al., Multimodal artificial synapses for neuromorphic application. Research 7, 427 (2024). https://doi.org/10.34133/research.0427
- D. Zendrikov, S. Solinas, G. Indiveri, Brain-inspired methods for achieving robust computation in heterogeneous mixed-signal neuromorphic processing systems. Neuromorph. Comput. Eng. 3(3), 034002 (2023). https://doi.org/10.1088/2634-4386/ace64c
- M.C. Sahu, S. Sahoo, S.K. Mallik, A.K. Jena, S. Sahoo, Multifunctional 2D MoS2 optoelectronic artificial synapse with integrated arithmetic and reconfigurable logic operations for in-memory neuromorphic computing applications. Adv. Mater. Technol. 8(2), 2201125 (2023). https://doi.org/10.1002/admt.202201125
- H. Wan, J. Zhao, L.-W. Lo, Y. Cao, N. Sepúlveda et al., Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 15(9), 14587–14597 (2021). https://doi.org/10.1021/acsnano.1c04298
- C. Weilenmann, A.N. Ziogas, T. Zellweger, K. Portner, M. Mladenović et al., Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks. Nat. Commun. 15(1), 6898 (2024). https://doi.org/10.1038/s41467-024-51093-3
- C. Choi, H. Kim, J.-H. Kang, M.-K. Song, H. Yeon et al., Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 5(6), 386–393 (2022). https://doi.org/10.1038/s41928-022-00778-y
- S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
- R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
- M.-K. Song, J.-H. Kang, X. Zhang, W. Ji, A. Ascoli et al., Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano 17(13), 11994–12039 (2023). https://doi.org/10.1021/acsnano.3c03505
- S.-M. Kim, S. Kim, L. Ling, S.E. Liu, S. Jin et al., Linear and symmetric Li-based composite memristors for efficient supervised learning. ACS Appl. Mater. Interfaces 14(4), 5673–5681 (2022). https://doi.org/10.1021/acsami.1c24562
- S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
- A. Citri, R.C. Malenka, Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008). https://doi.org/10.1038/sj.npp.1301559
- X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9(2), 021309 (2022). https://doi.org/10.1063/5.0073085
- B. Tian, L. Liu, M. Yan, J. Wang, Q. Zhao et al., A robust artificial synapse based on organic ferroelectric polymer. Adv. Electron. Mater. 5(1), 1800600 (2019). https://doi.org/10.1002/aelm.201800600
- P. Guo, J. Zhang, Z. Hua, T. Sun, L. Li et al., Organic synaptic transistors based on a semiconductor heterojunction for artificial visual and neuromorphic functions. Nano Lett. 25(8), 3204–3211 (2025). https://doi.org/10.1021/acs.nanolett.4c05809
- Z. Lv, M.-H. Jiang, H.-Y. Liu, Q.-X. Li, T. Xie et al., Temperature-resilient polymeric memristors for effective deblurring in static and dynamic imaging. Adv. Funct. Mater. 35(23), 2424382 (2025). https://doi.org/10.1002/adfm.202424382
- Y. Chen, M. Zhang, D. Li, Y. Tang, H. Ren et al., Bidirectional synaptic phototransistor based on two-dimensional ferroelectric semiconductor for mixed color pattern recognition. ACS Nano 17(13), 12499–12509 (2023). https://doi.org/10.1021/acsnano.3c02167
- G.W. Baek, Y.J. Kim, J. Kim, J.H. Chang, U. Kim et al., Memristive switching mechanism in colloidal InP/ZnSe/ZnS quantum dot-based synaptic devices for neuromorphic computing. Nano Lett. 24(19), 5855–5861 (2024). https://doi.org/10.1021/acs.nanolett.4c01083
- D.H. Choi, J.B. An, J. Chung, K. Park, H. Lee et al., Synergistic enhancement of long-term plasticity in solid-state electrolyte-gated synaptic transistors realized by introducing an ion-capturing layer. Nano Today 61, 102631 (2025). https://doi.org/10.1016/j.nantod.2025.102631
- M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
- L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431(7010), 796–803 (2004). https://doi.org/10.1038/nature03010
- M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
- Y. Zhang, Q. Zhu, B. Tian, C. Duan, New-generation ferroelectric AlScN materials. Nano-Micro Lett 16(1), 227 (2024). https://doi.org/10.1007/s40820-024-01441-1
- J. Zhu, C. Liu, R. Gao, Y. Zhang, H. Zhang et al., Ultra-flexible high-linearity silicon nanomembrane synaptic transistor array. Adv. Mater. 37(7), e2413404 (2025). https://doi.org/10.1002/adma.202413404
- Y. Hwang, B. Park, S. Hwang, S.-W. Choi, H.S. Kim et al., A bioinspired ultra flexible artificial van der Waals 2D-MoS2 channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing. Small Methods 7(7), 2201719 (2023). https://doi.org/10.1002/smtd.202201719
- G. Feng, Q. Zhu, X. Liu, L. Chen, X. Zhao et al., A ferroelectric fin diode for robust non-volatile memory. Nat. Commun. 15(1), 513 (2024). https://doi.org/10.1038/s41467-024-44759-5
- B. Tian, Z. Xie, L. Chen, S. Hao, Y. Liu et al., Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Exploration 3(3), 20220126 (2023). https://doi.org/10.1002/EXP.20220126
- G. Zhang, J. Qin, Y. Zhang, G. Gong, Z.-Y. Xiong et al., Functional materials for memristor-based reservoir computing: dynamics and applications. Adv. Funct. Mater. 33(42), 2302929 (2023). https://doi.org/10.1002/adfm.202302929
- S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13(1), 2811 (2022). https://doi.org/10.1038/s41467-022-30432-2
- J. Song, J. Meng, C. Lu, T. Wang, C. Wan et al., Self-powered optoelectronic synaptic device for both static and dynamic reservoir computing. Nano Energy 134, 110574 (2025). https://doi.org/10.1016/j.nanoen.2024.110574
- H.-J. Kim, D.-S. Woo, S.-M. Jin, H.-J. Kwon, K.-H. Kwon et al., Super-linear-threshold-switching selector with multiple jar-shaped Cu-filaments in the amorphous Ge3Se7 resistive switching layer in a cross-point synaptic memristor array. Adv. Mater. 34(40), 2203643 (2022). https://doi.org/10.1002/adma.202203643
- X. Li, Y. Zhong, H. Chen, J. Tang, X. Zheng et al., A memristors-based dendritic neuron for high-efficiency spatial-temporal information processing. Adv. Mater. 35(37), e2203684 (2023). https://doi.org/10.1002/adma.202203684
- X. Wu, S. Shi, B. Liang, Y. Dong, R. Yang et al., Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10(16), eadn4524 (2024). https://doi.org/10.1126/sciadv.adn4524
- J. Liu, G. Feng, W. Li, S. Hao, S. Han et al., Physical reservoir computing for Edge AI applications. Innov. Mater. 3(2), 100127 (2025). https://doi.org/10.59717/j.xinn-mater.2025.100127
- A. Bednarkiewicz, M. Szalkowski, M. Majak, Z. Korczak, M. Misiak et al., All-optical data processing with photon-avalanching nanocrystalline photonic synapse. Adv. Mater. 35(42), e2304390 (2023). https://doi.org/10.1002/adma.202304390
- J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang et al., Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019). https://doi.org/10.1038/s41586-019-1424-8
- R. Brette, W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005). https://doi.org/10.1152/jn.00686.2005
- J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569(7755), 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
- D. Wang, S. Hao, B. Dkhil, B. Tian, C. Duan, Ferroelectric materials for neuroinspired computing applications. Fundam. Res. 4(5), 1272–1291 (2024). https://doi.org/10.1016/j.fmre.2023.04.013
- G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). https://doi.org/10.1088/0957-4484/24/38/384010
- S. Liu, Z. Wu, Z. He, W. Chen, X. Zhong et al., Low-power perovskite neuromorphic synapse with enhanced photon efficiency for directional motion perception. ACS Appl. Mater. Interfaces 16(17), 22303–22311 (2024). https://doi.org/10.1021/acsami.4c04398
- Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
- N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32(15), 2110976 (2022). https://doi.org/10.1002/adfm.202110976
- Y. Cai, Y. Jiang, C. Sheng, Z. Wu, L. Chen et al., In-situ artificial retina with all-in-one reconfigurable photomemristor networks. NPJ Flex. Electron. 7, 29 (2023). https://doi.org/10.1038/s41528-023-00262-3
- P. Yang, H. Xu, X. Luo, S. Yu, Y. Liu et al., Tailoring dynamic synaptic plasticity in FeTFT optoelectronic synapse for associative learning. Adv. Electron. Mater. 11(7), 2400732 (2025). https://doi.org/10.1002/aelm.202400732
- C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 32(22), 2113053 (2022). https://doi.org/10.1002/adfm.202113053
- P. Wang, W. Xue, J. Zeng, W. Ci, Q. Chen et al., Wavelength-selective photodetector and neuromorphic visual sensor utilizing intrinsic defect semiconductor. Adv. Funct. Mater. 34(46), 2407746 (2024). https://doi.org/10.1002/adfm.202407746
- T. Zeng, Z. Zhao, K. Ye, Z. Yu, J. Yan et al., Anisotropic optoelectronic synapses in 2D Nb2GeTe4 for direction-programmable neuromorphic perception and decision-making. Adv. Mater. (2025). https://doi.org/10.1002/adma.202509686
- K.-W. Yau, R.C. Hardie, Phototransduction motifs and variations. Cell 139(2), 246–264 (2009). https://doi.org/10.1016/j.cell.2009.09.029
- Z. Liu, Y. Fang, Z. Cai, Y. Liu, Z. Dong et al., Advanced dual-input artificial optical synapse for recognition and generative neural network. Nano Energy 132, 110347 (2024). https://doi.org/10.1016/j.nanoen.2024.110347
- H. Shao, W. Wang, Y. Zhang, B. Gao, C. Jiang et al., Adaptive in-sensor computing for enhanced feature perception and broadband image restoration. Adv. Mater. 37(6), e2414261 (2025). https://doi.org/10.1002/adma.202414261
- X.-M. Dong, C. Chen, Y.-X. Li, H.-C. Sun, B. Liu et al., Molecular cocrystal strategy for retinamorphic vision with UV–vis–NIR perception and fast recognition. ACS Nano 19(5), 5718–5726 (2025). https://doi.org/10.1021/acsnano.4c16251
- W. Liu, J. Wang, J. Guo, L. Wang, Z. Gu et al., Efficient carbon-based optoelectronic synapses for dynamic visual recognition. Adv. Sci. 12(11), 2414319 (2025). https://doi.org/10.1002/advs.202414319
- Y. Deng, S. Liu, X. Ma, S. Guo, B. Zhai et al., Intrinsic defect-driven synergistic synaptic heterostructures for gate-free neuromorphic phototransistors. Adv. Mater. 36(19), e2309940 (2024). https://doi.org/10.1002/adma.202309940
- S. Dokos, T. Guo, Computational models of neural retina. In: Encyclopedia of Computational Neuroscience, pp. 912–930. Springer New York (2022). https://doi.org/10.1007/978-1-0716-1006-0_652
- G.D. Field, E.J. Chichilnisky, Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007). https://doi.org/10.1146/annurev.neuro.30.051606.094252
- M. Ptito, M. Bleau, J. Bouskila, The retina: a window into the brain. Cells 10(12), 3269 (2021). https://doi.org/10.3390/cells10123269
- K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17(7), 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
- L. Wang, H. Wang, J. Liu, Y. Wang, H. Shao et al., Negative photoconductivity transistors for visuomorphic computing. Adv. Mater. 36(38), e2403538 (2024). https://doi.org/10.1002/adma.202403538
- J. Yao, Q. Wang, Y. Zhang, Y. Teng, J. Li et al., Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing. Nat. Commun. 15(1), 6147 (2024). https://doi.org/10.1038/s41467-024-50490-y
- J. Fu, C. Nie, F. Sun, G. Li, H. Shi et al., Bionic visual-audio photodetectors with in-sensor perception and preprocessing. Sci. Adv. 10(7), eadk8199 (2024). https://doi.org/10.1126/sciadv.adk8199
- T. Zhang, C. Fan, L. Hu, F. Zhuge, X. Pan et al., A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano 18(25), 16236–16247 (2024). https://doi.org/10.1021/acsnano.4c02278
- Z. Dang, F. Guo, Z. Wang, W. Jie, K. Jin et al., Object motion detection enabled by reconfigurable neuromorphic vision sensor under ferroelectric modulation. ACS Nano 18(40), 27727–27737 (2024). https://doi.org/10.1021/acsnano.4c10231
- L. Wang, Y. Zhang, Z. Guo, X. Meng, Q. Li et al., High-precision attention mechanism for machine vision enabled by an artificial optoelectronic memristor synapse. Nano Lett. 25(7), 2716–2724 (2025). https://doi.org/10.1021/acs.nanolett.4c05764
- Z. Liu, Y. Wang, Y. Zhang, S. Sun, T. Zhang et al., Harnessing defects in SnSe film via photo-induced doping for fully light-controlled artificial synapse. Adv. Mater. 37(4), 2410783 (2025). https://doi.org/10.1002/adma.202410783
- Q. Yang, J. Hu, H. Li, Q. Du, S. Feng et al., All-optical modulation photodetectors based on the CdS/graphene/Ge sandwich structures for integrated sensing-computing. Adv. Sci. 12(11), 2413662 (2025). https://doi.org/10.1002/advs.202413662
- K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019). https://doi.org/10.1038/s41586-019-1677-2
- Y. Huang, J. Liu, J. Harkin, L. McDaid, Y. Luo, An memristor-based synapse implementation using BCM learning rule. Neurocomputing 423, 336–342 (2021). https://doi.org/10.1016/j.neucom.2020.10.106
- K. Chang, B. Hyun, K. Hong, K. Young, J. Won, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14(1), 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
- Y. Wang, S. Nie, S. Liu, Y. Hu, J. Fu et al., Dual-adaptive heterojunction synaptic transistors for efficient machine vision in harsh lighting conditions. Adv. Mater. 36(32), 2404160 (2024). https://doi.org/10.1002/adma.202404160
- W.C. Abraham, Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9(5), 387 (2008). https://doi.org/10.1038/nrn2356
- J. Benda, A.V.M. Herz, A universal model for spike-frequency adaptation. Neural Comput. 15(11), 2523–2564 (2003). https://doi.org/10.1162/089976603322385063
- N. Caporale, Y. Dan, Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125639
- D.E. Feldman, The spike-timing dependence of plasticity. Neuron 75(4), 556–571 (2012). https://doi.org/10.1016/j.neuron.2012.08.001
- S.K. Nath, S.K. Das, S.K. Nandi, C. Xi, C.V. Marquez et al., Optically tunable electrical oscillations in oxide-based memristors for neuromorphic computing. Adv. Mater. 36(25), e2400904 (2024). https://doi.org/10.1002/adma.202400904
- S. Kim, J. Heo, S. Kim, M.-H. Kim, Dual functionality of NbOx memristors for synaptic and neuronal emulations in advanced neuromorphic systems. J. Mater. Chem. C 12(40), 16294–16308 (2024). https://doi.org/10.1039/D4TC03212H
- T. Zhang, M. Hu, M.Z.A. Mia, H. Zhang, W. Mao et al., Self-sensitizable neuromorphic device based on adaptive hydrogen gradient. Matter 7(5), 1799–1816 (2024). https://doi.org/10.1016/j.matt.2024.03.002
- Z. Lv, S. Zhu, Y. Wang, Y. Ren, M. Luo et al., Development of bio-voltage operated humidity-sensory neurons comprising self-assembled peptide memristors. Adv. Mater. 36(33), e2405145 (2024). https://doi.org/10.1002/adma.202405145
- T. Mei, W. Liu, F. Sun, Y. Chen, G. Xu et al., Bio-inspired two-dimensional nanofluidic ionic transistor for neuromorphic signal processing. Angew. Chem. Int. Ed. 63(17), e202401477 (2024). https://doi.org/10.1002/anie.202401477
- M. Xu, X. Chen, Y. Guo, Y. Wang, D. Qiu et al., Reconfigurable neuromorphic computing: materials, devices, and integration. Adv. Mater. 35(51), 2301063 (2023). https://doi.org/10.1002/adma.202301063
- X. Wu, E. Li, Y. Liu, W. Lin, R. Yu et al., Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 85, 106000 (2021). https://doi.org/10.1016/j.nanoen.2021.106000
- M. Lanza, A. Sebastian, W.D. Lu, M. Le Gallo, M.-F. Chang et al., Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376(6597), eabj9979 (2022). https://doi.org/10.1126/science.abj9979
- K. Wang, Y. Jia, X. Yan, A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy 100, 107486 (2022). https://doi.org/10.1016/j.nanoen.2022.107486
- J. Ko, C. Ock, H. Gim, K. Hong, Y. Lee et al., Two-dimensional materials for artificial sensory devices: advancing neuromorphic sensing technology. npj 2D Mater. Appl. 9, 35 (2025). https://doi.org/10.1038/s41699-025-00556-2
- H.N. Mohanty, T. Tsuruoka, J.R. Mohanty, K. Terabe, Proton-gated synaptic transistors, based on an electron-beam patterned nafion electrolyte. ACS Appl. Mater. Interfaces 15(15), 19279–19289 (2023). https://doi.org/10.1021/acsami.3c00756
- Y. Chu, H. Tan, C. Zhao, X. Wu, S.-J. Ding, Power-efficient gas-sensing and synaptic diodes based on lateral pentacene/a-IGZO PN junctions. ACS Appl. Mater. Interfaces 14(7), 9368–9376 (2022). https://doi.org/10.1021/acsami.1c19771
- L. Dong, B. Xue, G. Wei, S. Yuan, M. Chen et al., Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Adv. Sci. 11(29), 2403665 (2024). https://doi.org/10.1002/advs.202403665
- H. Jang, S. Ju, S. Lee, J. Choi, U. Byun et al., Recent advances in optoelectronic synaptic devices for neuromorphic computing. Biomimetics 10(9), 584 (2025). https://doi.org/10.3390/biomimetics10090584
- F. Zhang, C. Li, Z. Li, L. Dong, J. Zhao, Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications. Microsyst. Nanoeng. 9, 16 (2023). https://doi.org/10.1038/s41378-023-00487-2
- M.-K. Song, S.D. Namgung, D. Choi, H. Kim, H. Seo et al., Proton-enabled activation of peptide materials for biological bimodal memory. Nat. Commun. 11(1), 5896 (2020). https://doi.org/10.1038/s41467-020-19750-5
- H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
- J. Lao, C. Jiang, C. Luo, N. Zhong, B. Tian et al., Self-powered and humidity-modulable optoelectronic synapse. Adv. Mater. Technol. 8(11), 2201779 (2023). https://doi.org/10.1002/admt.202201779
- D. Tan, Z. Zhang, H. Shi, N. Sun, Q. Li et al., Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene. Adv. Mater. 36(36), 2407751 (2024). https://doi.org/10.1002/adma.202407751
- Y. Yin, T. Sun, L. Wang, L. Li, P. Guo et al., In-sensor organic electrochemical transistor for the multimode neuromorphic olfactory system. ACS Sens. 9(8), 4277–4285 (2024). https://doi.org/10.1021/acssensors.4c01423
- T. Jiang, Y. Wang, Y. Zheng, L. Wang, X. He et al., Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nat. Commun. 14(1), 2281 (2023). https://doi.org/10.1038/s41467-023-37973-0
- S. Dai, X. Liu, Y. Liu, Y. Xu, J. Zhang et al., Emerging iontronic neural devices for neuromorphic sensory computing. Adv. Mater. 35(39), e2300329 (2023). https://doi.org/10.1002/adma.202300329
- C. Wang, X. Xu, X. Pi, M.D. Butala, W. Huang et al., Neuromorphic device based on silicon nanosheets. Nat. Commun. 13, 5216 (2022). https://doi.org/10.1038/s41467-022-32884-y
- M. Wang, D. Ouyang, Y. Dai, D. Huo, W. He et al., 2D piezo-Ferro-opto-electronic artificial synapse for bio-inspired multimodal sensory integration. Adv. Mater. 37(24), e2500049 (2025). https://doi.org/10.1002/adma.202500049
- F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia et al., An adaptive solid-state synapse with bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 37(17), 2412006 (2025). https://doi.org/10.1002/adma.202412006
- W. Zhao, Z. Lin, L. Zhang, X. Lin, J. Wang et al., Bioinspired three-mode photosensitive synaptic LED for optical information processing. Nano Lett. 24(44), 14109–14117 (2024). https://doi.org/10.1021/acs.nanolett.4c04444
- G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou et al., Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22(12), 1499–1506 (2023). https://doi.org/10.1038/s41563-023-01676-0
- X. Zhang, D. Liu, J. Wu, E. Cheng, C. Qin et al., Pixel-level hardware strategy for large-scale convolution calculation in neuromorphic devices. Adv. Funct. Mater. 35(17), 2420045 (2025). https://doi.org/10.1002/adfm.202420045
- H. Fang, S. Ma, J. Wang, L. Zhao, F. Nie et al., Multimodal in-sensor computing implemented by easily-fabricated oxide-heterojunction optoelectronic synapses. Adv. Funct. Mater. 34(49), 2409045 (2024). https://doi.org/10.1002/adfm.202409045
- J. Sun, Q. Chen, F. Fan, Z. Zhang, T. Han et al., A dual-mode organic memristor for coordinated visual perceptive computing. Fundam. Res. 4(6), 1666–1673 (2022). https://doi.org/10.1016/j.fmre.2022.06.022
- C. Yang, H. Wang, G. Zhou, S. Qin, W. Hou et al., A multifunctional memristor with coexistence of NDR and RS behaviors for logic operation and somatosensory temperature sensing applications. Nano Today 57, 102382 (2024). https://doi.org/10.1016/j.nantod.2024.102382
- S. Zhou, H. Fan, S. Wen, Y. Wei, H. Chen et al., Dual-mode photodetectors mimicking retinal rod and cone cells for high dynamic range image sensor. Laser Photon. Rev. 19(12), 2402192 (2025). https://doi.org/10.1002/lpor.202402192
- Q. He, H. Wang, Y. Zhang, A. Chen, Y. Fu et al., Two-dimensional materials based two-transistor-two-resistor synaptic kernel for efficient neuromorphic computing. Nat. Commun. 16(1), 4340 (2025). https://doi.org/10.1038/s41467-025-59815-x
- K. Young, K. Eun, K. Sung, C. Yeop, K. Soh et al., Artificial sensory system based on memristive devices. Exploration 4(1), 20220162 (2024). https://doi.org/10.1002/EXP.20220162
- M. Park, J.Y. Yang, M.J. Yeom, B. Bae, Y. Baek et al., An artificial neuromuscular junction for enhanced reflexes and oculomotor dynamics based on a ferroelectric CuInP2S6/GaN HEMT. Sci. Adv. 9(38), eadh9889 (2023). https://doi.org/10.1126/sciadv.adh9889
- X. Shan, Z. Wang, J. Xie, J. Han, Y. Tao et al., Hemispherical retina emulated by plasmonic optoelectronic memristors with all-optical modulation for neuromorphic stereo vision. Adv. Sci. 11(36), 2405160 (2024). https://doi.org/10.1002/advs.202405160
- Y. Ma, M. Chen, F. Aguirre, Y. Yan, S. Pazos et al., Van der Waals engineering of one-transistor-one-ferroelectric-memristor architecture for an energy-efficient neuromorphic array. Nano Lett. 25(6), 2528–2537 (2025). https://doi.org/10.1021/acs.nanolett.4c06118
- L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U. S. A. 121(33), e2407971121 (2024). https://doi.org/10.1073/pnas.2407971121
- M.J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli et al., Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023). https://doi.org/10.1038/s41467-023-40770-4
- Y. Cho, J. Heo, S. Kim, S. Kim, Stacked NbOx-based selector and ZrOx-based resistive memory for high-density crossbar array applications. Surf. Interfaces 41, 103273 (2023). https://doi.org/10.1016/j.surfin.2023.103273
- S. Jain, S. Li, H. Zheng, L. Li, X. Fong et al., Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks. Nat. Commun. 16, 2719 (2025). https://doi.org/10.1038/s41467-025-58039-3
- L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2(5), 1811–1827 (2020). https://doi.org/10.1039/d0na00100g
- Q. Li, S. Wang, Z. Li, X. Hu, Y. Liu et al., High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15, 2686 (2024). https://doi.org/10.1038/s41467-024-46878-5
- C.-Y. Wei, K.-C. Liao, Y.-J. Yao, C.-E. Wu, C.-L. Chen et al., High-κ HfO2/ZrO2 superlattice for BEOL-compatible GAAFET memory device. Appl. Phys. Lett. 126(24), 242902 (2025). https://doi.org/10.1063/5.0274127
- F. Kiani, J. Yin, Z. Wang, J.J. Yang, Q. Xia, A fully hardware-based memristive multilayer neural network. Sci. Adv. 7(48), eabj4801 (2021). https://doi.org/10.1126/sciadv.abj4801
- Y. Li, K.-W. Ang, Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 3(1), 2000137 (2021). https://doi.org/10.1002/aisy.202000137
- J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
- S.W. Cho, S.M. Kwon, Y.-H. Kim, S.K. Park, Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv. Intell. Syst. 3(6), 2000162 (2021). https://doi.org/10.1002/aisy.202000162
- G. Lee, J.-H. Baek, F. Ren, S.J. Pearton, G.-H. Lee et al., Artificial neuron and synapse devices based on 2D materials. Small 17(20), 2100640 (2021). https://doi.org/10.1002/smll.202100640
- S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8(2), nwaa172 (2020). https://doi.org/10.1093/nsr/nwaa172
- F. Zhang, C. Li, Z. Chen, H. Tan, Z. Li et al., Large-scale high uniform optoelectronic synapses array for artificial visual neural network. Microsyst. Nanoeng. 11(1), 5 (2025). https://doi.org/10.1038/s41378-024-00859-2
- X. Li, L. Yi, X. Yin, J. Cheng, Q. Xin et al., Fully screen-printed paper-based ZnO synaptic transistor arrays for visual perception and neuromorphic computing. npj Flex. Electron. 9, 57 (2025). https://doi.org/10.1038/s41528-025-00425-4
- J. Lee, J. Lee, H. Bang, T.W. Yoon, J.H. Ko et al., One-shot remote integration of macromolecular synaptic elements on a chip for ultrathin flexible neural network system. Adv. Mater. 37(26), 2402361 (2025). https://doi.org/10.1002/adma.202402361
- D. Joksas, A. AlMutairi, O. Lee, M. Cubukcu, A. Lombardo et al., Memristive, spintronic, and 2D-materials-based devices to improve and complement computing hardware. Adv. Intell. Syst. 4(8), 2200068 (2022). https://doi.org/10.1002/aisy.202200068
- T. Li, J. Miao, X. Fu, B. Song, B. Cai et al., Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18(11), 1303–1310 (2023). https://doi.org/10.1038/s41565-023-01446-8
- L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7(20), eabg1455 (2021). https://doi.org/10.1126/sciadv.abg1455
- Y. Xu, X. Xu, Y. Huang, Y. Tian, M. Cheng et al., Gate-tunable positive and negative photoconductance in near-infrared organic heterostructures for in-sensor computing. Adv. Mater. 36(30), 2470241 (2024). https://doi.org/10.1002/adma.202470241
- X. Liu, S. Dai, W. Zhao, J. Zhang, Z. Guo et al., All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 36(21), 2312473 (2024). https://doi.org/10.1002/adma.202312473
- Q. Duan, T. Zhang, C. Liu, R. Yuan, G. Li et al., Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing. Adv. Intell. Syst. 4(8), 2270039 (2022). https://doi.org/10.1002/aisy.202270039
- A. Bag, G. Ghosh, M.J. Sultan, H.H. Chouhdry, S.J. Hong et al., Bio-inspired sensory receptors for artificial-intelligence perception. Adv. Mater. 37(26), 2403150 (2025). https://doi.org/10.1002/adma.202403150
- M.S. Kim, M.S. Kim, G.J. Lee, S.-H. Sunwoo, S. Chang et al., Bio-inspired artificial vision and neuromorphic image processing devices. Adv. Mater. Technol. 7(2), 2100144 (2022). https://doi.org/10.1002/admt.202100144
- J.-L. Meng, T.-Y. Wang, L. Chen, Q.-Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
- S. Talanti, K. Fu, X. Zheng, Y. Shi, Y. Tan et al., CMOS-integrated organic neuromorphic imagers for high-resolution dual-modal imaging. Nat. Commun. 16(1), 4311 (2025). https://doi.org/10.1038/s41467-025-59446-2
- J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
- X. Wu, S. Shi, J. Jiang, D. Lin, J. Song et al., Bionic olfactory neuron with in-sensor reservoir computing for intelligent gas recognition. Adv. Mater. 37(13), 2419159 (2025). https://doi.org/10.1002/adma.202419159
- J. Guo, F. Guo, H. Zhao, H. Yang, X. Du et al., In-sensor computing with visual-tactile perception enabled by mechano-optical artificial synapse. Adv. Mater. 37(14), e2419405 (2025). https://doi.org/10.1002/adma.202419405
- H. So, H. Ji, S. Kim, S. Kim, Sophisticated conductance control and multiple synapse functions in TiO2-based multistack-layer crossbar array memristor for high-performance neuromorphic systems. Adv. Funct. Mater. 34(51), 2405544 (2024). https://doi.org/10.1002/adfm.202405544
- H. Li, S. Wang, X. Zhang, W. Wang, R. Yang et al., Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 3(9), 2100017 (2021). https://doi.org/10.1002/aisy.202100017
- J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), e2303737 (2023). https://doi.org/10.1002/adma.202303737
- E. Li, X. Wu, Q. Chen, S. Wu, L. He et al., Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 85, 106010 (2021). https://doi.org/10.1016/j.nanoen.2021.106010
- X. Wang, C. Chen, L. Zhu, K. Shi, B. Peng et al., Vertically integrated spiking cone photoreceptor arrays for color perception. Nat. Commun. 14(1), 3444 (2023). https://doi.org/10.1038/s41467-023-39143-8
- T. Lu, J. Xue, P. Shen, H. Liu, X. Gao et al., Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking. Sci. Adv. 10(36), eadp0174 (2024). https://doi.org/10.1126/sciadv.adp0174
- H. Kim, S. Oh, H. Choo, D.-H. Kang, J.-H. Park, Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapse. ACS Nano 17(17), 17332–17341 (2023). https://doi.org/10.1021/acsnano.3c05337
- W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13(1), 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
- Q. Chen, R. Yang, D. Hu, H. Lin, J. Shi et al., All-optically controlled artificial synaptic device for neural behavior simulation and computer vision. Mater. Today 89, 107–117 (2025). https://doi.org/10.1016/j.mattod.2025.07.029
- S.-O. Park, H. Jeong, S. Seo, Y. Kwon, J. Lee et al., Experimental demonstration of third-order memristor-based artificial sensory nervous system for neuro-inspired robotics. Nat. Commun. 16(1), 5754 (2025). https://doi.org/10.1038/s41467-025-60818-x
- F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
- B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang et al., Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array. Nat. Electron. 7(11), 991–1003 (2024). https://doi.org/10.1038/s41928-024-01280-3
References
K. Lu, X. Li, Q. Sun, X. Pang, J. Chen et al., Solution-processed electronics for artificial synapses. Mater. Horiz. 8(2), 447–470 (2021). https://doi.org/10.1039/d0mh01520b
J.J. Yang, D.B. Strukov, D.R. Stewart, Memristive devices for computing. Nat. Nanotechnol. 8(1), 13–24 (2013). https://doi.org/10.1038/nnano.2012.240
L. Sun, W. Wang, H. Yang, Recent progress in synaptic devices based on 2D materials. Adv. Intell. Syst. 2(5), 1900167 (2020). https://doi.org/10.1002/aisy.201900167
G. Cao, P. Meng, J. Chen, H. Liu, R. Bian et al., 2D material based synaptic devices for neuromorphic computing. Adv. Funct. Mater. 31(4), 2005443 (2021). https://doi.org/10.1002/adfm.202005443
S. Meng, J. Jiang, Q. Ju, Y. Wang, D. Wu et al., Adaptive sub-nanometer control of a piezoelectric positioning platform. IEEE Trans. Autom. Sci. Eng. 22, 22755–22765 (2025). https://doi.org/10.1109/TASE.2025.3615572
Z. Wang, H. Wu, G.W. Burr, C.S. Hwang, K.L. Wang et al., Resistive switching materials for information processing. Nat. Rev. Mater. 5(3), 173–195 (2020). https://doi.org/10.1038/s41578-019-0159-3
X. Zou, S. Xu, X. Chen, L. Yan, Y. Han, Breaking the von Neumann bottleneck: architecture-level processing-in-memory technology. Sci. China Inf. Sci. 64(6), 160404 (2021). https://doi.org/10.1007/s11432-020-3227-1
R. Pendurthi, D. Jayachandran, A. Kozhakhmetov, N. Trainor, J.A. Robinson et al., Heterogeneous integration of atomically thin semiconductors for non-von Neumann CMOS. Small 18(33), e2202590 (2022). https://doi.org/10.1002/smll.202202590
L.F. Abbott, S.B. Nelson, Synaptic plasticity: taming the beast. Nat. Neurosci. 3(S11), 1178–1183 (2000). https://doi.org/10.1038/81453
L. Lu, B. Sun, Z. Wang, J. Meng, T. Wang, Two-dimensional MXene-based advanced sensors for neuromorphic computing intelligent application. Nano-Micro Lett. 18(1), 64 (2025). https://doi.org/10.1007/s40820-025-01902-1
Z. Zhu, J. Shui, T. Wang, J. Meng, Mechanical properties analysis of flexible memristors for neuromorphic computing. Nano-Micro Lett. 18(1), 2 (2025). https://doi.org/10.1007/s40820-025-01825-x
I. Boybat, M. Le Gallo, S.R. Nandakumar, T. Moraitis, T. Parnell et al., Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9(1), 2514 (2018). https://doi.org/10.1038/s41467-018-04933-y
Z. Liu, Y. Fang, Z. Cai, Y. Liu, X. Zhao et al., Constructing a complex hybrid neural network for biomimetic spatial and temporal perception. Small 21(35), e2506100 (2025). https://doi.org/10.1002/smll.202506100
F. Chen, Y. Zhou, Y. Zhu, R. Zhu, P. Guan et al., Recent progress in artificial synaptic devices: materials, processing and applications. J. Mater. Chem. C 9(27), 8372–8394 (2021). https://doi.org/10.1039/d1tc01211h
Z. Wang, S. Joshi, S.E. Savel’ev, H. Jiang, R. Midya et al., Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16(1), 101–108 (2017). https://doi.org/10.1038/nmat4756
R. Midya, Z. Wang, J. Zhang, S.E. Savel’ev, C. Li et al., Anatomy of Ag/Hafnia-based selectors with 10(10) nonlinearity. Adv. Mater. 29(12), 1604457 (2017). https://doi.org/10.1002/adma.201604457
S. Yan, J. Zang, P. Xu, Y. Zhu, G. Li et al., Recent progress in ferroelectric synapses and their applications. Sci. China Mater. 66(3), 877–894 (2023). https://doi.org/10.1007/s40843-022-2318-9
J. Zeng, G. Feng, G. Wu, J. Liu, Q. Zhao et al., Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 34(19), 2313010 (2024). https://doi.org/10.1002/adfm.202313010
R.D. Nikam, M. Kwak, H. Hwang, All-solid-state oxygen ion electrochemical random-access memory for neuromorphic computing. Adv. Electron. Mater. 7(5), 2100142 (2021). https://doi.org/10.1002/aelm.202100142
J.-M. Yu, C. Lee, D.-J. Kim, H. Park, J.-K. Han et al., All-solid-state ion synaptic transistor for wafer-scale integration with electrolyte of a nanoscale thickness. Adv. Funct. Mater. 31(23), 2010971 (2021). https://doi.org/10.1002/adfm.202010971
W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14(11), 2531–2560 (2002). https://doi.org/10.1162/089976602760407955
R.S. Zucker, W.G. Regehr, Short-term synaptic plasticity. Annu. Rev. Physiol. 64, 355–405 (2002). https://doi.org/10.1146/annurev.physiol.64.092501.114547
M.-K. Kim, J.-S. Lee, Short-term plasticity and long-term potentiation in artificial biosynapses with diffusive dynamics. ACS Nano 12(2), 1680–1687 (2018). https://doi.org/10.1021/acsnano.7b08331
Y. He, Z. Ge, Z. Li, Z. Li, R. Liu et al., All-polymer organic electrochemical synaptic transistor with controlled ionic dynamics for high-performance wearable and sustainable reservoir computing. Adv. Funct. Mater. 35(8), 2415595 (2025). https://doi.org/10.1002/adfm.202415595
P. Guo, J. Zhang, J. Huang, Recent progress in organic optoelectronic synaptic transistor arrays: fabrication strategies and innovative applications of system integration. J. Semicond. 46(2), 021405 (2025). https://doi.org/10.1088/1674-4926/24120017
Y. Xu, W. Liu, Y. Huang, C. Jin, B. Zhou et al., Recent advances in flexible organic synaptic transistors. Adv. Electron. Mater. 7(11), 2100336 (2021). https://doi.org/10.1002/aelm.202100336
S. Saïghi, C.G. Mayr, T. Serrano-Gotarredona, H. Schmidt, G. Lecerf et al., Plasticity in memristive devices for spiking neural networks. Front. Neurosci. 9, 51 (2015). https://doi.org/10.3389/fnins.2015.00051
S. Wang, H. Chen, T. Liu, Y. Wei, G. Yao et al., Retina-inspired organic photonic synapses for selective detection of SWIR light. Angew. Chem. Int. Ed. 62(6), e202213733 (2023). https://doi.org/10.1002/anie.202213733
J. Zhang, P. Guo, Z. Guo, L. Li, T. Sun et al., Retina-inspired artificial synapses with ultraviolet to near-infrared broadband responses for energy-efficient neuromorphic visual systems. Adv. Funct. Mater. 33(32), 2302885 (2023). https://doi.org/10.1002/adfm.202302885
Z. Guo, J. Zhang, J. Wang, X. Liu, P. Guo et al., Organic synaptic transistors with environmentally friendly core/shell quantum dots for wavelength-selective memory and neuromorphic functions. Nano Lett. 24(20), 6139–6147 (2024). https://doi.org/10.1021/acs.nanolett.4c01606
D. Kim, J.-S. Lee, Neurotransmitter-induced excitatory and inhibitory functions in artificial synapses. Adv. Funct. Mater. 32(21), 2200497 (2022). https://doi.org/10.1002/adfm.202200497
Y.-C. Mi, C.-H. Yang, L.-C. Shih, J.-S. Chen, All-optical-controlled excitatory and inhibitory synaptic signaling through bipolar photoresponse of an oxide-based phototransistor. Adv. Opt. Mater. 11(14), 2300089 (2023). https://doi.org/10.1002/adom.202300089
Z. Wang, M. Li, H. Yang, S. Shao, J. Li et al., Enhancement-mode carbon nanotube optoelectronic synaptic transistors with large and controllable threshold voltage modulation window for broadband flexible vision systems. ACS Nano 18(22), 14298–14311 (2024). https://doi.org/10.1021/acsnano.4c00166
J.-K. Han, M.-W. Lee, J.-M. Yu, Y.-K. Choi, A single transistor-based threshold switch for a bio-inspired reconfigurable threshold logic. Adv. Electron. Mater. 7(5), 2100117 (2021). https://doi.org/10.1002/aelm.202100117
J. Jiang, W. Xu, Z. Sun, L. Fu, S. Zhang et al., Wavelength-controlled photoconductance polarity switching via harnessing defects in doped PdSe2 for artificial synaptic features. Small 20(13), 2306068 (2024). https://doi.org/10.1002/smll.202306068
Z. Wang, L. Lu, J. Meng, T. Wang, Emerging negative photoconductivity effect-based synaptic device for optoelectronic in-sensor computing. Adv. Mater. 37(32), e2504710 (2025). https://doi.org/10.1002/adma.202504710
W.-A. Mo, G. Ding, Z. Nie, Z. Feng, K. Zhou et al., Spatiotemporal modulation of plasticity in multi-terminal tactile synaptic transistor. Adv. Electron. Mater. 9(1), 2200733 (2023). https://doi.org/10.1002/aelm.202200733
X. Liu, S. Wang, Z. Di, H. Wu, C. Liu et al., An optoelectronic synapse based on two-dimensional violet phosphorus heterostructure. Adv. Sci. 10(22), 2301851 (2023). https://doi.org/10.1002/advs.202301851
P. Langner, F. Chiabrera, N. Alayo, P. Nizet, L. Morrone et al., Solid-state oxide-ion synaptic transistor for neuromorphic computing. Adv. Mater. 37(7), e2415743 (2025). https://doi.org/10.1002/adma.202415743
Q. Lin, Y. Zhu, J. Sun, S. Peng, Z. Wang et al., A full-quantum-dot optoelectronic memristor for in-sensor reservoir computing system with integrated functions. Adv. Funct. Mater. 35(30), 2423548 (2025). https://doi.org/10.1002/adfm.202423548
Y.-B. Leng, Z. Lv, S. Huang, P. Xie, H.-X. Li et al., A near-infrared retinomorphic device with high dimensionality reservoir expression. Adv. Mater. 36(48), 2411225 (2024). https://doi.org/10.1002/adma.202411225
H. Choi, S. Baek, H. Jung, T. Kang, S. Lee et al., Spiking neural network integrated with impact ionization field-effect transistor neuron and a ferroelectric field-effect transistor synapse. Adv. Mater. 37(26), 2406970 (2025). https://doi.org/10.1002/adma.202406970
M. Yan, Q. Zhu, S. Wang, Y. Ren, G. Feng et al., Ferroelectric synaptic transistor network for associative memory. Adv. Electron. Mater. 7(4), 2001276 (2021). https://doi.org/10.1002/aelm.202001276
M. Huang, X. Liu, F. Yu, J. Li, J. Huang et al., Plasmon-enhanced optoelectronic graded neurons for dual-waveband image fusion and motion perception. Adv. Mater. 37(4), 2412993 (2025). https://doi.org/10.1002/adma.202412993
J. Jiang, X. Shan, J. Xu, Y. Sun, T.-F. Xiang et al., Retina-like chlorophyll heterojunction-based optoelectronic memristor with all-optically modulated synaptic plasticity enabling neuromorphic edge detection. Adv. Funct. Mater. 34(51), 2409677 (2024). https://doi.org/10.1002/adfm.202409677
D. Li, G. Liu, F. Li, H. Ren, Y. Tang et al., Double-opponent spiking neuron array with orientation selectivity for encoding and spatial-chromatic processing. Sci. Adv. 11(7), eadt3584 (2025). https://doi.org/10.1126/sciadv.adt3584
S. Woo, D. Moon, Y. Won, C. Kyung, J. Yoo et al., A pattern recognition artificial olfactory system based on human olfactory receptors and organic synaptic devices. Sci. Adv. 10(21), eadl2882 (2024). https://doi.org/10.1126/sciadv.adl2882
J. Hu, H. Li, Y. Zhang, J. Zhou, Y. Zhao et al., Reconfigurable neuromorphic computing with 2D material heterostructures for versatile neural information processing. Nano Lett. 24(30), 9391–9398 (2024). https://doi.org/10.1021/acs.nanolett.4c02658
Y. Chen, H. Wang, H. Chen, W. Zhang, M. Pätzel et al., Li promoting long afterglow organic light-emitting transistor for memory optocoupler module. Adv. Mater. 36(27), 2402515 (2024). https://doi.org/10.1002/adma.202402515
R. Li, Z. Yue, H. Luan, Y. Dong, X. Chen et al., Multimodal artificial synapses for neuromorphic application. Research 7, 427 (2024). https://doi.org/10.34133/research.0427
D. Zendrikov, S. Solinas, G. Indiveri, Brain-inspired methods for achieving robust computation in heterogeneous mixed-signal neuromorphic processing systems. Neuromorph. Comput. Eng. 3(3), 034002 (2023). https://doi.org/10.1088/2634-4386/ace64c
M.C. Sahu, S. Sahoo, S.K. Mallik, A.K. Jena, S. Sahoo, Multifunctional 2D MoS2 optoelectronic artificial synapse with integrated arithmetic and reconfigurable logic operations for in-memory neuromorphic computing applications. Adv. Mater. Technol. 8(2), 2201125 (2023). https://doi.org/10.1002/admt.202201125
H. Wan, J. Zhao, L.-W. Lo, Y. Cao, N. Sepúlveda et al., Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor. ACS Nano 15(9), 14587–14597 (2021). https://doi.org/10.1021/acsnano.1c04298
C. Weilenmann, A.N. Ziogas, T. Zellweger, K. Portner, M. Mladenović et al., Single neuromorphic memristor closely emulates multiple synaptic mechanisms for energy efficient neural networks. Nat. Commun. 15(1), 6898 (2024). https://doi.org/10.1038/s41467-024-51093-3
C. Choi, H. Kim, J.-H. Kang, M.-K. Song, H. Yeon et al., Reconfigurable heterogeneous integration using stackable chips with embedded artificial intelligence. Nat. Electron. 5(6), 386–393 (2022). https://doi.org/10.1038/s41928-022-00778-y
S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder et al., Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 1297–1301 (2010). https://doi.org/10.1021/nl904092h
R.A. John, J. Ko, M.R. Kulkarni, N. Tiwari, N.A. Chien et al., Flexible ionic-electronic hybrid oxide synaptic TFTs with programmable dynamic plasticity for brain-inspired neuromorphic computing. Small 13(32), 1701193 (2017). https://doi.org/10.1002/smll.201701193
M.-K. Song, J.-H. Kang, X. Zhang, W. Ji, A. Ascoli et al., Recent advances and future prospects for memristive materials, devices, and systems. ACS Nano 17(13), 11994–12039 (2023). https://doi.org/10.1021/acsnano.3c03505
S.-M. Kim, S. Kim, L. Ling, S.E. Liu, S. Jin et al., Linear and symmetric Li-based composite memristors for efficient supervised learning. ACS Appl. Mater. Interfaces 14(4), 5673–5681 (2022). https://doi.org/10.1021/acsami.1c24562
S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang et al., Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 29(42), 1903700 (2019). https://doi.org/10.1002/adfm.201903700
A. Citri, R.C. Malenka, Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1), 18–41 (2008). https://doi.org/10.1038/sj.npp.1301559
X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9(2), 021309 (2022). https://doi.org/10.1063/5.0073085
B. Tian, L. Liu, M. Yan, J. Wang, Q. Zhao et al., A robust artificial synapse based on organic ferroelectric polymer. Adv. Electron. Mater. 5(1), 1800600 (2019). https://doi.org/10.1002/aelm.201800600
P. Guo, J. Zhang, Z. Hua, T. Sun, L. Li et al., Organic synaptic transistors based on a semiconductor heterojunction for artificial visual and neuromorphic functions. Nano Lett. 25(8), 3204–3211 (2025). https://doi.org/10.1021/acs.nanolett.4c05809
Z. Lv, M.-H. Jiang, H.-Y. Liu, Q.-X. Li, T. Xie et al., Temperature-resilient polymeric memristors for effective deblurring in static and dynamic imaging. Adv. Funct. Mater. 35(23), 2424382 (2025). https://doi.org/10.1002/adfm.202424382
Y. Chen, M. Zhang, D. Li, Y. Tang, H. Ren et al., Bidirectional synaptic phototransistor based on two-dimensional ferroelectric semiconductor for mixed color pattern recognition. ACS Nano 17(13), 12499–12509 (2023). https://doi.org/10.1021/acsnano.3c02167
G.W. Baek, Y.J. Kim, J. Kim, J.H. Chang, U. Kim et al., Memristive switching mechanism in colloidal InP/ZnSe/ZnS quantum dot-based synaptic devices for neuromorphic computing. Nano Lett. 24(19), 5855–5861 (2024). https://doi.org/10.1021/acs.nanolett.4c01083
D.H. Choi, J.B. An, J. Chung, K. Park, H. Lee et al., Synergistic enhancement of long-term plasticity in solid-state electrolyte-gated synaptic transistors realized by introducing an ion-capturing layer. Nano Today 61, 102631 (2025). https://doi.org/10.1016/j.nantod.2025.102631
M.A. Zidan, J.P. Strachan, W.D. Lu, The future of electronics based on memristive systems. Nat. Electron. 1(1), 22–29 (2018). https://doi.org/10.1038/s41928-017-0006-8
L.F. Abbott, W.G. Regehr, Synaptic computation. Nature 431(7010), 796–803 (2004). https://doi.org/10.1038/nature03010
M. Prezioso, F. Merrikh-Bayat, B.D. Hoskins, G.C. Adam, K.K. Likharev et al., Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521(7550), 61–64 (2015). https://doi.org/10.1038/nature14441
Y. Zhang, Q. Zhu, B. Tian, C. Duan, New-generation ferroelectric AlScN materials. Nano-Micro Lett 16(1), 227 (2024). https://doi.org/10.1007/s40820-024-01441-1
J. Zhu, C. Liu, R. Gao, Y. Zhang, H. Zhang et al., Ultra-flexible high-linearity silicon nanomembrane synaptic transistor array. Adv. Mater. 37(7), e2413404 (2025). https://doi.org/10.1002/adma.202413404
Y. Hwang, B. Park, S. Hwang, S.-W. Choi, H.S. Kim et al., A bioinspired ultra flexible artificial van der Waals 2D-MoS2 channel/LiSiOx solid electrolyte synapse arrays via laser-lift off process for wearable adaptive neuromorphic computing. Small Methods 7(7), 2201719 (2023). https://doi.org/10.1002/smtd.202201719
G. Feng, Q. Zhu, X. Liu, L. Chen, X. Zhao et al., A ferroelectric fin diode for robust non-volatile memory. Nat. Commun. 15(1), 513 (2024). https://doi.org/10.1038/s41467-024-44759-5
B. Tian, Z. Xie, L. Chen, S. Hao, Y. Liu et al., Ultralow-power in-memory computing based on ferroelectric memcapacitor network. Exploration 3(3), 20220126 (2023). https://doi.org/10.1002/EXP.20220126
G. Zhang, J. Qin, Y. Zhang, G. Gong, Z.-Y. Xiong et al., Functional materials for memristor-based reservoir computing: dynamics and applications. Adv. Funct. Mater. 33(42), 2302929 (2023). https://doi.org/10.1002/adfm.202302929
S.H. Sung, T.J. Kim, H. Shin, T.H. Im, K.J. Lee, Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Nat. Commun. 13(1), 2811 (2022). https://doi.org/10.1038/s41467-022-30432-2
J. Song, J. Meng, C. Lu, T. Wang, C. Wan et al., Self-powered optoelectronic synaptic device for both static and dynamic reservoir computing. Nano Energy 134, 110574 (2025). https://doi.org/10.1016/j.nanoen.2024.110574
H.-J. Kim, D.-S. Woo, S.-M. Jin, H.-J. Kwon, K.-H. Kwon et al., Super-linear-threshold-switching selector with multiple jar-shaped Cu-filaments in the amorphous Ge3Se7 resistive switching layer in a cross-point synaptic memristor array. Adv. Mater. 34(40), 2203643 (2022). https://doi.org/10.1002/adma.202203643
X. Li, Y. Zhong, H. Chen, J. Tang, X. Zheng et al., A memristors-based dendritic neuron for high-efficiency spatial-temporal information processing. Adv. Mater. 35(37), e2203684 (2023). https://doi.org/10.1002/adma.202203684
X. Wu, S. Shi, B. Liang, Y. Dong, R. Yang et al., Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 10(16), eadn4524 (2024). https://doi.org/10.1126/sciadv.adn4524
J. Liu, G. Feng, W. Li, S. Hao, S. Han et al., Physical reservoir computing for Edge AI applications. Innov. Mater. 3(2), 100127 (2025). https://doi.org/10.59717/j.xinn-mater.2025.100127
A. Bednarkiewicz, M. Szalkowski, M. Majak, Z. Korczak, M. Misiak et al., All-optical data processing with photon-avalanching nanocrystalline photonic synapse. Adv. Mater. 35(42), e2304390 (2023). https://doi.org/10.1002/adma.202304390
J. Pei, L. Deng, S. Song, M. Zhao, Y. Zhang et al., Towards artificial general intelligence with hybrid Tianjic chip architecture. Nature 572(7767), 106–111 (2019). https://doi.org/10.1038/s41586-019-1424-8
R. Brette, W. Gerstner, Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J. Neurophysiol. 94(5), 3637–3642 (2005). https://doi.org/10.1152/jn.00686.2005
J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569(7755), 208–214 (2019). https://doi.org/10.1038/s41586-019-1157-8
D. Wang, S. Hao, B. Dkhil, B. Tian, C. Duan, Ferroelectric materials for neuroinspired computing applications. Fundam. Res. 4(5), 1272–1291 (2024). https://doi.org/10.1016/j.fmre.2023.04.013
G. Indiveri, B. Linares-Barranco, R. Legenstein, G. Deligeorgis, T. Prodromakis, Integration of nanoscale memristor synapses in neuromorphic computing architectures. Nanotechnology 24(38), 384010 (2013). https://doi.org/10.1088/0957-4484/24/38/384010
S. Liu, Z. Wu, Z. He, W. Chen, X. Zhong et al., Low-power perovskite neuromorphic synapse with enhanced photon efficiency for directional motion perception. ACS Appl. Mater. Interfaces 16(17), 22303–22311 (2024). https://doi.org/10.1021/acsami.4c04398
Y. Wang, L. Yin, W. Huang, Y. Li, S. Huang et al., Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 3(1), 2000099 (2021). https://doi.org/10.1002/aisy.202000099
N. Ilyas, J. Wang, C. Li, D. Li, H. Fu et al., Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 32(15), 2110976 (2022). https://doi.org/10.1002/adfm.202110976
Y. Cai, Y. Jiang, C. Sheng, Z. Wu, L. Chen et al., In-situ artificial retina with all-in-one reconfigurable photomemristor networks. NPJ Flex. Electron. 7, 29 (2023). https://doi.org/10.1038/s41528-023-00262-3
P. Yang, H. Xu, X. Luo, S. Yu, Y. Liu et al., Tailoring dynamic synaptic plasticity in FeTFT optoelectronic synapse for associative learning. Adv. Electron. Mater. 11(7), 2400732 (2025). https://doi.org/10.1002/aelm.202400732
C. Han, X. Han, J. Han, M. He, S. Peng et al., Light-stimulated synaptic transistor with high PPF feature for artificial visual perception system application. Adv. Funct. Mater. 32(22), 2113053 (2022). https://doi.org/10.1002/adfm.202113053
P. Wang, W. Xue, J. Zeng, W. Ci, Q. Chen et al., Wavelength-selective photodetector and neuromorphic visual sensor utilizing intrinsic defect semiconductor. Adv. Funct. Mater. 34(46), 2407746 (2024). https://doi.org/10.1002/adfm.202407746
T. Zeng, Z. Zhao, K. Ye, Z. Yu, J. Yan et al., Anisotropic optoelectronic synapses in 2D Nb2GeTe4 for direction-programmable neuromorphic perception and decision-making. Adv. Mater. (2025). https://doi.org/10.1002/adma.202509686
K.-W. Yau, R.C. Hardie, Phototransduction motifs and variations. Cell 139(2), 246–264 (2009). https://doi.org/10.1016/j.cell.2009.09.029
Z. Liu, Y. Fang, Z. Cai, Y. Liu, Z. Dong et al., Advanced dual-input artificial optical synapse for recognition and generative neural network. Nano Energy 132, 110347 (2024). https://doi.org/10.1016/j.nanoen.2024.110347
H. Shao, W. Wang, Y. Zhang, B. Gao, C. Jiang et al., Adaptive in-sensor computing for enhanced feature perception and broadband image restoration. Adv. Mater. 37(6), e2414261 (2025). https://doi.org/10.1002/adma.202414261
X.-M. Dong, C. Chen, Y.-X. Li, H.-C. Sun, B. Liu et al., Molecular cocrystal strategy for retinamorphic vision with UV–vis–NIR perception and fast recognition. ACS Nano 19(5), 5718–5726 (2025). https://doi.org/10.1021/acsnano.4c16251
W. Liu, J. Wang, J. Guo, L. Wang, Z. Gu et al., Efficient carbon-based optoelectronic synapses for dynamic visual recognition. Adv. Sci. 12(11), 2414319 (2025). https://doi.org/10.1002/advs.202414319
Y. Deng, S. Liu, X. Ma, S. Guo, B. Zhai et al., Intrinsic defect-driven synergistic synaptic heterostructures for gate-free neuromorphic phototransistors. Adv. Mater. 36(19), e2309940 (2024). https://doi.org/10.1002/adma.202309940
S. Dokos, T. Guo, Computational models of neural retina. In: Encyclopedia of Computational Neuroscience, pp. 912–930. Springer New York (2022). https://doi.org/10.1007/978-1-0716-1006-0_652
G.D. Field, E.J. Chichilnisky, Information processing in the primate retina: circuitry and coding. Annu. Rev. Neurosci. 30, 1–30 (2007). https://doi.org/10.1146/annurev.neuro.30.051606.094252
M. Ptito, M. Bleau, J. Bouskila, The retina: a window into the brain. Cells 10(12), 3269 (2021). https://doi.org/10.3390/cells10123269
K. Chen, H. Hu, I. Song, H.B. Gobeze, W.-J. Lee et al., Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 17(7), 629–637 (2023). https://doi.org/10.1038/s41566-023-01232-x
L. Wang, H. Wang, J. Liu, Y. Wang, H. Shao et al., Negative photoconductivity transistors for visuomorphic computing. Adv. Mater. 36(38), e2403538 (2024). https://doi.org/10.1002/adma.202403538
J. Yao, Q. Wang, Y. Zhang, Y. Teng, J. Li et al., Ultra-low power carbon nanotube/porphyrin synaptic arrays for persistent photoconductivity and neuromorphic computing. Nat. Commun. 15(1), 6147 (2024). https://doi.org/10.1038/s41467-024-50490-y
J. Fu, C. Nie, F. Sun, G. Li, H. Shi et al., Bionic visual-audio photodetectors with in-sensor perception and preprocessing. Sci. Adv. 10(7), eadk8199 (2024). https://doi.org/10.1126/sciadv.adk8199
T. Zhang, C. Fan, L. Hu, F. Zhuge, X. Pan et al., A reconfigurable all-optical-controlled synaptic device for neuromorphic computing applications. ACS Nano 18(25), 16236–16247 (2024). https://doi.org/10.1021/acsnano.4c02278
Z. Dang, F. Guo, Z. Wang, W. Jie, K. Jin et al., Object motion detection enabled by reconfigurable neuromorphic vision sensor under ferroelectric modulation. ACS Nano 18(40), 27727–27737 (2024). https://doi.org/10.1021/acsnano.4c10231
L. Wang, Y. Zhang, Z. Guo, X. Meng, Q. Li et al., High-precision attention mechanism for machine vision enabled by an artificial optoelectronic memristor synapse. Nano Lett. 25(7), 2716–2724 (2025). https://doi.org/10.1021/acs.nanolett.4c05764
Z. Liu, Y. Wang, Y. Zhang, S. Sun, T. Zhang et al., Harnessing defects in SnSe film via photo-induced doping for fully light-controlled artificial synapse. Adv. Mater. 37(4), 2410783 (2025). https://doi.org/10.1002/adma.202410783
Q. Yang, J. Hu, H. Li, Q. Du, S. Feng et al., All-optical modulation photodetectors based on the CdS/graphene/Ge sandwich structures for integrated sensing-computing. Adv. Sci. 12(11), 2413662 (2025). https://doi.org/10.1002/advs.202413662
K. Roy, A. Jaiswal, P. Panda, Towards spike-based machine intelligence with neuromorphic computing. Nature 575(7784), 607–617 (2019). https://doi.org/10.1038/s41586-019-1677-2
Y. Huang, J. Liu, J. Harkin, L. McDaid, Y. Luo, An memristor-based synapse implementation using BCM learning rule. Neurocomputing 423, 336–342 (2021). https://doi.org/10.1016/j.neucom.2020.10.106
K. Chang, B. Hyun, K. Hong, K. Young, J. Won, Memristive devices based on two-dimensional transition metal chalcogenides for neuromorphic computing. Nano-Micro Lett. 14(1), 58 (2022). https://doi.org/10.1007/s40820-021-00784-3
Y. Wang, S. Nie, S. Liu, Y. Hu, J. Fu et al., Dual-adaptive heterojunction synaptic transistors for efficient machine vision in harsh lighting conditions. Adv. Mater. 36(32), 2404160 (2024). https://doi.org/10.1002/adma.202404160
W.C. Abraham, Metaplasticity: tuning synapses and networks for plasticity. Nat. Rev. Neurosci. 9(5), 387 (2008). https://doi.org/10.1038/nrn2356
J. Benda, A.V.M. Herz, A universal model for spike-frequency adaptation. Neural Comput. 15(11), 2523–2564 (2003). https://doi.org/10.1162/089976603322385063
N. Caporale, Y. Dan, Spike timing-dependent plasticity: a Hebbian learning rule. Annu. Rev. Neurosci. 31, 25–46 (2008). https://doi.org/10.1146/annurev.neuro.31.060407.125639
D.E. Feldman, The spike-timing dependence of plasticity. Neuron 75(4), 556–571 (2012). https://doi.org/10.1016/j.neuron.2012.08.001
S.K. Nath, S.K. Das, S.K. Nandi, C. Xi, C.V. Marquez et al., Optically tunable electrical oscillations in oxide-based memristors for neuromorphic computing. Adv. Mater. 36(25), e2400904 (2024). https://doi.org/10.1002/adma.202400904
S. Kim, J. Heo, S. Kim, M.-H. Kim, Dual functionality of NbOx memristors for synaptic and neuronal emulations in advanced neuromorphic systems. J. Mater. Chem. C 12(40), 16294–16308 (2024). https://doi.org/10.1039/D4TC03212H
T. Zhang, M. Hu, M.Z.A. Mia, H. Zhang, W. Mao et al., Self-sensitizable neuromorphic device based on adaptive hydrogen gradient. Matter 7(5), 1799–1816 (2024). https://doi.org/10.1016/j.matt.2024.03.002
Z. Lv, S. Zhu, Y. Wang, Y. Ren, M. Luo et al., Development of bio-voltage operated humidity-sensory neurons comprising self-assembled peptide memristors. Adv. Mater. 36(33), e2405145 (2024). https://doi.org/10.1002/adma.202405145
T. Mei, W. Liu, F. Sun, Y. Chen, G. Xu et al., Bio-inspired two-dimensional nanofluidic ionic transistor for neuromorphic signal processing. Angew. Chem. Int. Ed. 63(17), e202401477 (2024). https://doi.org/10.1002/anie.202401477
M. Xu, X. Chen, Y. Guo, Y. Wang, D. Qiu et al., Reconfigurable neuromorphic computing: materials, devices, and integration. Adv. Mater. 35(51), 2301063 (2023). https://doi.org/10.1002/adma.202301063
X. Wu, E. Li, Y. Liu, W. Lin, R. Yu et al., Artificial multisensory integration nervous system with haptic and iconic perception behaviors. Nano Energy 85, 106000 (2021). https://doi.org/10.1016/j.nanoen.2021.106000
M. Lanza, A. Sebastian, W.D. Lu, M. Le Gallo, M.-F. Chang et al., Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376(6597), eabj9979 (2022). https://doi.org/10.1126/science.abj9979
K. Wang, Y. Jia, X. Yan, A biomimetic afferent nervous system based on the flexible artificial synapse. Nano Energy 100, 107486 (2022). https://doi.org/10.1016/j.nanoen.2022.107486
J. Ko, C. Ock, H. Gim, K. Hong, Y. Lee et al., Two-dimensional materials for artificial sensory devices: advancing neuromorphic sensing technology. npj 2D Mater. Appl. 9, 35 (2025). https://doi.org/10.1038/s41699-025-00556-2
H.N. Mohanty, T. Tsuruoka, J.R. Mohanty, K. Terabe, Proton-gated synaptic transistors, based on an electron-beam patterned nafion electrolyte. ACS Appl. Mater. Interfaces 15(15), 19279–19289 (2023). https://doi.org/10.1021/acsami.3c00756
Y. Chu, H. Tan, C. Zhao, X. Wu, S.-J. Ding, Power-efficient gas-sensing and synaptic diodes based on lateral pentacene/a-IGZO PN junctions. ACS Appl. Mater. Interfaces 14(7), 9368–9376 (2022). https://doi.org/10.1021/acsami.1c19771
L. Dong, B. Xue, G. Wei, S. Yuan, M. Chen et al., Highly promising 2D/1D BP-C/CNT bionic opto-olfactory co-sensory artificial synapses for multisensory integration. Adv. Sci. 11(29), 2403665 (2024). https://doi.org/10.1002/advs.202403665
H. Jang, S. Ju, S. Lee, J. Choi, U. Byun et al., Recent advances in optoelectronic synaptic devices for neuromorphic computing. Biomimetics 10(9), 584 (2025). https://doi.org/10.3390/biomimetics10090584
F. Zhang, C. Li, Z. Li, L. Dong, J. Zhao, Recent progress in three-terminal artificial synapses based on 2D materials: from mechanisms to applications. Microsyst. Nanoeng. 9, 16 (2023). https://doi.org/10.1038/s41378-023-00487-2
M.-K. Song, S.D. Namgung, D. Choi, H. Kim, H. Seo et al., Proton-enabled activation of peptide materials for biological bimodal memory. Nat. Commun. 11(1), 5896 (2020). https://doi.org/10.1038/s41467-020-19750-5
H. Ma, H. Fang, X. Xie, Y. Liu, H. Tian et al., Optoelectronic synapses based on MXene/violet phosphorus van der Waals heterojunctions for visual-olfactory crossmodal perception. Nano-Micro Lett. 16(1), 104 (2024). https://doi.org/10.1007/s40820-024-01330-7
J. Lao, C. Jiang, C. Luo, N. Zhong, B. Tian et al., Self-powered and humidity-modulable optoelectronic synapse. Adv. Mater. Technol. 8(11), 2201779 (2023). https://doi.org/10.1002/admt.202201779
D. Tan, Z. Zhang, H. Shi, N. Sun, Q. Li et al., Bioinspired artificial visual-respiratory synapse as multimodal scene recognition system with oxidized-vacancies MXene. Adv. Mater. 36(36), 2407751 (2024). https://doi.org/10.1002/adma.202407751
Y. Yin, T. Sun, L. Wang, L. Li, P. Guo et al., In-sensor organic electrochemical transistor for the multimode neuromorphic olfactory system. ACS Sens. 9(8), 4277–4285 (2024). https://doi.org/10.1021/acssensors.4c01423
T. Jiang, Y. Wang, Y. Zheng, L. Wang, X. He et al., Tetrachromatic vision-inspired neuromorphic sensors with ultraweak ultraviolet detection. Nat. Commun. 14(1), 2281 (2023). https://doi.org/10.1038/s41467-023-37973-0
S. Dai, X. Liu, Y. Liu, Y. Xu, J. Zhang et al., Emerging iontronic neural devices for neuromorphic sensory computing. Adv. Mater. 35(39), e2300329 (2023). https://doi.org/10.1002/adma.202300329
C. Wang, X. Xu, X. Pi, M.D. Butala, W. Huang et al., Neuromorphic device based on silicon nanosheets. Nat. Commun. 13, 5216 (2022). https://doi.org/10.1038/s41467-022-32884-y
M. Wang, D. Ouyang, Y. Dai, D. Huo, W. He et al., 2D piezo-Ferro-opto-electronic artificial synapse for bio-inspired multimodal sensory integration. Adv. Mater. 37(24), e2500049 (2025). https://doi.org/10.1002/adma.202500049
F. Nie, H. Fang, J. Wang, L. Zhao, C. Jia et al., An adaptive solid-state synapse with bi-directional relaxation for multimodal recognition and spatio-temporal learning. Adv. Mater. 37(17), 2412006 (2025). https://doi.org/10.1002/adma.202412006
W. Zhao, Z. Lin, L. Zhang, X. Lin, J. Wang et al., Bioinspired three-mode photosensitive synaptic LED for optical information processing. Nano Lett. 24(44), 14109–14117 (2024). https://doi.org/10.1021/acs.nanolett.4c04444
G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou et al., Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22(12), 1499–1506 (2023). https://doi.org/10.1038/s41563-023-01676-0
X. Zhang, D. Liu, J. Wu, E. Cheng, C. Qin et al., Pixel-level hardware strategy for large-scale convolution calculation in neuromorphic devices. Adv. Funct. Mater. 35(17), 2420045 (2025). https://doi.org/10.1002/adfm.202420045
H. Fang, S. Ma, J. Wang, L. Zhao, F. Nie et al., Multimodal in-sensor computing implemented by easily-fabricated oxide-heterojunction optoelectronic synapses. Adv. Funct. Mater. 34(49), 2409045 (2024). https://doi.org/10.1002/adfm.202409045
J. Sun, Q. Chen, F. Fan, Z. Zhang, T. Han et al., A dual-mode organic memristor for coordinated visual perceptive computing. Fundam. Res. 4(6), 1666–1673 (2022). https://doi.org/10.1016/j.fmre.2022.06.022
C. Yang, H. Wang, G. Zhou, S. Qin, W. Hou et al., A multifunctional memristor with coexistence of NDR and RS behaviors for logic operation and somatosensory temperature sensing applications. Nano Today 57, 102382 (2024). https://doi.org/10.1016/j.nantod.2024.102382
S. Zhou, H. Fan, S. Wen, Y. Wei, H. Chen et al., Dual-mode photodetectors mimicking retinal rod and cone cells for high dynamic range image sensor. Laser Photon. Rev. 19(12), 2402192 (2025). https://doi.org/10.1002/lpor.202402192
Q. He, H. Wang, Y. Zhang, A. Chen, Y. Fu et al., Two-dimensional materials based two-transistor-two-resistor synaptic kernel for efficient neuromorphic computing. Nat. Commun. 16(1), 4340 (2025). https://doi.org/10.1038/s41467-025-59815-x
K. Young, K. Eun, K. Sung, C. Yeop, K. Soh et al., Artificial sensory system based on memristive devices. Exploration 4(1), 20220162 (2024). https://doi.org/10.1002/EXP.20220162
M. Park, J.Y. Yang, M.J. Yeom, B. Bae, Y. Baek et al., An artificial neuromuscular junction for enhanced reflexes and oculomotor dynamics based on a ferroelectric CuInP2S6/GaN HEMT. Sci. Adv. 9(38), eadh9889 (2023). https://doi.org/10.1126/sciadv.adh9889
X. Shan, Z. Wang, J. Xie, J. Han, Y. Tao et al., Hemispherical retina emulated by plasmonic optoelectronic memristors with all-optical modulation for neuromorphic stereo vision. Adv. Sci. 11(36), 2405160 (2024). https://doi.org/10.1002/advs.202405160
Y. Ma, M. Chen, F. Aguirre, Y. Yan, S. Pazos et al., Van der Waals engineering of one-transistor-one-ferroelectric-memristor architecture for an energy-efficient neuromorphic array. Nano Lett. 25(6), 2528–2537 (2025). https://doi.org/10.1021/acs.nanolett.4c06118
L. Chen, M. Ren, J. Zhou, X. Zhou, F. Liu et al., Bioinspired iontronic synapse fibers for ultralow-power multiplexing neuromorphic sensorimotor textiles. Proc. Natl. Acad. Sci. U. S. A. 121(33), e2407971121 (2024). https://doi.org/10.1073/pnas.2407971121
M.J. Rasch, C. Mackin, M. Le Gallo, A. Chen, A. Fasoli et al., Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators. Nat. Commun. 14, 5282 (2023). https://doi.org/10.1038/s41467-023-40770-4
Y. Cho, J. Heo, S. Kim, S. Kim, Stacked NbOx-based selector and ZrOx-based resistive memory for high-density crossbar array applications. Surf. Interfaces 41, 103273 (2023). https://doi.org/10.1016/j.surfin.2023.103273
S. Jain, S. Li, H. Zheng, L. Li, X. Fong et al., Heterogeneous integration of 2D memristor arrays and silicon selectors for compute-in-memory hardware in convolutional neural networks. Nat. Commun. 16, 2719 (2025). https://doi.org/10.1038/s41467-025-58039-3
L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2(5), 1811–1827 (2020). https://doi.org/10.1039/d0na00100g
Q. Li, S. Wang, Z. Li, X. Hu, Y. Liu et al., High-performance ferroelectric field-effect transistors with ultra-thin indium tin oxide channels for flexible and transparent electronics. Nat. Commun. 15, 2686 (2024). https://doi.org/10.1038/s41467-024-46878-5
C.-Y. Wei, K.-C. Liao, Y.-J. Yao, C.-E. Wu, C.-L. Chen et al., High-κ HfO2/ZrO2 superlattice for BEOL-compatible GAAFET memory device. Appl. Phys. Lett. 126(24), 242902 (2025). https://doi.org/10.1063/5.0274127
F. Kiani, J. Yin, Z. Wang, J.J. Yang, Q. Xia, A fully hardware-based memristive multilayer neural network. Sci. Adv. 7(48), eabj4801 (2021). https://doi.org/10.1126/sciadv.abj4801
Y. Li, K.-W. Ang, Hardware implementation of neuromorphic computing using large-scale memristor crossbar arrays. Adv. Intell. Syst. 3(1), 2000137 (2021). https://doi.org/10.1002/aisy.202000137
J. Meng, T. Wang, H. Zhu, L. Ji, W. Bao et al., Integrated in-sensor computing optoelectronic device for environment-adaptable artificial retina perception application. Nano Lett. 22(1), 81–89 (2022). https://doi.org/10.1021/acs.nanolett.1c03240
S.W. Cho, S.M. Kwon, Y.-H. Kim, S.K. Park, Recent progress in transistor-based optoelectronic synapses: from neuromorphic computing to artificial sensory system. Adv. Intell. Syst. 3(6), 2000162 (2021). https://doi.org/10.1002/aisy.202000162
G. Lee, J.-H. Baek, F. Ren, S.J. Pearton, G.-H. Lee et al., Artificial neuron and synapse devices based on 2D materials. Small 17(20), 2100640 (2021). https://doi.org/10.1002/smll.202100640
S. Wang, C.-Y. Wang, P. Wang, C. Wang, Z.-A. Li et al., Networking retinomorphic sensor with memristive crossbar for brain-inspired visual perception. Natl. Sci. Rev. 8(2), nwaa172 (2020). https://doi.org/10.1093/nsr/nwaa172
F. Zhang, C. Li, Z. Chen, H. Tan, Z. Li et al., Large-scale high uniform optoelectronic synapses array for artificial visual neural network. Microsyst. Nanoeng. 11(1), 5 (2025). https://doi.org/10.1038/s41378-024-00859-2
X. Li, L. Yi, X. Yin, J. Cheng, Q. Xin et al., Fully screen-printed paper-based ZnO synaptic transistor arrays for visual perception and neuromorphic computing. npj Flex. Electron. 9, 57 (2025). https://doi.org/10.1038/s41528-025-00425-4
J. Lee, J. Lee, H. Bang, T.W. Yoon, J.H. Ko et al., One-shot remote integration of macromolecular synaptic elements on a chip for ultrathin flexible neural network system. Adv. Mater. 37(26), 2402361 (2025). https://doi.org/10.1002/adma.202402361
D. Joksas, A. AlMutairi, O. Lee, M. Cubukcu, A. Lombardo et al., Memristive, spintronic, and 2D-materials-based devices to improve and complement computing hardware. Adv. Intell. Syst. 4(8), 2200068 (2022). https://doi.org/10.1002/aisy.202200068
T. Li, J. Miao, X. Fu, B. Song, B. Cai et al., Reconfigurable, non-volatile neuromorphic photovoltaics. Nat. Nanotechnol. 18(11), 1303–1310 (2023). https://doi.org/10.1038/s41565-023-01446-8
L. Sun, Z. Wang, J. Jiang, Y. Kim, B. Joo et al., In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7(20), eabg1455 (2021). https://doi.org/10.1126/sciadv.abg1455
Y. Xu, X. Xu, Y. Huang, Y. Tian, M. Cheng et al., Gate-tunable positive and negative photoconductance in near-infrared organic heterostructures for in-sensor computing. Adv. Mater. 36(30), 2470241 (2024). https://doi.org/10.1002/adma.202470241
X. Liu, S. Dai, W. Zhao, J. Zhang, Z. Guo et al., All-photolithography fabrication of ion-gated flexible organic transistor array for multimode neuromorphic computing. Adv. Mater. 36(21), 2312473 (2024). https://doi.org/10.1002/adma.202312473
Q. Duan, T. Zhang, C. Liu, R. Yuan, G. Li et al., Artificial multisensory neurons with fused haptic and temperature perception for multimodal in-sensor computing. Adv. Intell. Syst. 4(8), 2270039 (2022). https://doi.org/10.1002/aisy.202270039
A. Bag, G. Ghosh, M.J. Sultan, H.H. Chouhdry, S.J. Hong et al., Bio-inspired sensory receptors for artificial-intelligence perception. Adv. Mater. 37(26), 2403150 (2025). https://doi.org/10.1002/adma.202403150
M.S. Kim, M.S. Kim, G.J. Lee, S.-H. Sunwoo, S. Chang et al., Bio-inspired artificial vision and neuromorphic image processing devices. Adv. Mater. Technol. 7(2), 2100144 (2022). https://doi.org/10.1002/admt.202100144
J.-L. Meng, T.-Y. Wang, L. Chen, Q.-Q. Sun, H. Zhu et al., Energy-efficient flexible photoelectric device with 2D/0D hybrid structure for bio-inspired artificial heterosynapse application. Nano Energy 83, 105815 (2021). https://doi.org/10.1016/j.nanoen.2021.105815
S. Talanti, K. Fu, X. Zheng, Y. Shi, Y. Tan et al., CMOS-integrated organic neuromorphic imagers for high-resolution dual-modal imaging. Nat. Commun. 16(1), 4311 (2025). https://doi.org/10.1038/s41467-025-59446-2
J. He, R. Wei, S. Ge, W. Wu, J. Guo et al., Artificial visual-tactile perception array for enhanced memory and neuromorphic computations. InfoMat 6(3), e12493 (2024). https://doi.org/10.1002/inf2.12493
X. Wu, S. Shi, J. Jiang, D. Lin, J. Song et al., Bionic olfactory neuron with in-sensor reservoir computing for intelligent gas recognition. Adv. Mater. 37(13), 2419159 (2025). https://doi.org/10.1002/adma.202419159
J. Guo, F. Guo, H. Zhao, H. Yang, X. Du et al., In-sensor computing with visual-tactile perception enabled by mechano-optical artificial synapse. Adv. Mater. 37(14), e2419405 (2025). https://doi.org/10.1002/adma.202419405
H. So, H. Ji, S. Kim, S. Kim, Sophisticated conductance control and multiple synapse functions in TiO2-based multistack-layer crossbar array memristor for high-performance neuromorphic systems. Adv. Funct. Mater. 34(51), 2405544 (2024). https://doi.org/10.1002/adfm.202405544
H. Li, S. Wang, X. Zhang, W. Wang, R. Yang et al., Memristive crossbar arrays for storage and computing applications. Adv. Intell. Syst. 3(9), 2100017 (2021). https://doi.org/10.1002/aisy.202100017
J. Huang, S. Yang, X. Tang, L. Yang, W. Chen et al., Flexible, transparent, and wafer-scale artificial synapse array based on TiOx/Ti3C2Tx film for neuromorphic computing. Adv. Mater. 35(33), e2303737 (2023). https://doi.org/10.1002/adma.202303737
E. Li, X. Wu, Q. Chen, S. Wu, L. He et al., Nanoscale channel organic ferroelectric synaptic transistor array for high recognition accuracy neuromorphic computing. Nano Energy 85, 106010 (2021). https://doi.org/10.1016/j.nanoen.2021.106010
X. Wang, C. Chen, L. Zhu, K. Shi, B. Peng et al., Vertically integrated spiking cone photoreceptor arrays for color perception. Nat. Commun. 14(1), 3444 (2023). https://doi.org/10.1038/s41467-023-39143-8
T. Lu, J. Xue, P. Shen, H. Liu, X. Gao et al., Two-dimensional fully ferroelectric-gated hybrid computing-in-memory hardware for high-precision and energy-efficient dynamic tracking. Sci. Adv. 10(36), eadp0174 (2024). https://doi.org/10.1126/sciadv.adp0174
H. Kim, S. Oh, H. Choo, D.-H. Kang, J.-H. Park, Tactile neuromorphic system: convergence of triboelectric polymer sensor and ferroelectric polymer synapse. ACS Nano 17(17), 17332–17341 (2023). https://doi.org/10.1021/acsnano.3c05337
W. Huang, X. Xia, C. Zhu, P. Steichen, W. Quan et al., Memristive artificial synapses for neuromorphic computing. Nano-Micro Lett. 13(1), 85 (2021). https://doi.org/10.1007/s40820-021-00618-2
Q. Chen, R. Yang, D. Hu, H. Lin, J. Shi et al., All-optically controlled artificial synaptic device for neural behavior simulation and computer vision. Mater. Today 89, 107–117 (2025). https://doi.org/10.1016/j.mattod.2025.07.029
S.-O. Park, H. Jeong, S. Seo, Y. Kwon, J. Lee et al., Experimental demonstration of third-order memristor-based artificial sensory nervous system for neuro-inspired robotics. Nat. Commun. 16(1), 5754 (2025). https://doi.org/10.1038/s41467-025-60818-x
F. Zhou, Y. Chai, Near-sensor and in-sensor computing. Nat. Electron. 3(11), 664–671 (2020). https://doi.org/10.1038/s41928-020-00501-9
B. Dang, T. Zhang, X. Wu, K. Liu, R. Huang et al., Reconfigurable in-sensor processing based on a multi-phototransistor–one-memristor array. Nat. Electron. 7(11), 991–1003 (2024). https://doi.org/10.1038/s41928-024-01280-3