New-Generation Ferroelectric AlScN Materials
Corresponding Author: Bobo Tian
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 227
Abstract
Ferroelectrics have great potential in the field of nonvolatile memory due to programmable polarization states by external electric field in nonvolatile manner. However, complementary metal oxide semiconductor compatibility and uniformity of ferroelectric performance after size scaling have always been two thorny issues hindering practical application of ferroelectric memory devices. The emerging ferroelectricity of wurtzite structure nitride offers opportunities to circumvent the dilemma. This review covers the mechanism of ferroelectricity and domain dynamics in ferroelectric AlScN films. The performance optimization of AlScN films grown by different techniques is summarized and their applications for memories and emerging in-memory computing are illustrated. Finally, the challenges and perspectives regarding the commercial avenue of ferroelectric AlScN are discussed.
Highlights:
1 Ferroelectricity and domain dynamics of emerging ferroelectric AlScN films were discussed.
2 The performance optimization of ferroelectric AlScN films grown by different deposition techniques was comprehensively analyzed.
3 The challenges and perspectives regarding the commercial avenue of AlScN-based memories and in-memory computing applications were summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. Hilbert, P. López, The world’s technological capacity to store, communicate, and compute information. Science 332, 60–65 (2011). https://doi.org/10.1126/science.1200970
- R. Huo, S. Zeng, Z. Wang, J. Shang, W. Chen et al., A comprehensive survey on blockchain in industrial Internet of Things: motivations, research progresses, and future challenges. IEEE Commun. Surv. Tutor. 24, 88–122 (2022). https://doi.org/10.1109/COMST.2022.3141490
- M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20, 2923–2960 (2018). https://doi.org/10.1109/COMST.2018.2844341
- S. Gao, X. Yi, J. Shang, G. Liu, R.-W. Li, Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 48, 1531–1565 (2019). https://doi.org/10.1039/c8cs00614h
- C. Seife, Big data: the revolution is digitized. Nature 518, 480–481 (2015). https://doi.org/10.1038/518480a
- M.S. Gordon, T.L. Windus, Editorial: modern architectures and their impact on electronic structure theory. Chem. Rev. 120, 9015–9020 (2020). https://doi.org/10.1021/acs.chemrev.0c00700
- X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9, 021309 (2022). https://doi.org/10.1063/5.0073085
- X. Hou, C. Liu, Y. Ding, L. Liu, S. Wang et al., A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 7, 2002072 (2020). https://doi.org/10.1002/advs.202002072
- D. Hao, Z. Yang, J. Huang, F. Shan, Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33, 2211467 (2023). https://doi.org/10.1002/adfm.202211467
- J. Liao, W. Wen, J. Wu, Y. Zhou, S. Hussain et al., Van der waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 17, 6095–6102 (2023). https://doi.org/10.1021/acsnano.3c01198
- Z.Y. He, T.Y. Wang, J.L. Meng, H. Zhu, L. Ji et al., CMOS back-end compatible memristors for in situ digital and neuromorphic computing applications. Mater. Horiz. 8, 3345–3355 (2021). https://doi.org/10.1039/d1mh01257f
- G. Wu, B. Tian, L. Liu, W. Lv, S. Wu et al., Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y
- B.B. Tian, J.L. Wang, S. Fusil, Y. Liu, X.L. Zhao et al., Tunnel electroresistance through organic ferroelectrics. Nat. Commun. 7, 11502 (2016). https://doi.org/10.1038/ncomms11502
- L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2, 1811–1827 (2020). https://doi.org/10.1039/D0NA00100G
- B. Tian, L. Liu, M. Yan, J. Wang, Q. Zhao et al., A robust artificial synapse based on organic ferroelectric polymer. Adv. Electron. Mater. 5, 1800600 (2019). https://doi.org/10.1002/aelm.201800600
- M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers et al., Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018). https://doi.org/10.1038/s41928-018-0054-8
- G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi et al., In-memory hyperdimensional computing. Nat. Electron. 3, 327–337 (2020). https://doi.org/10.1038/s41928-020-0410-3
- W. Wan, R. Kubendran, C. Schaefer, S.B. Eryilmaz, W. Zhang et al., A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022). https://doi.org/10.1038/s41586-022-04992-8
- J.S. Vetter, S. Mittal, Opportunities for nonvolatile memory systems in extreme-scale high-performance computing. Comput. Sci. Eng. 17, 73–82 (2015). https://doi.org/10.1109/MCSE.2015.4
- K. Prall, Benchmarking and metrics for emerging memory, in 2017 IEEE International Memory Workshop (IMW) (IEEE, Monterey, CA, USA, 2017), pp. 1–5
- J.A. Rodriguez, K. Remack, K. Boku, K.R. Udayakumar, S. Aggarwal et al., Reliability properties of low-voltage ferroelectric capacitors and memory arrays. IEEE Trans. Device Mater. Relib. 4, 436–449 (2004). https://doi.org/10.1109/tdmr.2004.837210
- A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil et al., Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2011). https://doi.org/10.1038/nnano.2011.213
- M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5–x)/TaO(2–x) bilayer structures. Nat. Mater. 10, 625–630 (2011). https://doi.org/10.1038/nmat3070
- W. Banerjee, Challenges and applications of emerging nonvolatile memory devices. Electronics 9, 1029 (2020). https://doi.org/10.3390/electronics9061029
- Z. Luo, Z. Wang, Z. Guan, C. Ma, L. Zhao et al., High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat. Commun. 13, 699 (2022). https://doi.org/10.1038/s41467-022-28303-x
- G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou et al., Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023). https://doi.org/10.1038/s41563-023-01676-0
- G. Feng, Q. Zhu, X. Liu, L. Chen, X. Zhao et al., A ferroelectric fin diode for robust non-volatile memory. Nat. Commun. 15, 513 (2024). https://doi.org/10.1038/s41467-024-44759-5
- D. Wang, S. Hao, B. Dkhil, B. Tian, C. Duan, Ferroelectric materials for neuroinspired computing applications. Fundam. Res. (2023). https://doi.org/10.1016/j.fmre.2023.04.013
- R. Berdan, T. Marukame, K. Ota, M. Yamaguchi, M. Saitoh et al., Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron. 3, 259–266 (2020). https://doi.org/10.1038/s41928-020-0405-0
- Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma et al., A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 11, 1391 (2020). https://doi.org/10.1038/s41467-020-15159-2
- F. Ambriz-Vargas, G. Kolhatkar, M. Broyer, A. Hadj-Youssef, R. Nouar et al., A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction. ACS Appl. Mater. Interfaces 9, 13262–13268 (2017). https://doi.org/10.1021/acsami.6b16173
- Z. Shen, L. Liao, Y. Zhou, K. Xiong, J. Zeng et al., Epitaxial growth and phase evolution of ferroelectric La-doped HfO2 films. Appl. Phys. Lett. 120, 162904 (2022). https://doi.org/10.1063/5.0087976
- Z. Zhao, Y.R. Chen, J.F. Wang, Y.W. Chen, J.R. Zou et al., Engineering Hf0.5Zr0.5O2 ferroelectric/anti-ferroelectric phases with oxygen vacancy and interface energy achieving high remanent polarization and dielectric constants. IEEE Electron Device Lett. 43, 553–556 (2022). https://doi.org/10.1109/LED.2022.3149309
- R. Athle, A.E.O. Persson, A. Irish, H. Menon, R. Timm et al., Effects of TiN top electrode texturing on ferroelectricity in Hf1-xZrxO2. ACS Appl. Mater. Interfaces 13, 11089–11095 (2021). https://doi.org/10.1021/acsami.1c01734
- P.S. Ghosh, D. DeTellem, J. Ren, S. Witanachchi, S. Ma et al., Unusual properties of hydrogen-bonded ferroelectrics: the case of cobalt formate. Phys. Rev. Lett. 128, 077601 (2022). https://doi.org/10.1103/PhysRevLett.128.077601
- L. Hu, R. Feng, J. Wang, Z. Bai, W. Jin et al., Space-charge-stabilized ferroelectric polarization in self-oriented croconic acid films. Adv. Funct. Mater. 28, 1705463 (2018). https://doi.org/10.1002/adfm.201705463
- F. Mehmood, M. Hoffmann, P.D. Lomenzo, C. Richter, M. Materano et al., Bulk depolarization fields as a major contributor to the ferroelectric reliability performance in lanthanum doped Hf0.5Zr0.5O2 capacitors. Adv. Mater. Interfaces 6, 1901180 (2019). https://doi.org/10.1002/admi.201901180
- J. Hayden, M.D. Hossain, Y. Xiong, K. Ferri, W. Zhu et al., Ferroelectricity in boron-substituted aluminum nitride thin films. Phys. Rev. Mater. 5, 044412 (2021). https://doi.org/10.1103/physrevmaterials.5.044412
- K. Ferri, S. Bachu, W. Zhu, M. Imperatore, J. Hayden et al., Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021). https://doi.org/10.1063/5.0053755
- D. Wang, P. Wang, B. Wang, Z. Mi, Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021). https://doi.org/10.1063/5.0060021
- A.I. Mardare, C.C. Mardare, E. Joanni, Bottom electrode crystallization of PZT thin films for ferroelectric capacitors. J. Eur. Ceram. Soc. 25, 735–741 (2005). https://doi.org/10.1016/j.jeurceramsoc.2003.12.031
- G. Le Rhun, G. Poullain, R. Bouregba, G. Leclerc, Fatigue properties of oriented PZT ferroelectric thin films. J. Eur. Ceram. Soc. 25, 2281–2284 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.046
- A. Datta, D. Mukherjee, S. Witanachchi, P. Mukherjee, Hierarchically ordered nano-heterostructured PZT thin films with enhanced ferroelectric properties. Adv. Funct. Mater. 24, 2638–2647 (2014). https://doi.org/10.1002/adfm.201303290
- D.H. Li, E.S. Lee, H.W. Chung, S.Y. Lee, Comparison of the effect of PLT and PZT buffer layers on PZT thin films for ferroelectric materials applications. Appl. Surf. Sci. 252, 4541–4544 (2006). https://doi.org/10.1016/j.apsusc.2005.07.133
- K.R. Udayakumar, P.J. Schuele, J. Chen, S.B. Krupanidhi, L.E. Cross, Thickness-dependent electrical characteristics of lead zirconate titanate thin films. J. Appl. Phys. 77, 3981–3986 (1995). https://doi.org/10.1063/1.359508
- S. Samanta, V. Sankaranarayanan, K. Sethupathi, Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum 156, 456–462 (2018). https://doi.org/10.1016/j.vacuum.2018.08.015
- E.M. Lee, Y. Ahn, J.Y. Son, Effects of Mn doping on BaTiO3 thin films grown on highly oriented pyrolytic graphite substrates. Curr. Appl. Phys. 20, 755–759 (2020). https://doi.org/10.1016/j.cap.2020.03.009
- J.L. Lin, R. He, Z. Lu, Y. Lu, Z. Wang et al., Oxygen vacancy enhanced ferroelectricity in BTO: SRO nanocomposite films. Acta Mater. 199, 9–18 (2020). https://doi.org/10.1016/j.actamat.2020.08.016
- H.H. Wieder, Electrical behavior of barium titanatge single crystals at low temperatures. Phys. Rev. 99, 1161–1165 (1955). https://doi.org/10.1103/physrev.99.1161
- C.A.-P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995). https://doi.org/10.1038/374627a0
- J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615
- N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6
- G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849
- M.A. Rafiq, M.E. Costa, P.M. Vilarinho, Pairing high piezoelectric coefficients, d33, with high curie temperature (TC) in lead-free (K, Na)NbO3. ACS Appl. Mater. Interfaces 8, 33755–33764 (2016). https://doi.org/10.1021/acsami.6b08199
- Y. Chang, S. Poterala, Z. Yang, G.L. Messing, Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494–2498 (2011). https://doi.org/10.1111/j.1551-2916.2011.04393.x
- J. Bouaziz, P.R. Romeo, N. Baboux, B. Vilquin, Huge reduction of the wake-up effect in ferroelectric HZO thin films. ACS Appl. Electron. Mater. 1, 1740–1745 (2019). https://doi.org/10.1021/acsaelm.9b00367
- V. Gaddam, D. Das, S. Jeon, Insertion of HfO2 seed/dielectric layer to the ferroelectric HZO films for heightened remanent polarization in MFM capacitors. IEEE Trans. Electron Devices 67, 745–750 (2020). https://doi.org/10.1109/TED.2019.2961208
- B. Liu, Y. Zhang, L. Zhang, Q. Yuan, W. Zhang et al., Excellent HZO ferroelectric thin films on flexible PET substrate. J. Alloys Compd. 919, 165872 (2022). https://doi.org/10.1016/j.jallcom.2022.165872
- P. Wang, D. Wang, N.M. Vu, T. Chiang, J.T. Heron et al., Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021). https://doi.org/10.1063/5.0054539
- M.R. Islam, N. Wolff, M. Yassine, G. Schönweger, B. Christian et al., On the exceptional temperature stability of ferroelectric Al1-xScxN thin films. Appl. Phys. Lett. 118, 232905 (2021). https://doi.org/10.1063/5.0053649
- R. Guido, P.D. Lomenzo, M.R. Islam, N. Wolff, M. Gremmel et al., Thermal stability of the ferroelectric properties in 100 nm-thick Al0.72Sc0.28N. ACS Appl. Mater. Interfaces 15, 7030–7043 (2023). https://doi.org/10.1021/acsami.2c18313
- D. Wang, J. Zheng, P. Musavigharavi, W. Zhu, A.C. Foucher et al., Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett. 41(12), 1774–1777 (2020). https://doi.org/10.1109/LED.2020.3034576
- A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto et al., Two-dimensional ferroelectric films. Nature 391, 874–877 (1998). https://doi.org/10.1038/36069
- T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143–211 (1989). https://doi.org/10.1080/01411598908206863
- B.B. Tian, X.F. Bai, Y. Liu, P. Gemeiner, X.L. Zhao et al., β phase instability in poly(vinylidene fluoride/trifluoroethylene) thin films near β relaxation temperature. Appl. Phys. Lett. 106, 092902 (2015). https://doi.org/10.1063/1.4913968
- S. Ducharme, V.M. Fridkin, A.V. Bune, S.P. Palto, L.M. Blinov et al., Intrinsic ferroelectric coercive field. Phys. Rev. Lett. 84, 175–178 (2000). https://doi.org/10.1103/PhysRevLett.84.175
- W.-Q. Liao, D. Zhao, Y.-Y. Tang, Y. Zhang, P.-F. Li et al., A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 363, 1206–1210 (2019). https://doi.org/10.1126/science.aav3057
- P.-F. Li, W.-Q. Liao, Y.-Y. Tang, W. Qiao, D. Zhao et al., Organic enantiomeric high-Tc ferroelectrics. Proc. Natl. Acad. Sci. U.S.A. 116, 5878–5885 (2019). https://doi.org/10.1073/pnas.1817866116
- J. Valasek, Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921). https://doi.org/10.1103/physrev.17.475
- H.-Y. Zhang, Y.-Y. Tang, P.-P. Shi, R.-G. Xiong, Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019). https://doi.org/10.1021/acs.accounts.8b00677
- G. Busch, P. Scherrer, Eine neue seignette-elektrische Substanz. Naturwissenschaften 23, 737 (1935). https://doi.org/10.1007/BF01498152
- Q. Zhao, H. Wang, Z. Ni, J. Liu, Y. Zhen et al., Organic ferroelectric-based 1T1T random access memory cell employing a common dielectric layer overcoming the half-selection problem. Adv. Mater. 29, 1701907 (2017). https://doi.org/10.1002/adma.201701907
- J. Hoffman, X. Pan, J.W. Reiner, F.J. Walker, J.P. Han et al., Ferroelectric field effect transistors for memory applications. Adv. Mater. 22, 2957–2961 (2010). https://doi.org/10.1002/adma.200904327
- X. Qian, X. Chen, L. Zhu, Q.M. Zhang, Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380, eadg0902 (2023). https://doi.org/10.1126/science.adg0902
- D. Buck, Ferroelectrics for Digital Information Storage and Switching (Massachusetts Institute of Technology, Cambridge Digital Computer Lab., Cambridge, 1952)
- D. Bondurant, Ferroelectronic ram memory family for critical data storage. Ferroelectrics 112, 273–282 (1990). https://doi.org/10.1080/00150199008008233
- C.-U. Pinnow, T. Mikolajick, Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13 (2004). https://doi.org/10.1149/1.1740785
- J.-M. Koo, B.-S. Seo, S. Kim, S. Shin, J.-H. Lee et al., Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application, in IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest (2005), pp. 340–343. https://doi.org/10.1109/IEDM.2005.1609345
- H.P. McAdams, R. Acklin, T. Blake, X.-H. Du, J. Eliason et al., A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid State Circuits 39, 667–677 (2004). https://doi.org/10.1109/jssc.2004.825241
- D.A. Tenne, A. Bruchhausen, N.D. Lanzillotti-Kimura, A. Fainstein, R.S. Katiyar et al., Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006). https://doi.org/10.1126/science.1130306
- V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009). https://doi.org/10.1038/nature08128
- J.L. Moll, Y. Tarui, A new solid state memory resistor. IEEE Trans. Electron Devices 10, 338 (1963). https://doi.org/10.1109/T-ED.1963.15245
- K. Sugibuchi, Y. Kurogi, N. Endo, Ferroelectric field-effect memory device using Bi4Ti3O12 film. J. Appl. Phys. 46, 2877–2881 (1975). https://doi.org/10.1063/1.322014
- K. Takahashi, K. Aizawa, B.-E. Park, H. Ishiwara, Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. 44, 6218 (2005). https://doi.org/10.1143/jjap.44.6218
- T. Kijima, H. Matsunaga, Preparation of Bi4Ti3O12 thin films by MOCVD method and electrical properties of metal/ferroelectric/insulator/semiconductor structure. Jpn. J. Appl. Phys. 38, 2281 (1999). https://doi.org/10.1143/jjap.38.2281
- S. Sakai, R. Ilangovan, Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004). https://doi.org/10.1109/LED.2004.828992
- M. Si, A.K. Saha, S. Gao, G. Qiu, J. Qin et al., A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019). https://doi.org/10.1038/s41928-019-0338-7
- U. Schroeder, M.H. Park, T. Mikolajick, C.S. Hwang, The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022). https://doi.org/10.1038/s41578-022-00431-2
- J. Park, T.-H. Kim, O. Kwon, M. Ismail, C. Mahata et al., Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM. Nano Energy 104, 107886 (2022). https://doi.org/10.1016/j.nanoen.2022.107886
- T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors, in 2011 International Electron Devices Meeting (IEEE, Washington, DC, USA, 2011), pp. 24.5.1–24.5.4
- S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi et al., First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, in 2016 IEEE Symposium on VLSI Technology (IEEE, Honolulu, HI, USA, 2016), pp. 1–2
- J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto et al., SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2, in 2020 IEEE Symposium on VLSI Technology (IEEE, Honolulu, HI, USA, 2020), pp. 1–2
- J. Yang, Q. Luo, X. Xue, H. Jiang, Q. Wu et al., A 9Mb HZO-based embedded FeRAM with 1012-cycle endurance and 5/7ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier, in 2023 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, San Francisco, CA, USA, 2023), pp. 1–3
- M.H. Park, C.-C. Chung, T. Schenk, C. Richter, K. Opsomer et al., Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction. Adv. Electron. Mater. 4, 1800091 (2018). https://doi.org/10.1002/aelm.201800091
- Y. Goh, J. Hwang, Y. Lee, M. Kim, S. Jeon, Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization. Appl. Phys. Lett. 117, 242901 (2020). https://doi.org/10.1063/5.0029516
- R. Materlik, C. Künneth, A. Kersch, The origin of ferroelectricity in Hf1–xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015). https://doi.org/10.1063/1.4916707
- Y. Wei, P. Nukala, M. Salverda, S. Matzen, H.J. Zhao et al., A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17, 1095–1100 (2018). https://doi.org/10.1038/s41563-018-0196-0
- T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M.H. Park, S. Fichtner et al., Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021). https://doi.org/10.1063/5.0037617
- S. Fichtner, N. Wolff, F. Lofink, L. Kienle, B. Wagner, AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019). https://doi.org/10.1063/1.5084945
- K. Yazawa, A. Zakutayev, G.L. Brennecka, A Landau–Devonshire analysis of strain effects on ferroelectric Al1–xScxN. Appl. Phys. Lett. 121, 042902 (2022). https://doi.org/10.1063/5.0098979
- R. Mizutani, S. Yasuoka, T. Shiraishi, T. Shimizu, M. Uehara et al., Thickness scaling of (Al0.8Sc0.2)N films with remanent polarization beyond 100 μC cm–2 around 10 nm in thickness. Appl. Phys. Express 14, 105501 (2021). https://doi.org/10.35848/1882-0786/ac2261
- D. Drury, K. Yazawa, A. Zakutayev, B. Hanrahan, G. Brennecka, High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 13, 887 (2022). https://doi.org/10.3390/mi13060887
- W. Zhu, J. Hayden, F. He, J.-I. Yang, P. Tipsawat et al., Strongly temperature dependent ferroelectric switching in AlN, Al1-xScxN, and Al1-xBxN thin films. Appl. Phys. Lett. 119, 062901 (2021). https://doi.org/10.1063/5.0057869
- D. Wang, P. Wang, S. Mondal, M. Hu, D. Wang et al., Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy. Appl. Phys. Lett. 122, 052101 (2023). https://doi.org/10.1063/5.0136265
- J.X. Zheng, M.M.A. Fiagbenu, G. Esteves, P. Musavigharavi, A. Gunda et al., Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 222901 (2023). https://doi.org/10.1063/5.0147224
- G. Schönweger, N. Wolff, M.R. Islam, M. Gremmel, A. Petraru et al., In-grain ferroelectric switching in sub-5 nm thin Al0.74 Sc0.26 N films at 1 V. Adv. Sci. 10, e2302296 (2023). https://doi.org/10.1002/advs.202302296
- G. Schönweger, M.R. Islam, N. Wolff, A. Petraru, L. Kienle et al., Ultrathin Al1–xScxN for low-voltage-driven ferroelectric-based devices. Phys. Status Solidi RRL 17, 2200312 (2023). https://doi.org/10.1002/pssr.202200312
- W. Sun, J. Zhou, N. Liu, S. Zheng, X. Li et al., Integration of ferroelectric Al0.8Sc0.2N on Si (001) substrate. IEEE Electron Device Lett. 45, 574–577 (2024). https://doi.org/10.1109/LED.2024.3363724
- D. Wang, P. Wang, S. Mondal, S. Mohanty, T. Ma et al., An epitaxial ferroelectric ScAlN/GaN heterostructure memory. Adv. Electron. Mater. 8, 2200005 (2022). https://doi.org/10.1002/aelm.202200005
- N. Farrer, L. Bellaiche, Properties of hexagonal ScN versus wurtzite GaN and InN. Phys. Rev. B 66, 201203 (2002). https://doi.org/10.1103/physrevb.66.201203
- V. Ranjan, L. Bellaiche, E.J. Walter, Strained hexagonal ScN: a material with unusual structural and optical properties. Phys. Rev. Lett. 90, 257602 (2003). https://doi.org/10.1103/PhysRevLett.90.257602
- Y. Zhang, S. Wang, Y. Zhao, Y. Ding, Z. Zhang et al., Piezo-phototronic effect boosted catalysis in plasmonic bimetallic ZnO heterostructure with guided Fermi level alignment. Mater. Today Nano 18, 100177 (2022). https://doi.org/10.1016/j.mtnano.2022.100177
- W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
- P. Wang, D. Wang, S. Mondal, Y. Wu, T. Ma et al., Interfacial modulated lattice-polarity-controlled epitaxy of III-nitride heterostructures on Si(111). ACS Appl. Mater. Interfaces 14, 15747–15755 (2022). https://doi.org/10.1021/acsami.1c23381
- P. Muralt, R.G. Polcawich, S. Trolier-McKinstry, Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 34, 658–664 (2009). https://doi.org/10.1557/mrs2009.177
- S. Zhang, D. Holec, W.Y. Fu, C.J. Humphreys, M.A. Moram, Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. Appl. Phys. 114, 133510 (2013). https://doi.org/10.1063/1.4824179
- J. Cai, N. Chen, Microscopic mechanism of the wurtzite-to-rocksalt phase transition of the group-III nitrides from first principles. Phys. Rev. B 75, 134109 (2007). https://doi.org/10.1103/physrevb.75.134109
- H. Vollstädt, E. Ito, M. Akaishi, S. Akimoto et al., High pressure synthesis of Rocksalt type of AlN. Proc. Jpn. Acad. B-Phys. 66(1), 7–9 (1990). https://doi.org/10.2183/pjab.66.7
- J. Zagorac, D. Zagorac, M. Rosić, J.C. Schön, B. Matović, Structure prediction of aluminum nitride combining data mining and quantum mechanics. CrystEngComm 19, 5259–5268 (2017). https://doi.org/10.1039/C7CE01039G
- M. Durandurdu, Pressure-induced phase transition in AlN: an ab initio molecular dynamics study. J. Alloys Compd. 480, 917–921 (2009). https://doi.org/10.1016/j.jallcom.2009.02.060
- A.M. Saitta, F. Decremps, Unifying description of the wurtzite-to-rocksalt phase transition in wide-gap semiconductors: the effect of d electrons on the elastic constants. Phys. Rev. B 70, 035214 (2004). https://doi.org/10.1103/physrevb.70.035214
- F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist, J. Birch et al., Origin of the anomalous piezoelectric response in wurtzite ScxAl1–xN alloys. Phys. Rev. Lett. 104, 137601 (2010). https://doi.org/10.1103/PhysRevLett.104.137601
- H. Wang, N. Adamski, S. Mu, C.G. Van de Walle, Piezoelectric effect and polarization switching in Al1−xScxN. J. Appl. Phys. 130, 104101 (2021). https://doi.org/10.1063/5.0056485
- M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi et al., Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21, 593–596 (2009). https://doi.org/10.1002/adma.200802611
- T. Yanagitani, M. Suzuki, Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary. Appl. Phys. Lett. 105, 122907 (2014). https://doi.org/10.1063/1.4896262
- S. Yasuoka, T. Shimizu, A. Tateyama, M. Uehara, H. Yamada et al., Effects of deposition conditions on the ferroelectric properties of (Al1–xScx)N thin films. J. Appl. Phys. 128, 114103 (2020). https://doi.org/10.1063/5.0015281
- G. Schönweger, A. Petraru, M.R. Islam, N. Wolff, B. Haas et al., From fully strained to relaxed: epitaxial ferroelectric Al1-xScxN for III-N technology. Adv. Funct. Mater. 32, 2109632 (2022). https://doi.org/10.1002/adfm.202109632
- P. Wang, D. Wang, Y. Bi, B. Wang, J. Schwartz et al., Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN. Appl. Phys. Lett. 120, 012104 (2022). https://doi.org/10.1063/5.0060608
- J. Casamento, H. Lee, T. Maeda, V. Gund, K. Nomoto et al., Epitaxial ScxAl1–xN on GaN exhibits attractive high-K dielectric properties. Appl. Phys. Lett. 120, 152901 (2022). https://doi.org/10.1063/5.0075636
- S.-L. Tsai, T. Hoshii, H. Wakabayashi, K. Tsutsui, T.-K. Chung et al., Publisher’s Note: “Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering.” Appl. Phys. Lett. 118, 082902 (2021). https://doi.org/10.1063/5.0035335
- K. Yazawa, D. Drury, A. Zakutayev, G.L. Brennecka, Reduced coercive field in epitaxial thin film of ferroelectric wurtzite Al0.7Sc0.3N. Appl. Phys. Lett. 118, 162903 (2021). https://doi.org/10.1063/5.0043613
- H. Moriwake, R. Yokoi, A. Taguchi, T. Ogawa, C.A.J. Fisher et al., A computational search for wurtzite-structured ferroelectrics with low coercive voltages. APL Mater. 8, 121102 (2020). https://doi.org/10.1063/5.0023626
- S. Yasuoka, R. Mizutani, R. Ota, T. Shiraishi, T. Shimizu et al., Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al, Sc)N films. J. Ceram. Soc. Japan 130, 436–441 (2022). https://doi.org/10.2109/jcersj2.21184
- S. Fichtner, F. Lofink, B. Wagner, G. Schönweger, T.-N. Kreutzer et al., Ferroelectricity in AlScN: switching, imprint and sub-150 nm films, in 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF) (IEEE, Keystone, CO, USA, 2020), pp. 1–4
- S.K. Ryoo, K.D. Kim, H.W. Park, Y.B. Lee, S.H. Lee et al., Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv. Electron. Mater. 8, 2200726 (2022). https://doi.org/10.1002/aelm.202200726
- S. Rassay, F. Hakim, C. Li, C. Forgey, N. Choudhary et al., A segmented-target sputtering process for growth of sub-50 nm ferroelectric scandium–aluminum–nitride films with composition and stress tuning. Phys. Status Solidi RRL 15, 2100087 (2021). https://doi.org/10.1002/pssr.202100087
- J. Wang, M. Park, A. Ansari, High-temperature acoustic and electric characterization of ferroelectric Al0.7Sc0.3N films. J. Microelectromech. Syst. 31, 234–240 (2022). https://doi.org/10.1109/JMEMS.2022.3147492
- V. Gund, B. Davaji, H. Lee, M.J. Asadi, J. Casamento et al., Temperature-dependent lowering of coercive field in 300 nm sputtered ferroelectric Al0.70Sc0.30N, in 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF) (IEEE, Sydney, Australia, 2021), pp. 1–3
- D. Drury, K. Yazawa, A. Mis, K. Talley, A. Zakutayev et al., Understanding reproducibility of sputter-deposited metastable ferroelectric wurtzite Al0.6Sc0.4N films using in situ optical emission spectrometry. Phys. Status Solidi RRL 15, 2100043 (2021). https://doi.org/10.1002/pssr.202100043
- P. Chandra, M. Dawber, P.B. Littlewood, J.F. Scott, Scaling of the coercive field with thickness in thin-film ferroelectrics. Ferroelectrics 313, 7–13 (2004). https://doi.org/10.1080/00150190490891157
- K.-H. Kim, I. Karpov, R.H. Olsson, D. Jariwala, Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023). https://doi.org/10.1038/s41565-023-01361-y
- H. Lu, G. Schönweger, A. Petraru, H. Kohlstedt, S. Fichtner et al., Domain dynamics and resistive switching in ferroelectric Al1–xScxN thin film capacitors. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315169
- D.H. Lee, Y. Lee, Y.H. Cho, H. Choi, S.H. Kim et al., Unveiled ferroelectricity in well-known non-ferroelectric materials and their semiconductor applications. Adv. Funct. Mater. 33, 2303956 (2023). https://doi.org/10.1002/adfm.202303956
- H. Huyan, L. Li, C. Addiego, W. Gao, X. Pan, Structures and electronic properties of domain walls in BiFeO3 thin films. Natl. Sci. Rev. 6, 669–683 (2019). https://doi.org/10.1093/nsr/nwz101
- X. Zhang, E.A. Stach, W.J. Meng, A.C. Meng, Nanoscale compositional segregation in epitaxial AlScN on Si (111). Nanoscale Horiz. 8, 674–684 (2023). https://doi.org/10.1039/d2nh00567k
- X. Zhang, W. Xu, W.J. Meng, A.C. Meng, Single crystal ferroelectric AlScN nanowires. CrystEngComm 26, 180–191 (2024). https://doi.org/10.1039/d3ce00990d
- K. Do Kim, Y.B. Lee, S.H. Lee, I.S. Lee, S.K. Ryoo et al., Evolution of the ferroelectric properties of AlScN film by electrical cycling with an inhomogeneous field distribution. Adv. Electron. Mater. 9, 2201142 (2023). https://doi.org/10.1002/aelm.202201142
- N. Wolff, S. Fichtner, B. Haas, M.R. Islam, F. Niekiel et al., Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J. Appl. Phys. 129, 034103 (2021). https://doi.org/10.1063/5.0033205
- P. Visconti, D. Huang, M.A. Reshchikov, F. Yun, R. Cingolani et al., Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques. Mater. Sci. Eng. B 93, 229–233 (2002). https://doi.org/10.1016/S0921-5107(02)00011-9
- D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R. Rep. 48, 1–46 (2005). https://doi.org/10.1016/j.mser.2004.11.002
- S. Calderon 5th., J. Hayden, S.M. Baksa, W. Tzou, S. Trolier-McKinstry et al., Atomic-scale polarization switching in wurtzite ferroelectrics. Science 380, 1034–1038 (2023). https://doi.org/10.1126/science.adh7670
- J. Lao, M. Yan, B. Tian, C. Jiang, C. Luo et al., Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 9, e2106092 (2022). https://doi.org/10.1002/advs.202106092
- S.M. Rossnagel, Magnetron sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films 38, 060805 (2020). https://doi.org/10.1116/6.0000594
- V. Yoshioka, J. Lu, Z. Tang, J. Jin, R.H. Olsson III. et al., Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1−xScxN thin films. APL Mater. 9, 101104 (2021). https://doi.org/10.1063/5.0061787
- O. Ambacher, B. Christian, N. Feil, D. Urban, C. Elsässer et al., Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J. Appl. Phys. 130, 045102 (2021). https://doi.org/10.1063/5.0048647
- M. Akiyama, K. Kano, A. Teshigahara, Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 95, 162107 (2009). https://doi.org/10.1063/1.3251072
- S. Yasuoka, R. Mizutani, R. Ota, T. Shiraishi, T. Shimizu et al., Tunable ferroelectric properties in wurtzite (Al0.8Sc0.2)N via crystal anisotropy. ACS Appl. Electron. Mater. 4, 5165–5170 (2022). https://doi.org/10.1021/acsaelm.2c00999
- X. Liu, D. Wang, K.-H. Kim, K. Katti, J. Zheng et al., Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21, 3753–3761 (2021). https://doi.org/10.1021/acs.nanolett.0c05051
- P. Musavigharavi, A.C. Meng, D. Wang, J. Zheng, A.C. Foucher et al., Nanoscale structural and chemical properties of ferroelectric aluminum scandium nitride thin films. J. Phys. Chem. C 125, 14394–14400 (2021). https://doi.org/10.1021/acs.jpcc.1c01523
- X. Liu, J. Zheng, D. Wang, P. Musavigharavi, E.A. Stach et al., Aluminum scandium nitride-based metal–ferroelectric–metal diode memory devices with high on/off ratios. Appl. Phys. Lett. 118, 202901 (2021). https://doi.org/10.1063/5.0051940
- D. Wang, P. Musavigharavi, J. Zheng, G. Esteves, X. Liu et al., Sub-microsecond polarization switching in (Al, Sc)N ferroelectric capacitors grown on complementary metal–oxide–semiconductor-compatible aluminum electrodes. Phys. Status Solidi RRL 15, 2000575 (2021). https://doi.org/10.1002/pssr.202000575
- S. Satoh, K. Ohtaka, T. Shimatsu, S. Tanaka, Crystal structure deformation and phase transition of AlScN thin films in whole Sc concentration range. J. Appl. Phys. 132, 025103 (2022). https://doi.org/10.1063/5.0087505
- X. Liu, J. Ting, Y. He, M.M.A. Fiagbenu, J. Zheng et al., Reconfigurable compute-In-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022). https://doi.org/10.1021/acs.nanolett.2c03169
- S.R.C. McMitchell, A.M. Walke, K. Banerjee, S. Mertens, X. Piao et al., Engineering strain and texture in ferroelectric scandium-doped aluminium nitride. ACS Appl. Electron. Mater. 5, 858–864 (2023). https://doi.org/10.1021/acsaelm.2c01421
- S. Yasuoka, T. Shimizu, A. Tateyama, M. Uehara, H. Yamada et al., Impact of deposition temperature on crystal structure and ferroelectric properties of (Al1–xScx)N films prepared by sputtering method. Phys. Status Solidi A 218, 2100302 (2021). https://doi.org/10.1002/pssa.202170049
- D. Zhang, L. Jin, J. Li, T. Wen, C. Liu et al., MBE growth of ultra-thin GeSn film with high Sn content and its infrared/terahertz properties. J. Alloys Compd. 665, 131–136 (2016). https://doi.org/10.1016/j.jallcom.2016.01.038
- Z.-C. Zhang, Y. Li, J. Li, X.-D. Chen, B.-W. Yao et al., An ultrafast nonvolatile memory with low operation voltage for high-speed and low-power applications. Adv. Funct. Mater. 31, 2102571 (2021). https://doi.org/10.1002/adfm.202102571
- K. Frei, R. Trejo-Hernández, S. Schütt, L. Kirste, M. Prescher et al., Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE. Jpn. J. Appl. Phys. 58, SC1045 (2019). https://doi.org/10.7567/1347-4065/ab124f
- M.T. Hardy, E.N. Jin, N. Nepal, D.S. Katzer, B.P. Downey et al., Control of phase purity in high scandium fraction heteroepitaxial ScAlN grown by molecular beam epitaxy. Appl. Phys. Express 13, 065509 (2020). https://doi.org/10.35848/1882-0786/ab916a
- C. Yuan, M. Park, Y. Zheng, J. Shi, R. Dargis et al., Phonon heat conduction in Al1-xScxN thin films. Mater. Today Phys. 21, 100498 (2021). https://doi.org/10.1016/j.mtphys.2021.100498
- Y. Zheng, J. Wang, M. Park, P. Wang, D. Wang et al., High-order sezawa mode AlScN/GaN/sapphire surface acoustic wave resonators, in 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) (IEEE, Tokyo, Japan, 2022), pp. 1046–1049
- J. Casamento, C.S. Chang, Y.-T. Shao, J. Wright, D.A. Muller et al., Structural and piezoelectric properties of ultra-thin ScxAl1−xN films grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 117, 112101 (2020). https://doi.org/10.1063/5.0013943
- M. Park, Z. Hao, R. Dargis, A. Clark, A. Ansari, Epitaxial aluminum scandium nitride super high frequency acoustic resonators. J. Microelectromech. Syst. 29, 490–498 (2020). https://doi.org/10.1109/JMEMS.2020.3001233
- P. Wang, D.A. Laleyan, A. Pandey, Y. Sun, Z. Mi, Molecular beam epitaxy and characterization of wurtzite ScxAl1−xN. Appl. Phys. Lett. 116, 151903 (2020). https://doi.org/10.1063/5.0002445
- P. Wang, D. Wang, S. Mondal, Z. Mi, Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett. 121, 023501 (2022). https://doi.org/10.1063/5.0097117
- C. Manz, S. Leone, L. Kirste, J. Ligl, K. Frei et al., Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 36, 034003 (2021). https://doi.org/10.1088/1361-6641/abd924
- S. Leone, J. Ligl, C. Manz, L. Kirste, T. Fuchs et al., Metal-organic chemical vapor deposition of aluminum scandium nitride. Phys. Status Solidi RRL 14, 1900535 (2020). https://doi.org/10.1002/pssr.201900535
- C. Liu, Q. Wang, W. Yang, T. Cao, L. Chen et al., Multiscale modeling of Al0.7Sc0.3N-based FeRAM: the steep switching, leakage and selector-free array, in 2021 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA, USA, 2021), pp. 8.1.1–8.1.4
- N.D. Boscher, M. Wang, A. Perrotta, K. Heinze, M. Creatore et al., Metal-organic covalent network chemical vapor deposition for gas separation. Adv. Mater. 28, 7479–7485 (2016). https://doi.org/10.1002/adma.201601010
- J. Casamento, H. Lee, C.S. Chang, M.F. Besser, T. Maeda et al., Strong effect of scandium source purity on chemical and electronic properties of epitaxial ScxAl1-xN/GaN heterostructures. APL Mater. 9, 091106 (2021). https://doi.org/10.1063/5.0054522
- L. Chen, C. Liu, M. Li, W. Song, W. Wang et al., Bipolar and unipolar cycling behavior in ferroelectric scandium-doped aluminum nitride, in 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF) (IEEE, Tours, France, 2022), pp. 1–3
- B.-T. Lin, W.-H. Lee, J. Shieh, M.-J. Chen, Ferroelectric AlN ultrathin films prepared by atomic layer epitaxy, in SPIE Smart Structures + Nondestructive Evaluation. Proc SPIE 10968, Behavior and Mechanics of Multifunctional Materials XIII Denver, Colorado, USA, vol. 10968 (2019), pp. 287–293. https://doi.org/10.1117/12.2522119
- H.-Y. Shih, W.-H. Lee, W.-C. Kao, Y.-C. Chuang, R.-M. Lin et al., Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in situ atomic layer annealing. Sci. Rep. 7, 39717 (2017). https://doi.org/10.1038/srep39717
- R. Guido, T. Mikolajick, U. Schroeder, P.D. Lomenzo, Role of defects in the breakdown phenomenon of Al1-xScxN: from ferroelectric to filamentary resistive switching. Nano Lett. 23, 7213–7220 (2023). https://doi.org/10.1021/acs.nanolett.3c02351
- T. Schenk, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, Memory technology-a primer for material scientists. Rep. Prog. Phys. 83, 086501 (2020). https://doi.org/10.1088/1361-6633/ab8f86
- C.-X. Xue, Y.-C. Chiu, T.-W. Liu, T.-Y. Huang, J.-S. Liu et al., A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices. Nat. Electron. 4, 81–90 (2021). https://doi.org/10.1038/s41928-020-00505-5
- M. Lanza, A. Sebastian, W.D. Lu, M. Le Gallo, M.F. Chang et al., Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022). https://doi.org/10.1126/science.abj9979
- S. Deng, Z. Zhao, S. Kurinec, K. Ni, Y. Xiao et al., Overview of ferroelectric memory devices and reliability aware design optimization, in Proceedings of the 2021 on Great Lakes Symposium on VLSI. June 22–25, 2021, Virtual Event, USA (ACM, 2021), pp. 473–478
- Z. Wang, W. Zhao, W. Kang, Y. Zhang, J.-O. Klein et al., Nonvolatile Boolean logic block based on ferroelectric tunnel memristor. IEEE Trans. Magn. 50, 9100604 (2014). https://doi.org/10.1109/TMAG.2014.2329774
- Z. Gao, W. Zhang, Q. Zhong, Y. Zheng, S. Lv et al., Giant electroresistance in hafnia-based ferroelectric tunnel junctions via enhanced polarization. Device 1, 100004 (2023). https://doi.org/10.1016/j.device.2023.100004
- K.-H. Kim, S. Oh, M.M.A. Fiagbenu, J. Zheng, P. Musavigharavi et al., Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. 18, 1044–1050 (2023). https://doi.org/10.1038/s41565-023-01399-y
- X. Yin, X. Chen, M. Niemier, X.S. Hu, Ferroelectric FETs-based nonvolatile logic-in-memory circuits. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27, 159–172 (2019). https://doi.org/10.1109/TVLSI.2018.2871119
- A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z
- R. Yang, In-memory computing with ferroelectrics. Nat. Electron. 3, 237–238 (2020). https://doi.org/10.1038/s41928-020-0411-2
- D. Ielmini, H.-S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
- D. Wang, P. Wang, S. Mondal, M. Hu, Y. Wu et al., Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing. Adv. Mater. 35, e2210628 (2023). https://doi.org/10.1002/adma.202210628
- P. Wang, D. Wang, S. Mondal, M. Hu, Y. Wu et al., Ferroelectric nitride heterostructures on CMOS compatible molybdenum for synaptic memristors. ACS Appl. Mater. Interfaces 15, 18022–18031 (2023). https://doi.org/10.1021/acsami.2c22798
- V. Gund, B. Davaji, H. Lee, J. Casamento, H.G. Xing et al., Towards realizing the low-coercive field operation of sputtered ferroelectric ScxAl1-xN, in 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, Orlando, FL, USA, 2021), pp. 1064–1067
References
M. Hilbert, P. López, The world’s technological capacity to store, communicate, and compute information. Science 332, 60–65 (2011). https://doi.org/10.1126/science.1200970
R. Huo, S. Zeng, Z. Wang, J. Shang, W. Chen et al., A comprehensive survey on blockchain in industrial Internet of Things: motivations, research progresses, and future challenges. IEEE Commun. Surv. Tutor. 24, 88–122 (2022). https://doi.org/10.1109/COMST.2022.3141490
M. Mohammadi, A. Al-Fuqaha, S. Sorour, M. Guizani, Deep learning for IoT big data and streaming analytics: a survey. IEEE Commun. Surv. Tutor. 20, 2923–2960 (2018). https://doi.org/10.1109/COMST.2018.2844341
S. Gao, X. Yi, J. Shang, G. Liu, R.-W. Li, Organic and hybrid resistive switching materials and devices. Chem. Soc. Rev. 48, 1531–1565 (2019). https://doi.org/10.1039/c8cs00614h
C. Seife, Big data: the revolution is digitized. Nature 518, 480–481 (2015). https://doi.org/10.1038/518480a
M.S. Gordon, T.L. Windus, Editorial: modern architectures and their impact on electronic structure theory. Chem. Rev. 120, 9015–9020 (2020). https://doi.org/10.1021/acs.chemrev.0c00700
X. Niu, B. Tian, Q. Zhu, B. Dkhil, C. Duan, Ferroelectric polymers for neuromorphic computing. Appl. Phys. Rev. 9, 021309 (2022). https://doi.org/10.1063/5.0073085
X. Hou, C. Liu, Y. Ding, L. Liu, S. Wang et al., A logic-memory transistor with the integration of visible information sensing-memory-processing. Adv. Sci. 7, 2002072 (2020). https://doi.org/10.1002/advs.202002072
D. Hao, Z. Yang, J. Huang, F. Shan, Recent developments of optoelectronic synaptic devices based on metal halide perovskites. Adv. Funct. Mater. 33, 2211467 (2023). https://doi.org/10.1002/adfm.202211467
J. Liao, W. Wen, J. Wu, Y. Zhou, S. Hussain et al., Van der waals ferroelectric semiconductor field effect transistor for in-memory computing. ACS Nano 17, 6095–6102 (2023). https://doi.org/10.1021/acsnano.3c01198
Z.Y. He, T.Y. Wang, J.L. Meng, H. Zhu, L. Ji et al., CMOS back-end compatible memristors for in situ digital and neuromorphic computing applications. Mater. Horiz. 8, 3345–3355 (2021). https://doi.org/10.1039/d1mh01257f
G. Wu, B. Tian, L. Liu, W. Lv, S. Wu et al., Programmable transition metal dichalcogenide homojunctions controlled by nonvolatile ferroelectric domains. Nat. Electron. 3, 43–50 (2020). https://doi.org/10.1038/s41928-019-0350-y
B.B. Tian, J.L. Wang, S. Fusil, Y. Liu, X.L. Zhao et al., Tunnel electroresistance through organic ferroelectrics. Nat. Commun. 7, 11502 (2016). https://doi.org/10.1038/ncomms11502
L. Shi, G. Zheng, B. Tian, B. Dkhil, C. Duan, Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2, 1811–1827 (2020). https://doi.org/10.1039/D0NA00100G
B. Tian, L. Liu, M. Yan, J. Wang, Q. Zhao et al., A robust artificial synapse based on organic ferroelectric polymer. Adv. Electron. Mater. 5, 1800600 (2019). https://doi.org/10.1002/aelm.201800600
M. Le Gallo, A. Sebastian, R. Mathis, M. Manica, H. Giefers et al., Mixed-precision in-memory computing. Nat. Electron. 1, 246–253 (2018). https://doi.org/10.1038/s41928-018-0054-8
G. Karunaratne, M. Le Gallo, G. Cherubini, L. Benini, A. Rahimi et al., In-memory hyperdimensional computing. Nat. Electron. 3, 327–337 (2020). https://doi.org/10.1038/s41928-020-0410-3
W. Wan, R. Kubendran, C. Schaefer, S.B. Eryilmaz, W. Zhang et al., A compute-in-memory chip based on resistive random-access memory. Nature 608, 504–512 (2022). https://doi.org/10.1038/s41586-022-04992-8
J.S. Vetter, S. Mittal, Opportunities for nonvolatile memory systems in extreme-scale high-performance computing. Comput. Sci. Eng. 17, 73–82 (2015). https://doi.org/10.1109/MCSE.2015.4
K. Prall, Benchmarking and metrics for emerging memory, in 2017 IEEE International Memory Workshop (IMW) (IEEE, Monterey, CA, USA, 2017), pp. 1–5
J.A. Rodriguez, K. Remack, K. Boku, K.R. Udayakumar, S. Aggarwal et al., Reliability properties of low-voltage ferroelectric capacitors and memory arrays. IEEE Trans. Device Mater. Relib. 4, 436–449 (2004). https://doi.org/10.1109/tdmr.2004.837210
A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil et al., Solid-state memories based on ferroelectric tunnel junctions. Nat. Nanotechnol. 7, 101–104 (2011). https://doi.org/10.1038/nnano.2011.213
M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang et al., A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O(5–x)/TaO(2–x) bilayer structures. Nat. Mater. 10, 625–630 (2011). https://doi.org/10.1038/nmat3070
W. Banerjee, Challenges and applications of emerging nonvolatile memory devices. Electronics 9, 1029 (2020). https://doi.org/10.3390/electronics9061029
Z. Luo, Z. Wang, Z. Guan, C. Ma, L. Zhao et al., High-precision and linear weight updates by subnanosecond pulses in ferroelectric tunnel junction for neuro-inspired computing. Nat. Commun. 13, 699 (2022). https://doi.org/10.1038/s41467-022-28303-x
G. Wu, X. Zhang, G. Feng, J. Wang, K. Zhou et al., Ferroelectric-defined reconfigurable homojunctions for in-memory sensing and computing. Nat. Mater. 22, 1499–1506 (2023). https://doi.org/10.1038/s41563-023-01676-0
G. Feng, Q. Zhu, X. Liu, L. Chen, X. Zhao et al., A ferroelectric fin diode for robust non-volatile memory. Nat. Commun. 15, 513 (2024). https://doi.org/10.1038/s41467-024-44759-5
D. Wang, S. Hao, B. Dkhil, B. Tian, C. Duan, Ferroelectric materials for neuroinspired computing applications. Fundam. Res. (2023). https://doi.org/10.1016/j.fmre.2023.04.013
R. Berdan, T. Marukame, K. Ota, M. Yamaguchi, M. Saitoh et al., Low-power linear computation using nonlinear ferroelectric tunnel junction memristors. Nat. Electron. 3, 259–266 (2020). https://doi.org/10.1038/s41928-020-0405-0
Q. Luo, Y. Cheng, J. Yang, R. Cao, H. Ma et al., A highly CMOS compatible hafnia-based ferroelectric diode. Nat. Commun. 11, 1391 (2020). https://doi.org/10.1038/s41467-020-15159-2
F. Ambriz-Vargas, G. Kolhatkar, M. Broyer, A. Hadj-Youssef, R. Nouar et al., A complementary metal oxide semiconductor process-compatible ferroelectric tunnel junction. ACS Appl. Mater. Interfaces 9, 13262–13268 (2017). https://doi.org/10.1021/acsami.6b16173
Z. Shen, L. Liao, Y. Zhou, K. Xiong, J. Zeng et al., Epitaxial growth and phase evolution of ferroelectric La-doped HfO2 films. Appl. Phys. Lett. 120, 162904 (2022). https://doi.org/10.1063/5.0087976
Z. Zhao, Y.R. Chen, J.F. Wang, Y.W. Chen, J.R. Zou et al., Engineering Hf0.5Zr0.5O2 ferroelectric/anti-ferroelectric phases with oxygen vacancy and interface energy achieving high remanent polarization and dielectric constants. IEEE Electron Device Lett. 43, 553–556 (2022). https://doi.org/10.1109/LED.2022.3149309
R. Athle, A.E.O. Persson, A. Irish, H. Menon, R. Timm et al., Effects of TiN top electrode texturing on ferroelectricity in Hf1-xZrxO2. ACS Appl. Mater. Interfaces 13, 11089–11095 (2021). https://doi.org/10.1021/acsami.1c01734
P.S. Ghosh, D. DeTellem, J. Ren, S. Witanachchi, S. Ma et al., Unusual properties of hydrogen-bonded ferroelectrics: the case of cobalt formate. Phys. Rev. Lett. 128, 077601 (2022). https://doi.org/10.1103/PhysRevLett.128.077601
L. Hu, R. Feng, J. Wang, Z. Bai, W. Jin et al., Space-charge-stabilized ferroelectric polarization in self-oriented croconic acid films. Adv. Funct. Mater. 28, 1705463 (2018). https://doi.org/10.1002/adfm.201705463
F. Mehmood, M. Hoffmann, P.D. Lomenzo, C. Richter, M. Materano et al., Bulk depolarization fields as a major contributor to the ferroelectric reliability performance in lanthanum doped Hf0.5Zr0.5O2 capacitors. Adv. Mater. Interfaces 6, 1901180 (2019). https://doi.org/10.1002/admi.201901180
J. Hayden, M.D. Hossain, Y. Xiong, K. Ferri, W. Zhu et al., Ferroelectricity in boron-substituted aluminum nitride thin films. Phys. Rev. Mater. 5, 044412 (2021). https://doi.org/10.1103/physrevmaterials.5.044412
K. Ferri, S. Bachu, W. Zhu, M. Imperatore, J. Hayden et al., Ferroelectrics everywhere: ferroelectricity in magnesium substituted zinc oxide thin films. J. Appl. Phys. 130, 044101 (2021). https://doi.org/10.1063/5.0053755
D. Wang, P. Wang, B. Wang, Z. Mi, Fully epitaxial ferroelectric ScGaN grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 119, 111902 (2021). https://doi.org/10.1063/5.0060021
A.I. Mardare, C.C. Mardare, E. Joanni, Bottom electrode crystallization of PZT thin films for ferroelectric capacitors. J. Eur. Ceram. Soc. 25, 735–741 (2005). https://doi.org/10.1016/j.jeurceramsoc.2003.12.031
G. Le Rhun, G. Poullain, R. Bouregba, G. Leclerc, Fatigue properties of oriented PZT ferroelectric thin films. J. Eur. Ceram. Soc. 25, 2281–2284 (2005). https://doi.org/10.1016/j.jeurceramsoc.2005.03.046
A. Datta, D. Mukherjee, S. Witanachchi, P. Mukherjee, Hierarchically ordered nano-heterostructured PZT thin films with enhanced ferroelectric properties. Adv. Funct. Mater. 24, 2638–2647 (2014). https://doi.org/10.1002/adfm.201303290
D.H. Li, E.S. Lee, H.W. Chung, S.Y. Lee, Comparison of the effect of PLT and PZT buffer layers on PZT thin films for ferroelectric materials applications. Appl. Surf. Sci. 252, 4541–4544 (2006). https://doi.org/10.1016/j.apsusc.2005.07.133
K.R. Udayakumar, P.J. Schuele, J. Chen, S.B. Krupanidhi, L.E. Cross, Thickness-dependent electrical characteristics of lead zirconate titanate thin films. J. Appl. Phys. 77, 3981–3986 (1995). https://doi.org/10.1063/1.359508
S. Samanta, V. Sankaranarayanan, K. Sethupathi, Band gap, piezoelectricity and temperature dependence of differential permittivity and energy storage density of PZT with different Zr/Ti ratios. Vacuum 156, 456–462 (2018). https://doi.org/10.1016/j.vacuum.2018.08.015
E.M. Lee, Y. Ahn, J.Y. Son, Effects of Mn doping on BaTiO3 thin films grown on highly oriented pyrolytic graphite substrates. Curr. Appl. Phys. 20, 755–759 (2020). https://doi.org/10.1016/j.cap.2020.03.009
J.L. Lin, R. He, Z. Lu, Y. Lu, Z. Wang et al., Oxygen vacancy enhanced ferroelectricity in BTO: SRO nanocomposite films. Acta Mater. 199, 9–18 (2020). https://doi.org/10.1016/j.actamat.2020.08.016
H.H. Wieder, Electrical behavior of barium titanatge single crystals at low temperatures. Phys. Rev. 99, 1161–1165 (1955). https://doi.org/10.1103/physrev.99.1161
C.A.-P. de Araujo, J.D. Cuchiaro, L.D. McMillan, M.C. Scott, J.F. Scott, Fatigue-free ferroelectric capacitors with platinum electrodes. Nature 374, 627–629 (1995). https://doi.org/10.1038/374627a0
J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003). https://doi.org/10.1126/science.1080615
N. Wang, X. Luo, L. Han, Z. Zhang, R. Zhang et al., Structure, performance, and application of BiFeO3 nanomaterials. Nano-Micro Lett. 12, 81 (2020). https://doi.org/10.1007/s40820-020-00420-6
G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009). https://doi.org/10.1002/adma.200802849
M.A. Rafiq, M.E. Costa, P.M. Vilarinho, Pairing high piezoelectric coefficients, d33, with high curie temperature (TC) in lead-free (K, Na)NbO3. ACS Appl. Mater. Interfaces 8, 33755–33764 (2016). https://doi.org/10.1021/acsami.6b08199
Y. Chang, S. Poterala, Z. Yang, G.L. Messing, Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics. J. Am. Ceram. Soc. 94, 2494–2498 (2011). https://doi.org/10.1111/j.1551-2916.2011.04393.x
J. Bouaziz, P.R. Romeo, N. Baboux, B. Vilquin, Huge reduction of the wake-up effect in ferroelectric HZO thin films. ACS Appl. Electron. Mater. 1, 1740–1745 (2019). https://doi.org/10.1021/acsaelm.9b00367
V. Gaddam, D. Das, S. Jeon, Insertion of HfO2 seed/dielectric layer to the ferroelectric HZO films for heightened remanent polarization in MFM capacitors. IEEE Trans. Electron Devices 67, 745–750 (2020). https://doi.org/10.1109/TED.2019.2961208
B. Liu, Y. Zhang, L. Zhang, Q. Yuan, W. Zhang et al., Excellent HZO ferroelectric thin films on flexible PET substrate. J. Alloys Compd. 919, 165872 (2022). https://doi.org/10.1016/j.jallcom.2022.165872
P. Wang, D. Wang, N.M. Vu, T. Chiang, J.T. Heron et al., Fully epitaxial ferroelectric ScAlN grown by molecular beam epitaxy. Appl. Phys. Lett. 118, 223504 (2021). https://doi.org/10.1063/5.0054539
M.R. Islam, N. Wolff, M. Yassine, G. Schönweger, B. Christian et al., On the exceptional temperature stability of ferroelectric Al1-xScxN thin films. Appl. Phys. Lett. 118, 232905 (2021). https://doi.org/10.1063/5.0053649
R. Guido, P.D. Lomenzo, M.R. Islam, N. Wolff, M. Gremmel et al., Thermal stability of the ferroelectric properties in 100 nm-thick Al0.72Sc0.28N. ACS Appl. Mater. Interfaces 15, 7030–7043 (2023). https://doi.org/10.1021/acsami.2c18313
D. Wang, J. Zheng, P. Musavigharavi, W. Zhu, A.C. Foucher et al., Ferroelectric switching in sub-20 nm aluminum scandium nitride thin films. IEEE Electron Device Lett. 41(12), 1774–1777 (2020). https://doi.org/10.1109/LED.2020.3034576
A.V. Bune, V.M. Fridkin, S. Ducharme, L.M. Blinov, S.P. Palto et al., Two-dimensional ferroelectric films. Nature 391, 874–877 (1998). https://doi.org/10.1038/36069
T. Furukawa, Ferroelectric properties of vinylidene fluoride copolymers. Phase Transitions 18, 143–211 (1989). https://doi.org/10.1080/01411598908206863
B.B. Tian, X.F. Bai, Y. Liu, P. Gemeiner, X.L. Zhao et al., β phase instability in poly(vinylidene fluoride/trifluoroethylene) thin films near β relaxation temperature. Appl. Phys. Lett. 106, 092902 (2015). https://doi.org/10.1063/1.4913968
S. Ducharme, V.M. Fridkin, A.V. Bune, S.P. Palto, L.M. Blinov et al., Intrinsic ferroelectric coercive field. Phys. Rev. Lett. 84, 175–178 (2000). https://doi.org/10.1103/PhysRevLett.84.175
W.-Q. Liao, D. Zhao, Y.-Y. Tang, Y. Zhang, P.-F. Li et al., A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate. Science 363, 1206–1210 (2019). https://doi.org/10.1126/science.aav3057
P.-F. Li, W.-Q. Liao, Y.-Y. Tang, W. Qiao, D. Zhao et al., Organic enantiomeric high-Tc ferroelectrics. Proc. Natl. Acad. Sci. U.S.A. 116, 5878–5885 (2019). https://doi.org/10.1073/pnas.1817866116
J. Valasek, Piezo-electric and allied phenomena in Rochelle salt. Phys. Rev. 17, 475–481 (1921). https://doi.org/10.1103/physrev.17.475
H.-Y. Zhang, Y.-Y. Tang, P.-P. Shi, R.-G. Xiong, Toward the targeted design of molecular ferroelectrics: modifying molecular symmetries and homochirality. Acc. Chem. Res. 52, 1928–1938 (2019). https://doi.org/10.1021/acs.accounts.8b00677
G. Busch, P. Scherrer, Eine neue seignette-elektrische Substanz. Naturwissenschaften 23, 737 (1935). https://doi.org/10.1007/BF01498152
Q. Zhao, H. Wang, Z. Ni, J. Liu, Y. Zhen et al., Organic ferroelectric-based 1T1T random access memory cell employing a common dielectric layer overcoming the half-selection problem. Adv. Mater. 29, 1701907 (2017). https://doi.org/10.1002/adma.201701907
J. Hoffman, X. Pan, J.W. Reiner, F.J. Walker, J.P. Han et al., Ferroelectric field effect transistors for memory applications. Adv. Mater. 22, 2957–2961 (2010). https://doi.org/10.1002/adma.200904327
X. Qian, X. Chen, L. Zhu, Q.M. Zhang, Fluoropolymer ferroelectrics: multifunctional platform for polar-structured energy conversion. Science 380, eadg0902 (2023). https://doi.org/10.1126/science.adg0902
D. Buck, Ferroelectrics for Digital Information Storage and Switching (Massachusetts Institute of Technology, Cambridge Digital Computer Lab., Cambridge, 1952)
D. Bondurant, Ferroelectronic ram memory family for critical data storage. Ferroelectrics 112, 273–282 (1990). https://doi.org/10.1080/00150199008008233
C.-U. Pinnow, T. Mikolajick, Material aspects in emerging nonvolatile memories. J. Electrochem. Soc. 151, K13 (2004). https://doi.org/10.1149/1.1740785
J.-M. Koo, B.-S. Seo, S. Kim, S. Shin, J.-H. Lee et al., Fabrication of 3D trench PZT capacitors for 256Mbit FRAM device application, in IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest (2005), pp. 340–343. https://doi.org/10.1109/IEDM.2005.1609345
H.P. McAdams, R. Acklin, T. Blake, X.-H. Du, J. Eliason et al., A 64-Mb embedded FRAM utilizing a 130-nm 5LM Cu/FSG logic process. IEEE J. Solid State Circuits 39, 667–677 (2004). https://doi.org/10.1109/jssc.2004.825241
D.A. Tenne, A. Bruchhausen, N.D. Lanzillotti-Kimura, A. Fainstein, R.S. Katiyar et al., Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy. Science 313, 1614–1616 (2006). https://doi.org/10.1126/science.1130306
V. Garcia, S. Fusil, K. Bouzehouane, S. Enouz-Vedrenne, N.D. Mathur et al., Giant tunnel electroresistance for non-destructive readout of ferroelectric states. Nature 460, 81–84 (2009). https://doi.org/10.1038/nature08128
J.L. Moll, Y. Tarui, A new solid state memory resistor. IEEE Trans. Electron Devices 10, 338 (1963). https://doi.org/10.1109/T-ED.1963.15245
K. Sugibuchi, Y. Kurogi, N. Endo, Ferroelectric field-effect memory device using Bi4Ti3O12 film. J. Appl. Phys. 46, 2877–2881 (1975). https://doi.org/10.1063/1.322014
K. Takahashi, K. Aizawa, B.-E. Park, H. Ishiwara, Thirty-day-long data retention in ferroelectric-gate field-effect transistors with HfO2 buffer layers. Jpn. J. Appl. Phys. 44, 6218 (2005). https://doi.org/10.1143/jjap.44.6218
T. Kijima, H. Matsunaga, Preparation of Bi4Ti3O12 thin films by MOCVD method and electrical properties of metal/ferroelectric/insulator/semiconductor structure. Jpn. J. Appl. Phys. 38, 2281 (1999). https://doi.org/10.1143/jjap.38.2281
S. Sakai, R. Ilangovan, Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance. IEEE Electron Device Lett. 25, 369–371 (2004). https://doi.org/10.1109/LED.2004.828992
M. Si, A.K. Saha, S. Gao, G. Qiu, J. Qin et al., A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2, 580–586 (2019). https://doi.org/10.1038/s41928-019-0338-7
U. Schroeder, M.H. Park, T. Mikolajick, C.S. Hwang, The fundamentals and applications of ferroelectric HfO2. Nat. Rev. Mater. 7, 653–669 (2022). https://doi.org/10.1038/s41578-022-00431-2
J. Park, T.-H. Kim, O. Kwon, M. Ismail, C. Mahata et al., Implementation of convolutional neural network and 8-bit reservoir computing in CMOS compatible VRRAM. Nano Energy 104, 107886 (2022). https://doi.org/10.1016/j.nanoen.2022.107886
T.S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, U. Böttger, Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors, in 2011 International Electron Devices Meeting (IEEE, Washington, DC, USA, 2011), pp. 24.5.1–24.5.4
S. Fujii, Y. Kamimuta, T. Ino, Y. Nakasaki, R. Takaishi et al., First demonstration and performance improvement of ferroelectric HfO2-based resistive switch with low operation current and intrinsic diode property, in 2016 IEEE Symposium on VLSI Technology (IEEE, Honolulu, HI, USA, 2016), pp. 1–2
J. Okuno, T. Kunihiro, K. Konishi, H. Maemura, Y. Shuto et al., SoC compatible 1T1C FeRAM memory array based on ferroelectric Hf0.5Zr0.5O2, in 2020 IEEE Symposium on VLSI Technology (IEEE, Honolulu, HI, USA, 2020), pp. 1–2
J. Yang, Q. Luo, X. Xue, H. Jiang, Q. Wu et al., A 9Mb HZO-based embedded FeRAM with 1012-cycle endurance and 5/7ns read/write using ECC-assisted data refresh and offset-canceled sense amplifier, in 2023 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, San Francisco, CA, USA, 2023), pp. 1–3
M.H. Park, C.-C. Chung, T. Schenk, C. Richter, K. Opsomer et al., Effect of annealing ferroelectric HfO2 thin films: in situ, high temperature X-ray diffraction. Adv. Electron. Mater. 4, 1800091 (2018). https://doi.org/10.1002/aelm.201800091
Y. Goh, J. Hwang, Y. Lee, M. Kim, S. Jeon, Ultra-thin Hf0.5Zr0.5O2 thin-film-based ferroelectric tunnel junction via stress induced crystallization. Appl. Phys. Lett. 117, 242901 (2020). https://doi.org/10.1063/5.0029516
R. Materlik, C. Künneth, A. Kersch, The origin of ferroelectricity in Hf1–xZrxO2: a computational investigation and a surface energy model. J. Appl. Phys. 117, 134109 (2015). https://doi.org/10.1063/1.4916707
Y. Wei, P. Nukala, M. Salverda, S. Matzen, H.J. Zhao et al., A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films. Nat. Mater. 17, 1095–1100 (2018). https://doi.org/10.1038/s41563-018-0196-0
T. Mikolajick, S. Slesazeck, H. Mulaosmanovic, M.H. Park, S. Fichtner et al., Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021). https://doi.org/10.1063/5.0037617
S. Fichtner, N. Wolff, F. Lofink, L. Kienle, B. Wagner, AlScN: a III-V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019). https://doi.org/10.1063/1.5084945
K. Yazawa, A. Zakutayev, G.L. Brennecka, A Landau–Devonshire analysis of strain effects on ferroelectric Al1–xScxN. Appl. Phys. Lett. 121, 042902 (2022). https://doi.org/10.1063/5.0098979
R. Mizutani, S. Yasuoka, T. Shiraishi, T. Shimizu, M. Uehara et al., Thickness scaling of (Al0.8Sc0.2)N films with remanent polarization beyond 100 μC cm–2 around 10 nm in thickness. Appl. Phys. Express 14, 105501 (2021). https://doi.org/10.35848/1882-0786/ac2261
D. Drury, K. Yazawa, A. Zakutayev, B. Hanrahan, G. Brennecka, High-temperature ferroelectric behavior of Al0.7Sc0.3N. Micromachines 13, 887 (2022). https://doi.org/10.3390/mi13060887
W. Zhu, J. Hayden, F. He, J.-I. Yang, P. Tipsawat et al., Strongly temperature dependent ferroelectric switching in AlN, Al1-xScxN, and Al1-xBxN thin films. Appl. Phys. Lett. 119, 062901 (2021). https://doi.org/10.1063/5.0057869
D. Wang, P. Wang, S. Mondal, M. Hu, D. Wang et al., Thickness scaling down to 5 nm of ferroelectric ScAlN on CMOS compatible molybdenum grown by molecular beam epitaxy. Appl. Phys. Lett. 122, 052101 (2023). https://doi.org/10.1063/5.0136265
J.X. Zheng, M.M.A. Fiagbenu, G. Esteves, P. Musavigharavi, A. Gunda et al., Ferroelectric behavior of sputter deposited Al0.72Sc0.28N approaching 5 nm thickness. Appl. Phys. Lett. 122, 222901 (2023). https://doi.org/10.1063/5.0147224
G. Schönweger, N. Wolff, M.R. Islam, M. Gremmel, A. Petraru et al., In-grain ferroelectric switching in sub-5 nm thin Al0.74 Sc0.26 N films at 1 V. Adv. Sci. 10, e2302296 (2023). https://doi.org/10.1002/advs.202302296
G. Schönweger, M.R. Islam, N. Wolff, A. Petraru, L. Kienle et al., Ultrathin Al1–xScxN for low-voltage-driven ferroelectric-based devices. Phys. Status Solidi RRL 17, 2200312 (2023). https://doi.org/10.1002/pssr.202200312
W. Sun, J. Zhou, N. Liu, S. Zheng, X. Li et al., Integration of ferroelectric Al0.8Sc0.2N on Si (001) substrate. IEEE Electron Device Lett. 45, 574–577 (2024). https://doi.org/10.1109/LED.2024.3363724
D. Wang, P. Wang, S. Mondal, S. Mohanty, T. Ma et al., An epitaxial ferroelectric ScAlN/GaN heterostructure memory. Adv. Electron. Mater. 8, 2200005 (2022). https://doi.org/10.1002/aelm.202200005
N. Farrer, L. Bellaiche, Properties of hexagonal ScN versus wurtzite GaN and InN. Phys. Rev. B 66, 201203 (2002). https://doi.org/10.1103/physrevb.66.201203
V. Ranjan, L. Bellaiche, E.J. Walter, Strained hexagonal ScN: a material with unusual structural and optical properties. Phys. Rev. Lett. 90, 257602 (2003). https://doi.org/10.1103/PhysRevLett.90.257602
Y. Zhang, S. Wang, Y. Zhao, Y. Ding, Z. Zhang et al., Piezo-phototronic effect boosted catalysis in plasmonic bimetallic ZnO heterostructure with guided Fermi level alignment. Mater. Today Nano 18, 100177 (2022). https://doi.org/10.1016/j.mtnano.2022.100177
W. Wu, Z.L. Wang, Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics. Nat. Rev. Mater. 1, 16031 (2016). https://doi.org/10.1038/natrevmats.2016.31
P. Wang, D. Wang, S. Mondal, Y. Wu, T. Ma et al., Interfacial modulated lattice-polarity-controlled epitaxy of III-nitride heterostructures on Si(111). ACS Appl. Mater. Interfaces 14, 15747–15755 (2022). https://doi.org/10.1021/acsami.1c23381
P. Muralt, R.G. Polcawich, S. Trolier-McKinstry, Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull. 34, 658–664 (2009). https://doi.org/10.1557/mrs2009.177
S. Zhang, D. Holec, W.Y. Fu, C.J. Humphreys, M.A. Moram, Tunable optoelectronic and ferroelectric properties in Sc-based III-nitrides. J. Appl. Phys. 114, 133510 (2013). https://doi.org/10.1063/1.4824179
J. Cai, N. Chen, Microscopic mechanism of the wurtzite-to-rocksalt phase transition of the group-III nitrides from first principles. Phys. Rev. B 75, 134109 (2007). https://doi.org/10.1103/physrevb.75.134109
H. Vollstädt, E. Ito, M. Akaishi, S. Akimoto et al., High pressure synthesis of Rocksalt type of AlN. Proc. Jpn. Acad. B-Phys. 66(1), 7–9 (1990). https://doi.org/10.2183/pjab.66.7
J. Zagorac, D. Zagorac, M. Rosić, J.C. Schön, B. Matović, Structure prediction of aluminum nitride combining data mining and quantum mechanics. CrystEngComm 19, 5259–5268 (2017). https://doi.org/10.1039/C7CE01039G
M. Durandurdu, Pressure-induced phase transition in AlN: an ab initio molecular dynamics study. J. Alloys Compd. 480, 917–921 (2009). https://doi.org/10.1016/j.jallcom.2009.02.060
A.M. Saitta, F. Decremps, Unifying description of the wurtzite-to-rocksalt phase transition in wide-gap semiconductors: the effect of d electrons on the elastic constants. Phys. Rev. B 70, 035214 (2004). https://doi.org/10.1103/physrevb.70.035214
F. Tasnádi, B. Alling, C. Höglund, G. Wingqvist, J. Birch et al., Origin of the anomalous piezoelectric response in wurtzite ScxAl1–xN alloys. Phys. Rev. Lett. 104, 137601 (2010). https://doi.org/10.1103/PhysRevLett.104.137601
H. Wang, N. Adamski, S. Mu, C.G. Van de Walle, Piezoelectric effect and polarization switching in Al1−xScxN. J. Appl. Phys. 130, 104101 (2021). https://doi.org/10.1063/5.0056485
M. Akiyama, T. Kamohara, K. Kano, A. Teshigahara, Y. Takeuchi et al., Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv. Mater. 21, 593–596 (2009). https://doi.org/10.1002/adma.200802611
T. Yanagitani, M. Suzuki, Electromechanical coupling and gigahertz elastic properties of ScAlN films near phase boundary. Appl. Phys. Lett. 105, 122907 (2014). https://doi.org/10.1063/1.4896262
S. Yasuoka, T. Shimizu, A. Tateyama, M. Uehara, H. Yamada et al., Effects of deposition conditions on the ferroelectric properties of (Al1–xScx)N thin films. J. Appl. Phys. 128, 114103 (2020). https://doi.org/10.1063/5.0015281
G. Schönweger, A. Petraru, M.R. Islam, N. Wolff, B. Haas et al., From fully strained to relaxed: epitaxial ferroelectric Al1-xScxN for III-N technology. Adv. Funct. Mater. 32, 2109632 (2022). https://doi.org/10.1002/adfm.202109632
P. Wang, D. Wang, Y. Bi, B. Wang, J. Schwartz et al., Quaternary alloy ScAlGaN: a promising strategy to improve the quality of ScAlN. Appl. Phys. Lett. 120, 012104 (2022). https://doi.org/10.1063/5.0060608
J. Casamento, H. Lee, T. Maeda, V. Gund, K. Nomoto et al., Epitaxial ScxAl1–xN on GaN exhibits attractive high-K dielectric properties. Appl. Phys. Lett. 120, 152901 (2022). https://doi.org/10.1063/5.0075636
S.-L. Tsai, T. Hoshii, H. Wakabayashi, K. Tsutsui, T.-K. Chung et al., Publisher’s Note: “Room-temperature deposition of a poling-free ferroelectric AlScN film by reactive sputtering.” Appl. Phys. Lett. 118, 082902 (2021). https://doi.org/10.1063/5.0035335
K. Yazawa, D. Drury, A. Zakutayev, G.L. Brennecka, Reduced coercive field in epitaxial thin film of ferroelectric wurtzite Al0.7Sc0.3N. Appl. Phys. Lett. 118, 162903 (2021). https://doi.org/10.1063/5.0043613
H. Moriwake, R. Yokoi, A. Taguchi, T. Ogawa, C.A.J. Fisher et al., A computational search for wurtzite-structured ferroelectrics with low coercive voltages. APL Mater. 8, 121102 (2020). https://doi.org/10.1063/5.0023626
S. Yasuoka, R. Mizutani, R. Ota, T. Shiraishi, T. Shimizu et al., Enhancement of crystal anisotropy and ferroelectricity by decreasing thickness in (Al, Sc)N films. J. Ceram. Soc. Japan 130, 436–441 (2022). https://doi.org/10.2109/jcersj2.21184
S. Fichtner, F. Lofink, B. Wagner, G. Schönweger, T.-N. Kreutzer et al., Ferroelectricity in AlScN: switching, imprint and sub-150 nm films, in 2020 Joint Conference of the IEEE International Frequency Control Symposium and International Symposium on Applications of Ferroelectrics (IFCS-ISAF) (IEEE, Keystone, CO, USA, 2020), pp. 1–4
S.K. Ryoo, K.D. Kim, H.W. Park, Y.B. Lee, S.H. Lee et al., Investigation of optimum deposition conditions of radio frequency reactive magnetron sputtering of Al0.7Sc0.3N film with thickness down to 20 nm. Adv. Electron. Mater. 8, 2200726 (2022). https://doi.org/10.1002/aelm.202200726
S. Rassay, F. Hakim, C. Li, C. Forgey, N. Choudhary et al., A segmented-target sputtering process for growth of sub-50 nm ferroelectric scandium–aluminum–nitride films with composition and stress tuning. Phys. Status Solidi RRL 15, 2100087 (2021). https://doi.org/10.1002/pssr.202100087
J. Wang, M. Park, A. Ansari, High-temperature acoustic and electric characterization of ferroelectric Al0.7Sc0.3N films. J. Microelectromech. Syst. 31, 234–240 (2022). https://doi.org/10.1109/JMEMS.2022.3147492
V. Gund, B. Davaji, H. Lee, M.J. Asadi, J. Casamento et al., Temperature-dependent lowering of coercive field in 300 nm sputtered ferroelectric Al0.70Sc0.30N, in 2021 IEEE International Symposium on Applications of Ferroelectrics (ISAF) (IEEE, Sydney, Australia, 2021), pp. 1–3
D. Drury, K. Yazawa, A. Mis, K. Talley, A. Zakutayev et al., Understanding reproducibility of sputter-deposited metastable ferroelectric wurtzite Al0.6Sc0.4N films using in situ optical emission spectrometry. Phys. Status Solidi RRL 15, 2100043 (2021). https://doi.org/10.1002/pssr.202100043
P. Chandra, M. Dawber, P.B. Littlewood, J.F. Scott, Scaling of the coercive field with thickness in thin-film ferroelectrics. Ferroelectrics 313, 7–13 (2004). https://doi.org/10.1080/00150190490891157
K.-H. Kim, I. Karpov, R.H. Olsson, D. Jariwala, Wurtzite and fluorite ferroelectric materials for electronic memory. Nat. Nanotechnol. 18, 422–441 (2023). https://doi.org/10.1038/s41565-023-01361-y
H. Lu, G. Schönweger, A. Petraru, H. Kohlstedt, S. Fichtner et al., Domain dynamics and resistive switching in ferroelectric Al1–xScxN thin film capacitors. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202315169
D.H. Lee, Y. Lee, Y.H. Cho, H. Choi, S.H. Kim et al., Unveiled ferroelectricity in well-known non-ferroelectric materials and their semiconductor applications. Adv. Funct. Mater. 33, 2303956 (2023). https://doi.org/10.1002/adfm.202303956
H. Huyan, L. Li, C. Addiego, W. Gao, X. Pan, Structures and electronic properties of domain walls in BiFeO3 thin films. Natl. Sci. Rev. 6, 669–683 (2019). https://doi.org/10.1093/nsr/nwz101
X. Zhang, E.A. Stach, W.J. Meng, A.C. Meng, Nanoscale compositional segregation in epitaxial AlScN on Si (111). Nanoscale Horiz. 8, 674–684 (2023). https://doi.org/10.1039/d2nh00567k
X. Zhang, W. Xu, W.J. Meng, A.C. Meng, Single crystal ferroelectric AlScN nanowires. CrystEngComm 26, 180–191 (2024). https://doi.org/10.1039/d3ce00990d
K. Do Kim, Y.B. Lee, S.H. Lee, I.S. Lee, S.K. Ryoo et al., Evolution of the ferroelectric properties of AlScN film by electrical cycling with an inhomogeneous field distribution. Adv. Electron. Mater. 9, 2201142 (2023). https://doi.org/10.1002/aelm.202201142
N. Wolff, S. Fichtner, B. Haas, M.R. Islam, F. Niekiel et al., Atomic scale confirmation of ferroelectric polarization inversion in wurtzite-type AlScN. J. Appl. Phys. 129, 034103 (2021). https://doi.org/10.1063/5.0033205
P. Visconti, D. Huang, M.A. Reshchikov, F. Yun, R. Cingolani et al., Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques. Mater. Sci. Eng. B 93, 229–233 (2002). https://doi.org/10.1016/S0921-5107(02)00011-9
D. Zhuang, J.H. Edgar, Wet etching of GaN, AlN, and SiC: a review. Mater. Sci. Eng. R. Rep. 48, 1–46 (2005). https://doi.org/10.1016/j.mser.2004.11.002
S. Calderon 5th., J. Hayden, S.M. Baksa, W. Tzou, S. Trolier-McKinstry et al., Atomic-scale polarization switching in wurtzite ferroelectrics. Science 380, 1034–1038 (2023). https://doi.org/10.1126/science.adh7670
J. Lao, M. Yan, B. Tian, C. Jiang, C. Luo et al., Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 9, e2106092 (2022). https://doi.org/10.1002/advs.202106092
S.M. Rossnagel, Magnetron sputtering. J. Vac. Sci. Technol. A Vac. Surf. Films 38, 060805 (2020). https://doi.org/10.1116/6.0000594
V. Yoshioka, J. Lu, Z. Tang, J. Jin, R.H. Olsson III. et al., Strongly enhanced second-order optical nonlinearity in CMOS-compatible Al1−xScxN thin films. APL Mater. 9, 101104 (2021). https://doi.org/10.1063/5.0061787
O. Ambacher, B. Christian, N. Feil, D. Urban, C. Elsässer et al., Wurtzite ScAlN, InAlN, and GaAlN crystals, a comparison of structural, elastic, dielectric, and piezoelectric properties. J. Appl. Phys. 130, 045102 (2021). https://doi.org/10.1063/5.0048647
M. Akiyama, K. Kano, A. Teshigahara, Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl. Phys. Lett. 95, 162107 (2009). https://doi.org/10.1063/1.3251072
S. Yasuoka, R. Mizutani, R. Ota, T. Shiraishi, T. Shimizu et al., Tunable ferroelectric properties in wurtzite (Al0.8Sc0.2)N via crystal anisotropy. ACS Appl. Electron. Mater. 4, 5165–5170 (2022). https://doi.org/10.1021/acsaelm.2c00999
X. Liu, D. Wang, K.-H. Kim, K. Katti, J. Zheng et al., Post-CMOS compatible aluminum scandium nitride/2D channel ferroelectric field-effect-transistor memory. Nano Lett. 21, 3753–3761 (2021). https://doi.org/10.1021/acs.nanolett.0c05051
P. Musavigharavi, A.C. Meng, D. Wang, J. Zheng, A.C. Foucher et al., Nanoscale structural and chemical properties of ferroelectric aluminum scandium nitride thin films. J. Phys. Chem. C 125, 14394–14400 (2021). https://doi.org/10.1021/acs.jpcc.1c01523
X. Liu, J. Zheng, D. Wang, P. Musavigharavi, E.A. Stach et al., Aluminum scandium nitride-based metal–ferroelectric–metal diode memory devices with high on/off ratios. Appl. Phys. Lett. 118, 202901 (2021). https://doi.org/10.1063/5.0051940
D. Wang, P. Musavigharavi, J. Zheng, G. Esteves, X. Liu et al., Sub-microsecond polarization switching in (Al, Sc)N ferroelectric capacitors grown on complementary metal–oxide–semiconductor-compatible aluminum electrodes. Phys. Status Solidi RRL 15, 2000575 (2021). https://doi.org/10.1002/pssr.202000575
S. Satoh, K. Ohtaka, T. Shimatsu, S. Tanaka, Crystal structure deformation and phase transition of AlScN thin films in whole Sc concentration range. J. Appl. Phys. 132, 025103 (2022). https://doi.org/10.1063/5.0087505
X. Liu, J. Ting, Y. He, M.M.A. Fiagbenu, J. Zheng et al., Reconfigurable compute-In-memory on field-programmable ferroelectric diodes. Nano Lett. 22, 7690–7698 (2022). https://doi.org/10.1021/acs.nanolett.2c03169
S.R.C. McMitchell, A.M. Walke, K. Banerjee, S. Mertens, X. Piao et al., Engineering strain and texture in ferroelectric scandium-doped aluminium nitride. ACS Appl. Electron. Mater. 5, 858–864 (2023). https://doi.org/10.1021/acsaelm.2c01421
S. Yasuoka, T. Shimizu, A. Tateyama, M. Uehara, H. Yamada et al., Impact of deposition temperature on crystal structure and ferroelectric properties of (Al1–xScx)N films prepared by sputtering method. Phys. Status Solidi A 218, 2100302 (2021). https://doi.org/10.1002/pssa.202170049
D. Zhang, L. Jin, J. Li, T. Wen, C. Liu et al., MBE growth of ultra-thin GeSn film with high Sn content and its infrared/terahertz properties. J. Alloys Compd. 665, 131–136 (2016). https://doi.org/10.1016/j.jallcom.2016.01.038
Z.-C. Zhang, Y. Li, J. Li, X.-D. Chen, B.-W. Yao et al., An ultrafast nonvolatile memory with low operation voltage for high-speed and low-power applications. Adv. Funct. Mater. 31, 2102571 (2021). https://doi.org/10.1002/adfm.202102571
K. Frei, R. Trejo-Hernández, S. Schütt, L. Kirste, M. Prescher et al., Investigation of growth parameters for ScAlN-barrier HEMT structures by plasma-assisted MBE. Jpn. J. Appl. Phys. 58, SC1045 (2019). https://doi.org/10.7567/1347-4065/ab124f
M.T. Hardy, E.N. Jin, N. Nepal, D.S. Katzer, B.P. Downey et al., Control of phase purity in high scandium fraction heteroepitaxial ScAlN grown by molecular beam epitaxy. Appl. Phys. Express 13, 065509 (2020). https://doi.org/10.35848/1882-0786/ab916a
C. Yuan, M. Park, Y. Zheng, J. Shi, R. Dargis et al., Phonon heat conduction in Al1-xScxN thin films. Mater. Today Phys. 21, 100498 (2021). https://doi.org/10.1016/j.mtphys.2021.100498
Y. Zheng, J. Wang, M. Park, P. Wang, D. Wang et al., High-order sezawa mode AlScN/GaN/sapphire surface acoustic wave resonators, in 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) (IEEE, Tokyo, Japan, 2022), pp. 1046–1049
J. Casamento, C.S. Chang, Y.-T. Shao, J. Wright, D.A. Muller et al., Structural and piezoelectric properties of ultra-thin ScxAl1−xN films grown on GaN by molecular beam epitaxy. Appl. Phys. Lett. 117, 112101 (2020). https://doi.org/10.1063/5.0013943
M. Park, Z. Hao, R. Dargis, A. Clark, A. Ansari, Epitaxial aluminum scandium nitride super high frequency acoustic resonators. J. Microelectromech. Syst. 29, 490–498 (2020). https://doi.org/10.1109/JMEMS.2020.3001233
P. Wang, D.A. Laleyan, A. Pandey, Y. Sun, Z. Mi, Molecular beam epitaxy and characterization of wurtzite ScxAl1−xN. Appl. Phys. Lett. 116, 151903 (2020). https://doi.org/10.1063/5.0002445
P. Wang, D. Wang, S. Mondal, Z. Mi, Ferroelectric N-polar ScAlN/GaN heterostructures grown by molecular beam epitaxy. Appl. Phys. Lett. 121, 023501 (2022). https://doi.org/10.1063/5.0097117
C. Manz, S. Leone, L. Kirste, J. Ligl, K. Frei et al., Improved AlScN/GaN heterostructures grown by metal-organic chemical vapor deposition. Semicond. Sci. Technol. 36, 034003 (2021). https://doi.org/10.1088/1361-6641/abd924
S. Leone, J. Ligl, C. Manz, L. Kirste, T. Fuchs et al., Metal-organic chemical vapor deposition of aluminum scandium nitride. Phys. Status Solidi RRL 14, 1900535 (2020). https://doi.org/10.1002/pssr.201900535
C. Liu, Q. Wang, W. Yang, T. Cao, L. Chen et al., Multiscale modeling of Al0.7Sc0.3N-based FeRAM: the steep switching, leakage and selector-free array, in 2021 IEEE International Electron Devices Meeting (IEDM) (IEEE, San Francisco, CA, USA, 2021), pp. 8.1.1–8.1.4
N.D. Boscher, M. Wang, A. Perrotta, K. Heinze, M. Creatore et al., Metal-organic covalent network chemical vapor deposition for gas separation. Adv. Mater. 28, 7479–7485 (2016). https://doi.org/10.1002/adma.201601010
J. Casamento, H. Lee, C.S. Chang, M.F. Besser, T. Maeda et al., Strong effect of scandium source purity on chemical and electronic properties of epitaxial ScxAl1-xN/GaN heterostructures. APL Mater. 9, 091106 (2021). https://doi.org/10.1063/5.0054522
L. Chen, C. Liu, M. Li, W. Song, W. Wang et al., Bipolar and unipolar cycling behavior in ferroelectric scandium-doped aluminum nitride, in 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF) (IEEE, Tours, France, 2022), pp. 1–3
B.-T. Lin, W.-H. Lee, J. Shieh, M.-J. Chen, Ferroelectric AlN ultrathin films prepared by atomic layer epitaxy, in SPIE Smart Structures + Nondestructive Evaluation. Proc SPIE 10968, Behavior and Mechanics of Multifunctional Materials XIII Denver, Colorado, USA, vol. 10968 (2019), pp. 287–293. https://doi.org/10.1117/12.2522119
H.-Y. Shih, W.-H. Lee, W.-C. Kao, Y.-C. Chuang, R.-M. Lin et al., Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in situ atomic layer annealing. Sci. Rep. 7, 39717 (2017). https://doi.org/10.1038/srep39717
R. Guido, T. Mikolajick, U. Schroeder, P.D. Lomenzo, Role of defects in the breakdown phenomenon of Al1-xScxN: from ferroelectric to filamentary resistive switching. Nano Lett. 23, 7213–7220 (2023). https://doi.org/10.1021/acs.nanolett.3c02351
T. Schenk, M. Pešić, S. Slesazeck, U. Schroeder, T. Mikolajick, Memory technology-a primer for material scientists. Rep. Prog. Phys. 83, 086501 (2020). https://doi.org/10.1088/1361-6633/ab8f86
C.-X. Xue, Y.-C. Chiu, T.-W. Liu, T.-Y. Huang, J.-S. Liu et al., A CMOS-integrated compute-in-memory macro based on resistive random-access memory for AI edge devices. Nat. Electron. 4, 81–90 (2021). https://doi.org/10.1038/s41928-020-00505-5
M. Lanza, A. Sebastian, W.D. Lu, M. Le Gallo, M.F. Chang et al., Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 376, eabj9979 (2022). https://doi.org/10.1126/science.abj9979
S. Deng, Z. Zhao, S. Kurinec, K. Ni, Y. Xiao et al., Overview of ferroelectric memory devices and reliability aware design optimization, in Proceedings of the 2021 on Great Lakes Symposium on VLSI. June 22–25, 2021, Virtual Event, USA (ACM, 2021), pp. 473–478
Z. Wang, W. Zhao, W. Kang, Y. Zhang, J.-O. Klein et al., Nonvolatile Boolean logic block based on ferroelectric tunnel memristor. IEEE Trans. Magn. 50, 9100604 (2014). https://doi.org/10.1109/TMAG.2014.2329774
Z. Gao, W. Zhang, Q. Zhong, Y. Zheng, S. Lv et al., Giant electroresistance in hafnia-based ferroelectric tunnel junctions via enhanced polarization. Device 1, 100004 (2023). https://doi.org/10.1016/j.device.2023.100004
K.-H. Kim, S. Oh, M.M.A. Fiagbenu, J. Zheng, P. Musavigharavi et al., Scalable CMOS back-end-of-line-compatible AlScN/two-dimensional channel ferroelectric field-effect transistors. Nat. Nanotechnol. 18, 1044–1050 (2023). https://doi.org/10.1038/s41565-023-01399-y
X. Yin, X. Chen, M. Niemier, X.S. Hu, Ferroelectric FETs-based nonvolatile logic-in-memory circuits. IEEE Trans. Very Large Scale Integr. VLSI Syst. 27, 159–172 (2019). https://doi.org/10.1109/TVLSI.2018.2871119
A. Sebastian, M. Le Gallo, R. Khaddam-Aljameh, E. Eleftheriou, Memory devices and applications for in-memory computing. Nat. Nanotechnol. 15, 529–544 (2020). https://doi.org/10.1038/s41565-020-0655-z
R. Yang, In-memory computing with ferroelectrics. Nat. Electron. 3, 237–238 (2020). https://doi.org/10.1038/s41928-020-0411-2
D. Ielmini, H.-S.P. Wong, In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018). https://doi.org/10.1038/s41928-018-0092-2
D. Wang, P. Wang, S. Mondal, M. Hu, Y. Wu et al., Ultrathin nitride ferroic memory with large ON/OFF ratios for analog in-memory computing. Adv. Mater. 35, e2210628 (2023). https://doi.org/10.1002/adma.202210628
P. Wang, D. Wang, S. Mondal, M. Hu, Y. Wu et al., Ferroelectric nitride heterostructures on CMOS compatible molybdenum for synaptic memristors. ACS Appl. Mater. Interfaces 15, 18022–18031 (2023). https://doi.org/10.1021/acsami.2c22798
V. Gund, B. Davaji, H. Lee, J. Casamento, H.G. Xing et al., Towards realizing the low-coercive field operation of sputtered ferroelectric ScxAl1-xN, in 2021 21st International Conference on Solid-State Sensors, Actuators and Microsystems (Transducers) (IEEE, Orlando, FL, USA, 2021), pp. 1064–1067