Dual-Gradient Impedance/Insulation Structured Polyimide Nonwoven Fabric for Multi-Band Compatible Stealth
Corresponding Author: Zicheng Wang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 130
Abstract
Designing and preparing a compatible electromagnetic interference (EMI) shielding, radar and infrared stealth material exhibits significant prospect in the military field. Hence, a novel conductive/magnetic polyimide-based nonwoven fabric (PFNy) is prepared by alkali treatment, Fe3+ ion exchange, thermal reduction, and electroless nickel (Ni) plating process. Its impedance/insulation characteristics can be easily adjusted by controlling the in situ growth of Fe3O4 and electroless nickel plating. Subsequently, a new strategy of constructing hierarchical dual-gradient impedance/insulation structure is implemented to achieve EMI shielding, radar and infrared stealth via stacking PFNy with gradually decreased impedance/insulation characteristics from top to bottom. The formation of impedance matching gradient structure promotes effective introduction and dissipation of electromagnetic waves, endowing the composite with outstanding EMI shielding and radar stealth performance. Meanwhile, the construction of thermal insulation gradient structure can effectively inhibit thermal radiation from target, bringing an excellent infrared stealth performance. Importantly, the strong interfacial interactions between Fe3O4, Ni and polyimide fiber accelerate PFNy to resist the stresses originated from high-temperature heat source, achieving a compatible high-temperature resistant radar/infrared stealth performance. Such excellent comprehensive properties endow it with a great potential in high-temperature military camouflage applications against enemy radar and infrared detection.
Highlights:
1 A novel conductive/magnetic polyimide nonwoven fabric is prepared by alkali treatment, Fe3+ ion exchange, thermal reduction, and electroless nickel plating process.
2 Dual-gradient impedance/insulation structure is assembled through stacking different conductive/magnetic polyimide nonwoven fabrics with gradually decreased impedance/insulation characteristic from top to bottom.
3 The strong interfacial interaction and dual-gradient impedance/insulation structure bring a compatible electromagnetic interference shielding, high-temperature resistant radar and infrared stealth performance.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36(48), 2410186 (2024). https://doi.org/10.1002/adma.202410186
- B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16(1), 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
- L. Liang, L. Yan, M. Cao, Z. Ji, L. Cheng et al., Microwave absorption and compression performance design of continuous carbon fiber reinforced 3D printing pyramidal array sandwich structure. Compos. Commun. 44, 101773 (2023). https://doi.org/10.1016/j.coco.2023.101773
- M. Chao, N. Chu, B. Zhang, C. Luo, L. Yan, MXene/carbon fiber/polyimide composite aerogel for multifunctional microwave absorption. Compos. Commun. 46, 101837 (2024). https://doi.org/10.1016/j.coco.2024.101837
- J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34(2), 2309269 (2024). https://doi.org/10.1002/adfm.202309269
- Z. Deng, L. Li, P. Tang, C. Jiao, Z.-Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16(10), 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
- J. Chen, Y.-L. Liu, D.-X. Sun, X.-D. Qi, J.-H. Yang et al., Recent progress in structural design of graphene/polymer porous composites toward electromagnetic interference shielding application. Chem. Eng. J. 495, 153586 (2024). https://doi.org/10.1016/j.cej.2024.153586
- G. Yin, J. Wu, C. Qi, X. Zhou, Z.-Z. Yu et al., Pickering emulsion-driven MXene/silk fibroin hydrogels with programmable functional networks for EMI shielding and solar evaporation. Nano-Micro Lett. 17(1), 312 (2025). https://doi.org/10.1007/s40820-025-01818-w
- X. Hou, J. Wen, W. Wang, W. Ye, Y. Zhang et al., Electrostatic self-assembly hollow-VOOH/MXene composite for microwave absorption. Compos. Commun. 41, 101635 (2023). https://doi.org/10.1016/j.coco.2023.101635
- Q. Liang, M. He, B. Zhan, H. Guo, X. Qi et al., Yolk-shell CoNi@N-doped carbon-CoNi@CNTs for enhanced microwave absorption, photothermal, anti-corrosion, and antimicrobial properties. Nano-Micro Lett. 17(1), 167 (2025). https://doi.org/10.1007/s40820-024-01626-8
- Z.-X. Liu, H.-B. Yang, Z.-M. Han, W.-B. Sun, X.-X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24(3), 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
- R. Hu, W. Xi, Y. Liu, K. Tang, J. Song et al., Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021). https://doi.org/10.1016/j.mattod.2020.11.013
- Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16(1), 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
- C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33(20), 2214223 (2023). https://doi.org/10.1002/adfm.202214223
- W. Zhang, G. Liang, S. Wang, F. Yang, X. Liu et al., Loofah‐inspired ultralight and superelastic micro/nanofibrous aerogels for highly efficient thermal insulation. Adv. Funct. Mater. 35(2), 2412424 (2025). https://doi.org/10.1002/adfm.202412424
- Y. Li, C. Dong, S. Wang, P. Zhang, D. Lei et al., Insight into lightweight MXene/Polyimide aerogel with high-efficient microwave absorption. Mater. Today Phys. 42, 101373 (2024). https://doi.org/10.1016/j.mtphys.2024.101373
- Z.-Y. Wang, Z.-C. Li, B. Li, A.-F. Shi, L. Zhang et al., Functional carbon springs enabled dynamic tunable microwave absorption and thermal insulation. Adv. Mater. 36(49), 2412605 (2024). https://doi.org/10.1002/adma.202412605
- W. Zhang, E. Ding, W. Zhang, J. Li, C. Luo et al., Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption. J. Mater. Chem. C 11(28), 9438–9448 (2023). https://doi.org/10.1039/d3tc01210g
- S. Shao, S. Xing, K. Bi, T. Zhao, H. Wang et al., Fabrication of graphene/polyimide/Co-N-C aerogel with reinforced electromagnetic losses and broadband absorption for highly efficient microwave absorption and thermal insulation. Chem. Eng. J. 494, 152976 (2024). https://doi.org/10.1016/j.cej.2024.152976
- B. Wang, K. Nan, H. Rao, Y. Chen, R. Pei et al., Integrated design of multifunctional lightweight magnetic cellulose-based aerogel with 1D/2D/3D hierarchical network for efficient microwave absorption. Compos. Commun. 49, 101987 (2024). https://doi.org/10.1016/j.coco.2024.101987
- L. Cao, B. Li, L. Shao, Q. Liu, J. Gao et al., Fabrication of ultra-high strength MWCNTs/CI/PI rigid composite foam with excellent microwave absorption performance by pressure foaming method. Compos. Commun. 52, 102117 (2024). https://doi.org/10.1016/j.coco.2024.102117
- L. Pu, S. Li, Y. Zhang, H. Zhu, W. Fan et al., Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J. Mater. Chem. C 9(6), 2086–2094 (2021). https://doi.org/10.1039/d0tc04951d
- T. Sun, Z. Liu, S. Li, H. Liu, F. Chen et al., Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. Part A Appl. Sci. Manuf. 150, 106594 (2021). https://doi.org/10.1016/j.compositesa.2021.106594
- K. Chang, C. Zhang, T. Liu, A comprehensive review on fabrication and structural design of polymer composites for wearable pressure sensors. Polym. Sci. Technol. 1(1), 3–24 (2025). https://doi.org/10.1021/polymscitech.4c00047
- X. Tang, X. Zhao, Y. Lu, S. Li, Z. Zhang et al., Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 480, 148000 (2024). https://doi.org/10.1016/j.cej.2023.148000
- S. Zhou, J. Dong, X. Li, X. Zhao, Q. Zhang, Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 5(6), 1892–1904 (2023). https://doi.org/10.1007/s42765-023-00317-0
- S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, Copper/polyimide heterojunctions: controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors. Adv. Funct. Mater. 17(6), 889–897 (2007). https://doi.org/10.1002/adfm.200600527
- L. Jiao, J. Li, L.L. Richard, Q. Sun, T. Stracensky et al., Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 20(10), 1385–1391 (2021). https://doi.org/10.1038/s41563-021-01030-2
- C. Xu, P. Liu, Z. Wu, H. Zhang, R. Zhang et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 9(17), 2200804 (2022). https://doi.org/10.1002/advs.202200804
- H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
- S. Hong, J.S. Lee, J. Ryu, S.H. Lee, D.Y. Lee et al., Bio-inspired strategy for on-surface synthesis of silver nanops for metal/organic hybrid nanomaterials and LDI-MS substrates. Nanotechnology 22(49), 494020 (2011). https://doi.org/10.1088/0957-4484/22/49/494020
- J. Yin, J. Zhang, S. Zhang, C. Liu, X. Yu et al., Flexible 3d porous graphene film decorated with nickel nanops for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 421, 129763 (2021). https://doi.org/10.1016/j.cej.2021.129763
- X. Wang, G. Dong, F. Pan, C. Lin, B. Yuan et al., Metal-support interaction induced electron localization in rationally designed metal sites anchored MXene enables boosted electromagnetic wave attenuation. Nano-Micro Lett. 17(1), 309 (2025). https://doi.org/10.1007/s40820-025-01819-9
- G. Fan, W. Xu, J. Li, J.-L. Chen, M. Yu et al., Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites. Adv. Mater. 33(42), 2101126 (2021). https://doi.org/10.1002/adma.202101126
- A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), 2414085 (2025). https://doi.org/10.1002/adma.202414085
- S. Li, T. Ma, M. Zhu, Y. Lu, X. Tang et al., Magnetic isocyanate-based polyimide composite foam for efficient microwave absorption. Compos. B Eng. 291, 112011 (2025). https://doi.org/10.1016/j.compositesb.2024.112011
- S. Li, M. Zhu, W. Li, Y. Lu, X. Tang et al., Hierarchical polyimide-based composite foam for compatible multi-band stealth. J. Mater. Sci. Technol. 215, 315–326 (2025). https://doi.org/10.1016/j.jmst.2024.08.016
- M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. 34(43), 2304473 (2024). https://doi.org/10.1002/adfm.202304473
- X. Tang, H. Gao, X. Zhao, K. Lai, S. Li et al., Gradient-structured polyimide nonwoven fabrics for intelligent adjustable low-reflection electromagnetic interference shielding. Mater. Today Nano 29, 100586 (2025). https://doi.org/10.1016/j.mtnano.2025.100586
- X. Tang, J. Luo, Z. Hu, S. Lu, X. Liu et al., Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 16(1), 1755–1763 (2023). https://doi.org/10.1007/s12274-022-4841-1
- X. Tang, Y. Lu, S. Li, M. Zhu, Z. Wang et al., Hierarchical polyimide nonwoven fabric with ultralow-reflectivity electromagnetic interference shielding and high-temperature resistant infrared stealth performance. Nano-Micro Lett. 17(1), 82 (2024). https://doi.org/10.1007/s40820-024-01590-3
- N. Qu, G. Xu, Y. Liu, M. He, R. Xing et al., Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 35(18), 2402923 (2025). https://doi.org/10.1002/adfm.202402923
- Y. Gao, Q. Wu, X. Jia, L. Pan, C. Li et al., Orientation architecture engineering for enhanced electromagnetic wave absorption and active–passive infrared camouflage performances. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508442
- J. Li, Q. Shi, Q. Wang, K. Guo, J. Li et al., Influence of fiber coating on electromagnetic wave absorption properties of SiCf/epoxy composites. Sci. China Mater. 68(5), 1665–1675 (2025). https://doi.org/10.1007/s40843-024-3283-y
- M. Zhang, Z. Ye, D. Cao, H. Zhuang, Z. Jiang et al., Multi-scale collaboration of polyimide-based composite foams for multi-spectrum compatible stealth in acoustic, microwave and infrared bands. Chem. Eng. J. 492, 152257 (2024). https://doi.org/10.1016/j.cej.2024.152257
- M. Zhu, W. Li, S. Yang, P. Zou, Y. Zhang et al., Ambient pressure dried polyimide/silica aerogels for efficient radar stealth at high temperature. Compos. Commun. 56, 102338 (2025). https://doi.org/10.1016/j.coco.2025.102338
- C. Zheng, M. Ning, Z. Zou, G. Lv, Q. Wu et al., Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small 19(32), 2208211 (2023). https://doi.org/10.1002/smll.202208211
- X. Lu, D. Zhu, X. Li, Y. Wang, Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption. Carbon 197, 209–217 (2022). https://doi.org/10.1016/j.carbon.2022.06.019
- Z. Zhang, F. Wang, J. Zhang, P. Li, K. Jiang, Ultra-broadband and wide-angle metamaterial absorber with carbon black/carbonyl iron composites fabricated by direct-ink-write 3D printing. Adv. Eng. Mater. 25(6), 2201236 (2023). https://doi.org/10.1002/adem.202201236
- X. Wang, Q. Li, H. Lai, Y. Peng, C. Hou et al., A bionic grooving all-cementitious-dielectric metastructure with unprecedented wide-angle broadband electromagnetic wave absorption properties. Adv. Funct. Mater. 35(35), 2425949 (2025). https://doi.org/10.1002/adfm.202425949
- B. Ren, Y. Deng, Y. Jia, L. Han, X. Wang et al., Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC-BN@CNT ceramic composites. Chem. Eng. J. 478, 147251 (2023). https://doi.org/10.1016/j.cej.2023.147251
- Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang et al., An extremely wideband and lightweight metamaterial absorber. J. Appl. Phys. 117(22), 224503 (2015). https://doi.org/10.1063/1.4922421
- N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15(1), 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
- Y.-L. Liu, T.-Y. Zhu, Q. Wang, Z.-J. Huang, D.-X. Sun et al., Hierarchically porous polypyrrole foams contained ordered polypyrrole nanowire arrays for multifunctional electromagnetic interference shielding and dynamic infrared stealth. Nano-Micro Lett. 17(1), 97 (2024). https://doi.org/10.1007/s40820-024-01588-x
- T.-Y. Zhu, W.-J. Jiang, S. Wu, Z.-J. Huang, Y.-L. Liu et al., Multifunctional MXene/PEDOT: PSS-based phase change organohydrogels for electromagnetic interference shielding and medium-low temperature infrared stealth. ACS Appl. Mater. Interfaces 16(12), 15372–15382 (2024). https://doi.org/10.1021/acsami.4c01001
References
M. He, X. Zhong, X. Lu, J. Hu, K. Ruan et al., Excellent low-frequency microwave absorption and high thermal conductivity in polydimethylsiloxane composites endowed by Hydrangea-like CoNi@BN heterostructure fillers. Adv. Mater. 36(48), 2410186 (2024). https://doi.org/10.1002/adma.202410186
B. Shan, Y. Wang, X. Ji, Y. Huang, Enhancing low-frequency microwave absorption through structural polarization modulation of MXenes. Nano-Micro Lett. 16(1), 212 (2024). https://doi.org/10.1007/s40820-024-01437-x
L. Liang, L. Yan, M. Cao, Z. Ji, L. Cheng et al., Microwave absorption and compression performance design of continuous carbon fiber reinforced 3D printing pyramidal array sandwich structure. Compos. Commun. 44, 101773 (2023). https://doi.org/10.1016/j.coco.2023.101773
M. Chao, N. Chu, B. Zhang, C. Luo, L. Yan, MXene/carbon fiber/polyimide composite aerogel for multifunctional microwave absorption. Compos. Commun. 46, 101837 (2024). https://doi.org/10.1016/j.coco.2024.101837
J. Jing, H. Liu, X. Wang, Long-term infrared stealth by sandwich-like phase-change composites at elevated temperatures via synergistic emissivity and thermal regulation. Adv. Funct. Mater. 34(2), 2309269 (2024). https://doi.org/10.1002/adfm.202309269
Z. Deng, L. Li, P. Tang, C. Jiao, Z.-Z. Yu et al., Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 16(10), 16976–16986 (2022). https://doi.org/10.1021/acsnano.2c07084
J. Chen, Y.-L. Liu, D.-X. Sun, X.-D. Qi, J.-H. Yang et al., Recent progress in structural design of graphene/polymer porous composites toward electromagnetic interference shielding application. Chem. Eng. J. 495, 153586 (2024). https://doi.org/10.1016/j.cej.2024.153586
G. Yin, J. Wu, C. Qi, X. Zhou, Z.-Z. Yu et al., Pickering emulsion-driven MXene/silk fibroin hydrogels with programmable functional networks for EMI shielding and solar evaporation. Nano-Micro Lett. 17(1), 312 (2025). https://doi.org/10.1007/s40820-025-01818-w
X. Hou, J. Wen, W. Wang, W. Ye, Y. Zhang et al., Electrostatic self-assembly hollow-VOOH/MXene composite for microwave absorption. Compos. Commun. 41, 101635 (2023). https://doi.org/10.1016/j.coco.2023.101635
Q. Liang, M. He, B. Zhan, H. Guo, X. Qi et al., Yolk-shell CoNi@N-doped carbon-CoNi@CNTs for enhanced microwave absorption, photothermal, anti-corrosion, and antimicrobial properties. Nano-Micro Lett. 17(1), 167 (2025). https://doi.org/10.1007/s40820-024-01626-8
Z.-X. Liu, H.-B. Yang, Z.-M. Han, W.-B. Sun, X.-X. Ge et al., A bioinspired gradient design strategy for cellulose-based electromagnetic wave absorbing structural materials. Nano Lett. 24(3), 881–889 (2024). https://doi.org/10.1021/acs.nanolett.3c03989
R. Hu, W. Xi, Y. Liu, K. Tang, J. Song et al., Thermal camouflaging metamaterials. Mater. Today 45, 120–141 (2021). https://doi.org/10.1016/j.mattod.2020.11.013
Z. Ma, R. Jiang, J. Jing, S. Kang, L. Ma et al., Lightweight dual-functional segregated nanocomposite foams for integrated infrared stealth and absorption-dominant electromagnetic interference shielding. Nano-Micro Lett. 16(1), 223 (2024). https://doi.org/10.1007/s40820-024-01450-0
C. Wen, B. Zhao, Y. Liu, C. Xu, Y. Wu et al., Flexible MXene-based composite films for multi-spectra defense in radar, infrared and visible light bands. Adv. Funct. Mater. 33(20), 2214223 (2023). https://doi.org/10.1002/adfm.202214223
W. Zhang, G. Liang, S. Wang, F. Yang, X. Liu et al., Loofah‐inspired ultralight and superelastic micro/nanofibrous aerogels for highly efficient thermal insulation. Adv. Funct. Mater. 35(2), 2412424 (2025). https://doi.org/10.1002/adfm.202412424
Y. Li, C. Dong, S. Wang, P. Zhang, D. Lei et al., Insight into lightweight MXene/Polyimide aerogel with high-efficient microwave absorption. Mater. Today Phys. 42, 101373 (2024). https://doi.org/10.1016/j.mtphys.2024.101373
Z.-Y. Wang, Z.-C. Li, B. Li, A.-F. Shi, L. Zhang et al., Functional carbon springs enabled dynamic tunable microwave absorption and thermal insulation. Adv. Mater. 36(49), 2412605 (2024). https://doi.org/10.1002/adma.202412605
W. Zhang, E. Ding, W. Zhang, J. Li, C. Luo et al., Microstructure controllable polyimide/MXene composite aerogels for high-temperature thermal insulation and microwave absorption. J. Mater. Chem. C 11(28), 9438–9448 (2023). https://doi.org/10.1039/d3tc01210g
S. Shao, S. Xing, K. Bi, T. Zhao, H. Wang et al., Fabrication of graphene/polyimide/Co-N-C aerogel with reinforced electromagnetic losses and broadband absorption for highly efficient microwave absorption and thermal insulation. Chem. Eng. J. 494, 152976 (2024). https://doi.org/10.1016/j.cej.2024.152976
B. Wang, K. Nan, H. Rao, Y. Chen, R. Pei et al., Integrated design of multifunctional lightweight magnetic cellulose-based aerogel with 1D/2D/3D hierarchical network for efficient microwave absorption. Compos. Commun. 49, 101987 (2024). https://doi.org/10.1016/j.coco.2024.101987
L. Cao, B. Li, L. Shao, Q. Liu, J. Gao et al., Fabrication of ultra-high strength MWCNTs/CI/PI rigid composite foam with excellent microwave absorption performance by pressure foaming method. Compos. Commun. 52, 102117 (2024). https://doi.org/10.1016/j.coco.2024.102117
L. Pu, S. Li, Y. Zhang, H. Zhu, W. Fan et al., Polyimide-based graphene composite foams with hierarchical impedance gradient for efficient electromagnetic absorption. J. Mater. Chem. C 9(6), 2086–2094 (2021). https://doi.org/10.1039/d0tc04951d
T. Sun, Z. Liu, S. Li, H. Liu, F. Chen et al., Effective improvement on microwave absorbing performance of epoxy resin-based composites with 3D MXene foam prepared by one-step impregnation method. Compos. Part A Appl. Sci. Manuf. 150, 106594 (2021). https://doi.org/10.1016/j.compositesa.2021.106594
K. Chang, C. Zhang, T. Liu, A comprehensive review on fabrication and structural design of polymer composites for wearable pressure sensors. Polym. Sci. Technol. 1(1), 3–24 (2025). https://doi.org/10.1021/polymscitech.4c00047
X. Tang, X. Zhao, Y. Lu, S. Li, Z. Zhang et al., Flexible metalized polyimide nonwoven fabrics for efficient electromagnetic interference shielding. Chem. Eng. J. 480, 148000 (2024). https://doi.org/10.1016/j.cej.2023.148000
S. Zhou, J. Dong, X. Li, X. Zhao, Q. Zhang, Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications. Adv. Fiber Mater. 5(6), 1892–1904 (2023). https://doi.org/10.1007/s42765-023-00317-0
S. Ikeda, H. Yanagimoto, K. Akamatsu, H. Nawafune, Copper/polyimide heterojunctions: controlling interfacial structures through an additive-based, all-wet chemical process using ion-doped precursors. Adv. Funct. Mater. 17(6), 889–897 (2007). https://doi.org/10.1002/adfm.200600527
L. Jiao, J. Li, L.L. Richard, Q. Sun, T. Stracensky et al., Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 20(10), 1385–1391 (2021). https://doi.org/10.1038/s41563-021-01030-2
C. Xu, P. Liu, Z. Wu, H. Zhang, R. Zhang et al., Customizing heterointerfaces in multilevel hollow architecture constructed by magnetic spindle arrays using the polymerizing-etching strategy for boosting microwave absorption. Adv. Sci. 9(17), 2200804 (2022). https://doi.org/10.1002/advs.202200804
H. Lee, S.M. Dellatore, W.M. Miller, P.B. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007). https://doi.org/10.1126/science.1147241
S. Hong, J.S. Lee, J. Ryu, S.H. Lee, D.Y. Lee et al., Bio-inspired strategy for on-surface synthesis of silver nanops for metal/organic hybrid nanomaterials and LDI-MS substrates. Nanotechnology 22(49), 494020 (2011). https://doi.org/10.1088/0957-4484/22/49/494020
J. Yin, J. Zhang, S. Zhang, C. Liu, X. Yu et al., Flexible 3d porous graphene film decorated with nickel nanops for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 421, 129763 (2021). https://doi.org/10.1016/j.cej.2021.129763
X. Wang, G. Dong, F. Pan, C. Lin, B. Yuan et al., Metal-support interaction induced electron localization in rationally designed metal sites anchored MXene enables boosted electromagnetic wave attenuation. Nano-Micro Lett. 17(1), 309 (2025). https://doi.org/10.1007/s40820-025-01819-9
G. Fan, W. Xu, J. Li, J.-L. Chen, M. Yu et al., Nanoporous NiSb to enhance nitrogen electroreduction via tailoring competitive adsorption sites. Adv. Mater. 33(42), 2101126 (2021). https://doi.org/10.1002/adma.202101126
A. Liu, H. Qiu, X. Lu, H. Guo, J. Hu et al., Asymmetric structural MXene/PBO aerogels for high-performance electromagnetic interference shielding with ultra-low reflection. Adv. Mater. 37(5), 2414085 (2025). https://doi.org/10.1002/adma.202414085
S. Li, T. Ma, M. Zhu, Y. Lu, X. Tang et al., Magnetic isocyanate-based polyimide composite foam for efficient microwave absorption. Compos. B Eng. 291, 112011 (2025). https://doi.org/10.1016/j.compositesb.2024.112011
S. Li, M. Zhu, W. Li, Y. Lu, X. Tang et al., Hierarchical polyimide-based composite foam for compatible multi-band stealth. J. Mater. Sci. Technol. 215, 315–326 (2025). https://doi.org/10.1016/j.jmst.2024.08.016
M. Panahi-Sarmad, S. Samsami, A. Ghaffarkhah, S.A. Hashemi, S. Ghasemi et al., MOF-based electromagnetic shields multiscale design: nanoscale chemistry, microscale assembly, and macroscale manufacturing. Adv. Funct. Mater. 34(43), 2304473 (2024). https://doi.org/10.1002/adfm.202304473
X. Tang, H. Gao, X. Zhao, K. Lai, S. Li et al., Gradient-structured polyimide nonwoven fabrics for intelligent adjustable low-reflection electromagnetic interference shielding. Mater. Today Nano 29, 100586 (2025). https://doi.org/10.1016/j.mtnano.2025.100586
X. Tang, J. Luo, Z. Hu, S. Lu, X. Liu et al., Ultrathin, flexible, and oxidation-resistant MXene/graphene porous films for efficient electromagnetic interference shielding. Nano Res. 16(1), 1755–1763 (2023). https://doi.org/10.1007/s12274-022-4841-1
X. Tang, Y. Lu, S. Li, M. Zhu, Z. Wang et al., Hierarchical polyimide nonwoven fabric with ultralow-reflectivity electromagnetic interference shielding and high-temperature resistant infrared stealth performance. Nano-Micro Lett. 17(1), 82 (2024). https://doi.org/10.1007/s40820-024-01590-3
N. Qu, G. Xu, Y. Liu, M. He, R. Xing et al., Multi-scale design of metal–organic framework metamaterials for broad-band microwave absorption. Adv. Funct. Mater. 35(18), 2402923 (2025). https://doi.org/10.1002/adfm.202402923
Y. Gao, Q. Wu, X. Jia, L. Pan, C. Li et al., Orientation architecture engineering for enhanced electromagnetic wave absorption and active–passive infrared camouflage performances. Adv. Funct. Mater. (2025). https://doi.org/10.1002/adfm.202508442
J. Li, Q. Shi, Q. Wang, K. Guo, J. Li et al., Influence of fiber coating on electromagnetic wave absorption properties of SiCf/epoxy composites. Sci. China Mater. 68(5), 1665–1675 (2025). https://doi.org/10.1007/s40843-024-3283-y
M. Zhang, Z. Ye, D. Cao, H. Zhuang, Z. Jiang et al., Multi-scale collaboration of polyimide-based composite foams for multi-spectrum compatible stealth in acoustic, microwave and infrared bands. Chem. Eng. J. 492, 152257 (2024). https://doi.org/10.1016/j.cej.2024.152257
M. Zhu, W. Li, S. Yang, P. Zou, Y. Zhang et al., Ambient pressure dried polyimide/silica aerogels for efficient radar stealth at high temperature. Compos. Commun. 56, 102338 (2025). https://doi.org/10.1016/j.coco.2025.102338
C. Zheng, M. Ning, Z. Zou, G. Lv, Q. Wu et al., Two birds with one stone: broadband electromagnetic wave absorption and anticorrosion performance in 2–18 GHz for Prussian blue analog derivatives aimed for practical applications. Small 19(32), 2208211 (2023). https://doi.org/10.1002/smll.202208211
X. Lu, D. Zhu, X. Li, Y. Wang, Architectural design and interfacial engineering of CNTs@ZnIn2S4 heterostructure/cellulose aerogel for efficient electromagnetic wave absorption. Carbon 197, 209–217 (2022). https://doi.org/10.1016/j.carbon.2022.06.019
Z. Zhang, F. Wang, J. Zhang, P. Li, K. Jiang, Ultra-broadband and wide-angle metamaterial absorber with carbon black/carbonyl iron composites fabricated by direct-ink-write 3D printing. Adv. Eng. Mater. 25(6), 2201236 (2023). https://doi.org/10.1002/adem.202201236
X. Wang, Q. Li, H. Lai, Y. Peng, C. Hou et al., A bionic grooving all-cementitious-dielectric metastructure with unprecedented wide-angle broadband electromagnetic wave absorption properties. Adv. Funct. Mater. 35(35), 2425949 (2025). https://doi.org/10.1002/adfm.202425949
B. Ren, Y. Deng, Y. Jia, L. Han, X. Wang et al., Achieving broadband electromagnetic absorption at a wide temperature range up to 1273 K by metamaterial design on polymer-derived SiC-BN@CNT ceramic composites. Chem. Eng. J. 478, 147251 (2023). https://doi.org/10.1016/j.cej.2023.147251
Y. Shen, Z. Pei, Y. Pang, J. Wang, A. Zhang et al., An extremely wideband and lightweight metamaterial absorber. J. Appl. Phys. 117(22), 224503 (2015). https://doi.org/10.1063/1.4922421
N. Qu, H. Sun, Y. Sun, M. He, R. Xing et al., 2D/2D coupled MOF/Fe composite metamaterials enable robust ultra-broadband microwave absorption. Nat. Commun. 15(1), 5642 (2024). https://doi.org/10.1038/s41467-024-49762-4
Y.-L. Liu, T.-Y. Zhu, Q. Wang, Z.-J. Huang, D.-X. Sun et al., Hierarchically porous polypyrrole foams contained ordered polypyrrole nanowire arrays for multifunctional electromagnetic interference shielding and dynamic infrared stealth. Nano-Micro Lett. 17(1), 97 (2024). https://doi.org/10.1007/s40820-024-01588-x
T.-Y. Zhu, W.-J. Jiang, S. Wu, Z.-J. Huang, Y.-L. Liu et al., Multifunctional MXene/PEDOT: PSS-based phase change organohydrogels for electromagnetic interference shielding and medium-low temperature infrared stealth. ACS Appl. Mater. Interfaces 16(12), 15372–15382 (2024). https://doi.org/10.1021/acsami.4c01001