Applications of MxSey (M = Fe, Co, Ni) and Their Composites in Electrochemical Energy Storage and Conversion
Corresponding Author: Huan Pang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 40
Abstract
Transition-metal selenides (MxSey, M = Fe, Co, Ni) and their composites exhibit good storage capacities for sodium and lithium ions and occupy a unique position in research on sodium-ion and lithium-ion batteries. MxSey and their composites are used as active materials to improve catalytic activity. However, low electrical conductivity, poor cycle stability, and low rate performance severely limit their applications. This review provides a comprehensive introduction to and understanding of the current research progress of MxSey and their composites. Moreover, this review proposes a broader research platform for these materials, including various bioelectrocatalytic performance tests, lithium–sulfur batteries, and fuel cells. The synthesis method and related mechanisms of MxSey and their composites are reviewed, and the effects of material morphologies on their electrochemical performance are discussed. The advantages and disadvantages of MxSey and their composites as well as possible strategies for improving the storage and conversion of electrochemical energy are also summarized.
Highlights:
1 The electrochemical properties of MxSey (M = Fe, Co, Ni) and their Composites have been discussed.
2 The synthetic methods and morphologies have been summarized.
3 The future directions and application prospect of MxSey (M = Fe, Co, Ni) and their composites are given.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G.D. Park, J.S. Cho, Y.C. Kang, Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 7(40), 16781–16788 (2015). https://doi.org/10.1039/C5NR04252F
- C. Zhang, Y. Huang, S. Tang, M. Deng, Y. Du, High-energy all-solid-state symmetric supercapacitor based on Ni3S2 mesoporous nanosheet-decorated three-dimensional reduced graphene oxide. ACS Energy Lett. 2(4), 759–768 (2017). https://doi.org/10.1021/acsenergylett.7b00078
- P.R. Jothi, R.R. Salunkhe, M. Pramanik, S. Kannan, Y. Yamauchi, Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications. RSC Adv. 6(25), 21246–21253 (2016). https://doi.org/10.1039/C5RA26946F
- T.T. Shan, S. Xin, Y. You, H.P. Cong, S.H. Yu, A. Manthiram, Combining nitrogen-doped graphene sheets and MoS2: a unique film–foam–film structure for enhanced lithium storage. Angew. Chem. Int. Ed. 55(41), 12783–12788 (2016). https://doi.org/10.1002/anie.201606870
- D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang, G. Du, Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim. Acta 92, 8787–8792 (2013). https://doi.org/10.1016/j.electacta.2013.01.008
- L. Zhang, E. Drummond, M.A. Brodney, J. Cianfrogna, S.E. Drozda, S. Grimwood, M.A. Vanase-Frawley, A. Villalobos, Design, synthesis and evaluation of [3H]PF-7191, a highly specific nociceptin opioid peptide (NOP) receptor radiotracer for in vivo receptor occupancy (RO) studies. Bioorg. Med. Chem. Lett. 24(22), 5219–5223 (2014). https://doi.org/10.1016/j.bmcl.2014.09.069
- R. Kumar, M. Krishnaih, S. Yeob, A. Kumar, S. Hun, Binder-free, scalable hierarchical MoS2 as electrode materials in symmetric supercapacitors for energy harvesting applications. Mater. Lett. 236, 167–170 (2019). https://doi.org/10.1016/j.matlet.2018.10.009
- J. Wu, L. Du, Y. Shao, X. Wu, Silicon quantum dots-assistant synthesis of mesoporous MoS2 3D frameworks (SiQDs-MoS2) with 1T and 2H phases for hydrogen evolution reaction. Mater. Lett. 236, 124–127 (2019). https://doi.org/10.1016/j.matlet.2018.10.095
- N.Q. Hai, H. Kim, I.S. Yoo, J. Hur, Facile and scalable preparation of a MoS2/carbon nanotube nanocomposite anode for high-performance lithium-ion batteries: effects of carbon nanotube content. J. Nanosci. Nanotechnol. 19(3), 1494–1499 (2019). https://doi.org/10.1166/jnn.2019.16154
- W. Li, J. Huang, L. Feng, L. Cao, Y. Liu, L. Pan, VS2 nanoarchitectures assembled by single-crystal nanosheets for enhanced sodium storage properties. Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.08.049
- Z. Zhang, X. Huang, H. Wang, S. Hwa, T. Ma, Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. J. Alloys Compd. 771, 274–280 (2019). https://doi.org/10.1016/j.jallcom.2018.08.325
- J.K. Das, A.K. Samantara, A.K. Nayak, D. Pradhan, J.N. Behera, VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Trans. 47(39), 13792 (2018). https://doi.org/10.1039/C8DT02547A
- W. Hou, Y. Xiao, G. Han, The dye-sensitized solar cells based on the interconnected ternary cobalt diindium sulfide nanosheet array counter electrode. Mater. Res. Bull. 107(July), 204–212 (2018). https://doi.org/10.1016/j.materresbull.2018.07.040
- Y. Pan, X. Cheng, Nanoflower-like N-doped C/CoS2 as high-performance anode materials for Na-ion batteries. Nanoscale 10, 20813–20820 (2018). https://doi.org/10.1039/c8nr06959j
- S. Luo, C. Zheng, W. Sun, Y. Wang, J. Ke et al., Multi-functional CoS2–N–C porous carbon composite derived from metal-organic frameworks for high performance lithium–sulfur batteries. Electrochim. Acta 289, 94–103 (2018). https://doi.org/10.1016/j.electacta.2018.09.048
- M. Govindasamy, S. Shanthi, E. Elaiyappillai, S. Wang, P.M. Johnson et al., Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim. Acta 293, 328–337 (2019). https://doi.org/10.1016/j.electacta.2018.10.051
- Q. Su, Y. Lu, S. Liu, X. Zhang, Y. Lin, R. Fu, Nanonetwork-structured yolk–shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon 140, 433–440 (2018). https://doi.org/10.1016/j.carbon.2018.08.049
- S. Venkateshalu, P.G. Kumar, S.K. Jeong, A.N. Grace, Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochim. Acta 290, 378–389 (2018). https://doi.org/10.1016/j.electacta.2018.09.027
- J. Jiang, L. Zhu, H. Chen, Y. Sun, W. Qian, H. Lin, S. Han, Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution. J. Mater. Sci. 54(2), 1422–1433 (2019). https://doi.org/10.1007/s10853-018-2913-0
- H. Fang, T. Huang, J. Mao, S. Yao, M.M. Dinesh, Investigation on the catalytic performance of reduced-graphene-oxide-interpolated FeS2 and FeS for oxygen reduction reaction. ChemistrySelect 3, 10418–10427 (2018). https://doi.org/10.1002/slct.201800835
- G. Chen, X. Yao, Q. Cao, S. Ding, J. He, S. Wang, Flexible free-standing SnS2/carbon nanofibers anode for high performance sodium-ion batteries. Mater. Lett. 234, 121–124 (2019). https://doi.org/10.1016/j.matlet.2018.09.082
- M. Wang, Y. Huang, Y. Zhu, X. Wu, N. Zhang, H. Zhang, Binder-free flower-like SnS2 nanoplates decorated on the graphene as a flexible anode for high-performance lithium-ion batteries. J. Alloys Compd. 774, 601–609 (2019). https://doi.org/10.1016/j.jallcom.2018.09.378
- Y. Zhang, Y. Guo, Y. Wang, T. Peng, Y. Lu et al., Rational design of 3D honeycomb-like SnS2 quantum dots/rGO composites as high-performance anode materials for lithium/sodium-ion batteries. Nanoscale Res. Lett. 13, 389 (2018). https://doi.org/10.1186/s11671-018-2805-x
- L. Yin, R. Cheng, Q. Song, J. Yang, X. Kong, J. Huang, Y. Lin, H. Ouyang, Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochim. Acta 293, 408–418 (2019). https://doi.org/10.1016/j.electacta.2018.10.020
- J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1473–1476 (2013). https://doi.org/10.1038/ncomms2498
- P. Zhao, H. Cui, J. Luan, Z. Guo, Y. Zhou, H. Xue, Porous FeS2 nanoparticles wrapped by reduced graphene oxide as high-performance Lithium-ion battery cathodes. Mater. Lett. 186, 62–65 (2017). https://doi.org/10.1016/j.matlet.2016.09.074
- L. Li, C. Gao, A. Kovalchuk, Z. Peng, G. Ruan et al., Sandwich structured graphene-wrapped FeS–graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 9(10), 2904–2911 (2016). https://doi.org/10.1007/s12274-016-1175-x
- P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
- T. Brousse, D. Belanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185–A5189 (2015). https://doi.org/10.1149/2.0201505jes
- L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014). https://doi.org/10.1002/adfm.201303138
- J. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate prussian blue analogue for high- performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2016). https://doi.org/10.1002/aenm.201601491
- M.H. Alfaruqi, S. Islam, D.Y. Putro, V. Mathew, S. Kim et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
- Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 101, 1704435 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
- H. Yao, Y. You, Y. Yin, L. Wan, Y. Guo, Rechargeable dual-metal-ion batteries for advanced energy storage. Phys. Chem. Chem. Phys. 18, 9326–9333 (2016). https://doi.org/10.1039/c6cp00586a
- X. Li, S. Zheng, L. Jin, Y. Li, P. Geng, H. Xue, H. Pang, Metal-organic framework-derived carbons for battery applications. Adv. Energy Mater. 8, 1800716 (2018). https://doi.org/10.1002/aenm.201800716
- Y. Li, Y. Lu, C. Zhao, Y. Hu, M. Titirici, H. Li, X. Huang, L. Chen, Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
- Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
- K.T. Lee, S. Jeong, J. Cho, Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 46(5), 1161–1170 (2013). https://doi.org/10.1021/ar200224h
- J. Wang, H. Wang, D. Cao, X. Lu, X. Han, C. Niu, Epitaxial growth of urchin-like CoSe2 nanorods from electrospun co-embedded porous carbon nanofibers and their superior lithium storage properties. Part. Part. Syst. Charact. 34(10), 1700185 (2017). https://doi.org/10.1002/ppsc.201700185
- H. Hu, J. Zhang, B. Guan, X.W.D. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
- J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 325, 14–24 (2017). https://doi.org/10.1016/j.cej.2017.05.046
- J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin, X. Kang, S. Chen, CoSe2 nanoparticles encapsulated by n-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 5(12), 1800763 (2018). https://doi.org/10.1002/advs.201800763
- J. Gao, Y. Li, L. Shi, J. Li, G. Zhang, Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl. Mater. Interfaces 10(24), 20635–20642 (2018). https://doi.org/10.1021/acsami.8b06442
- Z. Li, H. Xue, J. Wang, Y. Tang, C.-S. Lee, S. Yang, Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium-ion batteries with excellent cyclic performance. ChemElectroChem 2(11), 1682–1686 (2015). https://doi.org/10.1002/celc.201500179
- D. Chen, G. Chen, J. Pei, Y. Hu, Z. Qin, J. Wang, F. Wu, Formation of porous Cu-doped CoSe2 connected by nanoparticles for efficient lithium storage. ChemElectroChem 4(9), 2158–2163 (2017). https://doi.org/10.1002/celc.201700384
- Y. Yang, J. Liu, H.-Q. Dai, Y. Cui, J. Liu, X. Liu, Z.-W. Fu, Pulsed laser deposited NiO–NiSe nanocomposite as a new anode material for lithium storage. J. Alloys Compd. 661, 190–195 (2016). https://doi.org/10.1016/j.jallcom.2015.11.119
- L. Mi, H. Sun, Q. Ding, W. Chen, C. Liu, H. Hou, Z. Zheng, C. Shen, 3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design. Dalton Trans. 41(40), 12595 (2012). https://doi.org/10.1039/C2DT31787G
- Z. Zhang, X. Shi, X. Yang, Synthesis of core–shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim. Acta 208, 238–243 (2016). https://doi.org/10.1016/j.electacta.2016.04.183
- A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014). https://doi.org/10.1039/C4CS00071D
- J. Liu, Y. Yang, X. Liu, M. Xue, J. Liu, Y. Cui, Facile synthesis and electrochemical properties of Fe2SeS for lithium ion batteries. J. Power Sources 306, 317–321 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.113
- D. Wei, J. Liang, Y. Zhu, L. Hu, K. Zhang, J. Zhang, Z. Yuan, Y. Qian, Layer structured α-FeSe: a potential anode material for lithium storage. Electrochem. Commun. 38, 124–127 (2014). https://doi.org/10.1016/j.elecom.2013.11.021
- K. Mizushima, P. Jones, P. Wiseman, J. Goodenough, LixCoO2 (0 < x ⩽ 1): a new cathode material for batteries of high energy density. Solid State Ion. 3–4(C), 171–174 (1981). https://doi.org/10.1016/0167-2738(81)90077-1
- B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, A multifunctional iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6(10), 749–753 (2007). https://doi.org/10.1038/nmat2007
- Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang, G. Cao, Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(4), 3624–3633 (2017). https://doi.org/10.1021/acsami.6b13153
- G.D. Park, Y.C. Kang, One-pot synthesis of CoSex–rGO composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Chem. A Eur. J. 22(4), 4140–4146 (2016). https://doi.org/10.1002/chem.201504398
- X. Yang, J. Zhang, Z. Wang, H. Wang, C. Zhi, D.Y.W. Yu, A.L. Rogach, One-pot synthesis of CoSex–rGO composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Small 14(7), 1702669 (2018). https://doi.org/10.1002/smll.201702669
- J.-S. Park, Y. Chan Kang, Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries. J. Mater. Chem. A 5(18), 8616–8623 (2017). https://doi.org/10.1039/C7TA01088E
- D. Li, J. Zhou, X. Chen, H. Song, Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl. Mater. Interfaces 10(26), 22841–22850 (2018). https://doi.org/10.1021/acsami.8b06318
- X. Wei, C. Tang, Q. An, M. Yan, X. Wang, P. Hu, X. Cai, L. Mai, FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 10(9), 3202–3211 (2017). https://doi.org/10.1007/s12274-017-1537-z
- G.D. Park, J.S. Cho, J.-K. Lee, Y.C. Kang, Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale Kirkendall diffusion process. Sci. Rep. 6(1), 22432 (2016). https://doi.org/10.1038/srep22432
- X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu, H. Wang, L. Yang, M. Zhu, A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 28(16), 1 (2018). https://doi.org/10.1002/adfm.201707573
- Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30(36), 1–9 (2018). https://doi.org/10.1002/adma.201802745
- Y. Duan, Q. Tang, B. He, Z. Zhao, L. Zhu, L. Yu, Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes. J. Power Sources 284, 349–354 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.045
- J. Liu, Q. Tang, B. He, L. Yu, Cost-effective bifacial dye-sensitized solar cells with transparent iron selenide counter electrodes. An avenue of enhancing rear-side electricity generation capability. J. Power Sources 275, 288–293 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.152
- Y. Li, H. Peng, L. Yang, H. Dong, P. Xiao, Investigating the effect of sulfur and selenium on the electrochemical properties of nickel–cobalt oxides: enhanced charge capacity and composition–property relationships. J. Mater. Sci. 51(15), 7108–7118 (2016). https://doi.org/10.1007/s10853-016-9968-6
- M.-Z. Xue, Z.-W. Fu, Lithium electrochemistry of NiSe2: a new kind of storage energy material. Electrochem. Commun. 8(12), 1855–1862 (2006). https://doi.org/10.1016/j.elecom.2006.08.025
- J. Yang, H. Gao, D. Ma, J. Zou, Z. Lin, X. Kang, S. Chen, High-performance Li–Se battery cathode based on CoSe2-porous carbon composites. Electrochim. Acta 264, 341–349 (2018). https://doi.org/10.1016/j.electacta.2018.01.105
- P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8(15), 1703259 (2018). https://doi.org/10.1002/aenm.201703259
- J.S. Cho, J.-S. Park, K.M. Jeon, Y. Chan Kang, 1-D nanostructure comprising porous Fe2O3/Se composite nanorods with numerous nanovoids, and their electrochemical properties for use in lithium-ion batteries. J. Mater. Chem. A 5(21), 10632–10639 (2017). https://doi.org/10.1039/C7TA02616A
- E.S. Davydova, I.N. Atamanyuk, A.S. Ilyukhin, E.I. Shkolnikov, A.Z. Zhuk, Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries. J. Power Sources 306, 329–336 (2016). https://doi.org/10.1016/j.elecom.2013.11.021
- G.D. Park, J.S. Cho, J.K. Lee, Y.C. Kang, Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale kirkendall diffusion process. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep22432
- D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K
- Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji, Y. Liu, 3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim. Acta 269, 30–37 (2018). https://doi.org/10.1016/j.electacta.2018.02.146
- G. Ma, F. Hua, K. Sun, E. Fenga, H. Peng, Z. Zhang, Z. Lei, Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor. R. Soc. Open Sci. 5(1), 171186 (2018). https://doi.org/10.1098/rsos.171186
- B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 7(10), 5853–5862 (2017). https://doi.org/10.1039/C6RA25078E
- Y. Zhang, A. Pan, Y. Wang, X. Cao, Z. Zhou, T. Zhu, S. Liang, G. Cao, Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Mater. 8, 28–34 (2017). https://doi.org/10.1016/j.ensm.2017.03.005
- C. Gong, M. Huang, P. Zhou, Z. Sun, L. Fan, J. Lin, J. Wu, Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl. Surf. Sci. 362, 469–476 (2016). https://doi.org/10.1016/j.apsusc.2015.11.194
- S. Tang, S. Vongehr, Y. Wang, J. Cui, X. Wang, X. Meng, Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and sers detection. J. Mater. Chem. A 2(10), 3648–3660 (2014). https://doi.org/10.1039/C3TA14541G
- H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain. Chem. Eng. 5(7), 5951–5963 (2017). https://doi.org/10.1021/acssuschemeng.7b00729
- Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang, C. Wang, Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochim. Acta 250, 327–334 (2017). https://doi.org/10.1016/j.electacta.2017.08.084
- B. Chen, Y. Tian, Z. Yang, Y. Ruan, J. Jiang, C. Wang, Construction of (Ni, Cu) Se2//reduced graphene oxide for high energy density asymmetric supercapacitor. ChemElectroChem 4(11), 3004–3010 (2017). https://doi.org/10.1002/celc.201700742
- Q. Bao, J. Wu, L. Fan, J. Ge, J. Dong, J. Jia, J. Zeng, J. Lin, Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J. Energy Chem. 26(6), 1252–1259 (2017). https://doi.org/10.1016/j.jechem.2017.09.023
- Z. Tang, C. Jia, Z. Wan, Q. Zhou, X. Ye, Y. Zhu, Facile preparation of CoNi2S4 @NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Adv. 6(113), 112307–112316 (2016). https://doi.org/10.1039/C6RA20871A
- K. Guo, F. Yang, S. Cui, W. Chen, L. Mi, Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 6(52), 46523–46530 (2016). https://doi.org/10.1039/C6RA06909F
- P. Yang, Z. Wu, Y. Jiang, Z. Pan, W. Tian, L. Jiang, L. Hu, Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 8(26), 1801392 (2018). https://doi.org/10.1002/aenm.201801392
- H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu, J. Jiang, One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors. J. Power Sources 329, 314–322 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.097
- C. Zhang, M. Hou, X. Cai, J. Lin, X. Liu et al., One-step coaxial electrodeposition of Co0.85Se on CoNi2S4 nanotube arrays for flexible solid-state asymmetric supercapacitors. J. Mater. Chem. A 6(32), 15630–15639 (2018). https://doi.org/10.1039/C8TA05131C
- Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134(7), 3517–3523 (2012). https://doi.org/10.1021/ja210924t
- M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923), 71–74 (2009)
- R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim et al., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4(1), 2076 (2013). https://doi.org/10.1038/ncomms3076
- C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong et al., Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J. Mater. Sci. 54(7), 5412–5423 (2019). https://doi.org/10.1007/s10853-018-03255-0
- S. Wen, K. Qin, P. Liu, N. Zhao, L. Ma, C. Shi, E. Liu, Ultrahigh volumetric capacitance and cycle stability via structure design and synergistic action between CoMoO4 nanosheets and 3D porous Ni–Co film. Appl. Surf. Sci. 465, 389–396 (2019). https://doi.org/10.1016/j.apsusc.2018.09.207
- L. Ding, Q. Xin, X. Zhou, J. Qiao, H. Li, H. Wang, Electrochemical behavior of nanostructured nickel phthalocyanine (NiPc/C) for oxygen reduction reaction in alkaline media. J. Appl. Electrochem. 43(1), 43–51 (2013). https://doi.org/10.1007/s10800-012-0503-4
- D. Shin, B. Jeong, B.S. Mun, H. Jeon, H.-J. Shin, J. Baik, J. Lee, On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen–carbon species. J. Phys. Chem. C 117(22), 11619–11624 (2013). https://doi.org/10.1021/jp401186a
- S. Liu, Z. Zhang, J. Bao, Y. Lan, W. Tu, M. Han, Z. Dai, Controllable synthesis of tetragonal and cubic phase Cu2Se nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction. J. Phys. Chem. C 117(29), 15164–15173 (2013). https://doi.org/10.1021/jp4044122
- L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50(31), 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
- T. Hibino, K. Kobayashi, P. Heo, Oxygen reduction reaction over nitrogen-doped graphene oxide cathodes in acid and alkaline fuel cells at intermediate temperatures. Electrochim. Acta 112, 82–89 (2013). https://doi.org/10.1016/j.electacta.2013.08.101
- J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin, P. Strasser, R. Yang, Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 1(34), 9889–9896 (2013). https://doi.org/10.1039/C3TA11849E
- J. Zhu, G. He, L. Liang, Q. Wan, P.K. Shen, Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim. Acta 158, 374–382 (2015). https://doi.org/10.1016/j.electacta.2015.01.173
- J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
- D. Susac, L. Zhu, M. Teo, A. Sode, K.C. Wong et al., Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J. Phys. Chem. C 111(50), 18715–18723 (2007). https://doi.org/10.1021/jp073395i
- Z. Jin, H. Nie, Z. Yang, J. Zhang, Z. Liu, X. Xu, S. Huang, Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4(20), 6455–6460 (2012). https://doi.org/10.1039/C2NR31858J
- L.F. Zhang, C.Y. Zhang, Multifunctional Co0.85Se/graphene hybrid nanosheets: Controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate. Nanoscale 6(3), 1782–1789 (2014). https://doi.org/10.1039/C3NR05509D
- Y.S. Chao, D.S. Tsai, A.P. Wu, L.W. Tseng, Y.S. Huang, Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. Int. J. Hydrog. Energy 38(14), 5655–5664 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.006
- D. Zhao, S. Zhang, G. Yin, C. Du, Z. Wang, J. Wei, Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity. J. Power Sources 206, 103–107 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.018
- P. Nekooi, M. Akbari, M.K. Amini, CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Renew. Energy 35(12), 6392–6398 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.134
- L. Zhu, D. Susac, A. Lam, M. Teo, P.C. Wong, D. Bizzotto, S.A. Campbell, R.R. Parsons, K.A.R. Mitchell, Structure of sputtered Co–Se thin films prepared for an application in catalysis. J. Solid State Chem. 179(12), 3942–3948 (2006). https://doi.org/10.1016/j.jssc.2006.08.028
- Q. Zheng, X. Cheng, H. Li, Microwave synthesis of high activity FeSe2/C catalyst toward oxygen reduction reaction. Catalysts 5(3), 1079–1091 (2015). https://doi.org/10.3390/catal5031079
- A. Ezeta, E.M. Arce, O. Solorza, R.G. González, H. Dorantes, Effect of the leaching of Ru–Se–Fe and Ru–Mo–Fe obtained by mechanical alloying on electrocatalytical behavior for the oxygen reduction reaction. J. Alloys Compd. 483(1–2), 429–431 (2009). https://doi.org/10.1016/j.jallcom.2008.08.115
- S.P. Chiao, D.S. Tsai, D.P. Wilkinson, Y.M. Chen, Y.S. Huang, Carbon supported Ru1−xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. Int. J. Hydrog. Energy 35(13), 6508–6517 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.032
- C. Dai, X. Tian, Y. Nie, C. Tian, C. Yang, Z. Zhou, Y. Li, X. Gao, Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction. Chem. Eng. J. 321, 105–112 (2017). https://doi.org/10.1016/j.cej.2017.03.068
- X. Chen, Y. Qiu, G. Liu, W. Zheng, W. Feng et al., Tuning electrochemical catalytic activity of defective 2D terrace MoSe2 heterogeneous catalyst: via cobalt doping. J. Mater. Chem. A 5(22), 11357–11363 (2017). https://doi.org/10.1039/C7TA02327H
- W. Zhou, J. Lu, K. Zhou, L. Yang, Y. Ke, Z. Tang, S. Chen, CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28, 143–150 (2016). https://doi.org/10.1016/j.nanoen.2016.08.040
- X. Chang, J. Jian, G. Cai, R. Wu, J. Li, Three-dimensional FeSe2 microflowers assembled by nanosheets: synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction. Electron. Mater. Lett. 12(2), 237–242 (2016). https://doi.org/10.1007/s13391-016-5377-x
- M. Xiao, Z. Zhang, Y. Tian, Y. Miao, J. Wang, Co–Fe–Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. J. Appl. Electrochem. 47(3), 361–367 (2017). https://doi.org/10.1007/s10800-016-1014-5
- J. Du, Z. Zou, C. Liu, C. Xu, Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction. Nanoscale 10, 5163–5170 (2018). https://doi.org/10.1039/c8nr00426a
- J. Yu, G. Cheng, W. Luo, 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 11(4), 2149–2158 (2018). https://doi.org/10.1007/s12274-017-1832-8
- R. Bose, V.R. Jothi, D.B. Velusamy, P. Arunkumar, S.C. Yi, A highly effective, stable oxygen evolution catalyst derived from transition metal selenides and phosphides. Part. Part. Syst. Charact. 35(8), 1800135 (2018). https://doi.org/10.1002/ppsc.201800135
- Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 9(2), 478–483 (2016). https://doi.org/10.1039/C5EE03440J
- X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, Efficient NiSe–Ni3Se2/graphene electrocatalyst in dye-sensitized solar cells: the role of hollow hybrid nanostructure. ACS Appl. Mater. Interfaces 8(27), 17187–17193 (2016). https://doi.org/10.1021/acsami.6b02350
- K. Xu, H. Ding, K. Jia, X. Lu, P. Chen et al., Solution–liquid–solid synthesis of hexagonal nickel selenide nanowire arrays with a nonmetal catalyst. Angew. Chem. Int. Ed. 55(5), 1710–1713 (2016). https://doi.org/10.1002/anie.201508704
- Y.J. Kim, K. Yuan, B.R. Ellis, U. Becker, Redox reactions of selenium as catalyzed by magnetite: lessons learned from using electrochemistry and spectroscopic methods. Geochim. Cosmochim. Acta 199, 304–323 (2017). https://doi.org/10.1016/j.gca.2016.10.039
- F. Qiao, Z. Wang, K. Xu, S. Ai, Double enzymatic cascade reactions within FeSe–Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose. Analyst 140(19), 6684–6691 (2015). https://doi.org/10.1039/C5AN01268F
- L. Shao, X. Qian, H. Li, C. Xu, L. Hou, Shape-controllable syntheses of ternary Ni–Co–Se alloy hollow microspheres as highly efficient catalytic materials for dye-sensitized solar cells. Chem. Eng. J. 315, 562–572 (2017). https://doi.org/10.1016/j.cej.2017.01.055
- E. Reisner, J.C. Fontecilla-Camps, F.A. Armstrong, Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. 550–552 (2009). https://doi.org/10.1039/B817371K
- C. Wombwell, E. Reisner, Synthetic active site model of the [NiFeSe] hydrogenase. Chem. A Eur. J. 21(22), 8096–8104 (2015). https://doi.org/10.1002/chem.201500311
- M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
- F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). https://doi.org/10.1039/C2CS35266D
- L. An, Y. Li, M. Luo, J. Yin, Y.Q. Zhao et al., Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv. Funct. Mater. 27(42), 1–9 (2017). https://doi.org/10.1002/adfm.201703779
- X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc–air battery integrated with flexible display. Adv. Energy Mater. 7(18), 1–11 (2017). https://doi.org/10.1002/aenm.201700779
- Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancies-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670–15675 (2014). https://doi.org/10.1021/ja5085157
- A. Sivanantham, S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B Environ. 203, 485–493 (2017). https://doi.org/10.1016/j.apcatb.2016.10.050
- Z. Zhuang, Q. Peng, J. Zhuang, X. Wang, Y. Li, Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chem. A Eur. J. 12(1), 211–217 (2006). https://doi.org/10.1002/chem.200500724
- B. Anugop, S. Prasanth, D. Rithesh Raj, T.V. Vineeshkumar, S. Pranitha, V.P. Mahadevan Pillai, C. Sudarsanakumar, Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1−xMnxSe nanoparticles. Opt. Mater. 62, 297–305 (2016). https://doi.org/10.1016/j.optmat.2016.10.017
- T. Wang, X. Li, Y. Jiang, Y. Zhou, L. Jia, C. Wang, Reduced graphene oxide-polyimide/carbon nanotube film decorated with NiSe nanoparticles for electrocatalytic hydrogen evolution reactions. Electrochim. Acta 243, 291–298 (2017). https://doi.org/10.1016/j.electacta.2017.05.084
- X. Zheng, X. Han, H. Liu, J. Chen, D. Fu, J. Wang, C. Zhong, Y. Deng, W. Hu, Controllable synthesis of NixSe (0.5 ≤ x ≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS Appl. Mater. Interfaces 10(16), 13675–13684 (2018). https://doi.org/10.1021/acsami.8b01651
- J. Zheng, Q. Gong, X. Cheng, S. Gong, W. Yang, L. Huang, Microwave synthesis of carbon-supported cobalt nickel selenide ternary catalyst toward the oxygen reduction reaction. ChemElectroChem 5(14), 2019–2028 (2018). https://doi.org/10.1002/celc.201800190
References
G.D. Park, J.S. Cho, Y.C. Kang, Sodium-ion storage properties of nickel sulfide hollow nanospheres/reduced graphene oxide composite powders prepared by a spray drying process and the nanoscale Kirkendall effect. Nanoscale 7(40), 16781–16788 (2015). https://doi.org/10.1039/C5NR04252F
C. Zhang, Y. Huang, S. Tang, M. Deng, Y. Du, High-energy all-solid-state symmetric supercapacitor based on Ni3S2 mesoporous nanosheet-decorated three-dimensional reduced graphene oxide. ACS Energy Lett. 2(4), 759–768 (2017). https://doi.org/10.1021/acsenergylett.7b00078
P.R. Jothi, R.R. Salunkhe, M. Pramanik, S. Kannan, Y. Yamauchi, Surfactant-assisted synthesis of nanoporous nickel sulfide flakes and their hybridization with reduced graphene oxides for supercapacitor applications. RSC Adv. 6(25), 21246–21253 (2016). https://doi.org/10.1039/C5RA26946F
T.T. Shan, S. Xin, Y. You, H.P. Cong, S.H. Yu, A. Manthiram, Combining nitrogen-doped graphene sheets and MoS2: a unique film–foam–film structure for enhanced lithium storage. Angew. Chem. Int. Ed. 55(41), 12783–12788 (2016). https://doi.org/10.1002/anie.201606870
D. Xie, W. Yuan, Z. Dong, Q. Su, J. Zhang, G. Du, Facile synthesis of porous NiO hollow microspheres and its electrochemical lithium-storage performance. Electrochim. Acta 92, 8787–8792 (2013). https://doi.org/10.1016/j.electacta.2013.01.008
L. Zhang, E. Drummond, M.A. Brodney, J. Cianfrogna, S.E. Drozda, S. Grimwood, M.A. Vanase-Frawley, A. Villalobos, Design, synthesis and evaluation of [3H]PF-7191, a highly specific nociceptin opioid peptide (NOP) receptor radiotracer for in vivo receptor occupancy (RO) studies. Bioorg. Med. Chem. Lett. 24(22), 5219–5223 (2014). https://doi.org/10.1016/j.bmcl.2014.09.069
R. Kumar, M. Krishnaih, S. Yeob, A. Kumar, S. Hun, Binder-free, scalable hierarchical MoS2 as electrode materials in symmetric supercapacitors for energy harvesting applications. Mater. Lett. 236, 167–170 (2019). https://doi.org/10.1016/j.matlet.2018.10.009
J. Wu, L. Du, Y. Shao, X. Wu, Silicon quantum dots-assistant synthesis of mesoporous MoS2 3D frameworks (SiQDs-MoS2) with 1T and 2H phases for hydrogen evolution reaction. Mater. Lett. 236, 124–127 (2019). https://doi.org/10.1016/j.matlet.2018.10.095
N.Q. Hai, H. Kim, I.S. Yoo, J. Hur, Facile and scalable preparation of a MoS2/carbon nanotube nanocomposite anode for high-performance lithium-ion batteries: effects of carbon nanotube content. J. Nanosci. Nanotechnol. 19(3), 1494–1499 (2019). https://doi.org/10.1166/jnn.2019.16154
W. Li, J. Huang, L. Feng, L. Cao, Y. Liu, L. Pan, VS2 nanoarchitectures assembled by single-crystal nanosheets for enhanced sodium storage properties. Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.08.049
Z. Zhang, X. Huang, H. Wang, S. Hwa, T. Ma, Free-standing NiCo2S4@VS2 nanoneedle array composite electrode for high performance asymmetric supercapacitor application. J. Alloys Compd. 771, 274–280 (2019). https://doi.org/10.1016/j.jallcom.2018.08.325
J.K. Das, A.K. Samantara, A.K. Nayak, D. Pradhan, J.N. Behera, VS2: an efficient catalyst for an electrochemical hydrogen evolution reaction in an acidic medium. Dalton Trans. 47(39), 13792 (2018). https://doi.org/10.1039/C8DT02547A
W. Hou, Y. Xiao, G. Han, The dye-sensitized solar cells based on the interconnected ternary cobalt diindium sulfide nanosheet array counter electrode. Mater. Res. Bull. 107(July), 204–212 (2018). https://doi.org/10.1016/j.materresbull.2018.07.040
Y. Pan, X. Cheng, Nanoflower-like N-doped C/CoS2 as high-performance anode materials for Na-ion batteries. Nanoscale 10, 20813–20820 (2018). https://doi.org/10.1039/c8nr06959j
S. Luo, C. Zheng, W. Sun, Y. Wang, J. Ke et al., Multi-functional CoS2–N–C porous carbon composite derived from metal-organic frameworks for high performance lithium–sulfur batteries. Electrochim. Acta 289, 94–103 (2018). https://doi.org/10.1016/j.electacta.2018.09.048
M. Govindasamy, S. Shanthi, E. Elaiyappillai, S. Wang, P.M. Johnson et al., Fabrication of hierarchical NiCo2S4@CoS2 nanostructures on highly conductive flexible carbon cloth substrate as a hybrid electrode material for supercapacitors with enhanced electrochemical performance. Electrochim. Acta 293, 328–337 (2019). https://doi.org/10.1016/j.electacta.2018.10.051
Q. Su, Y. Lu, S. Liu, X. Zhang, Y. Lin, R. Fu, Nanonetwork-structured yolk–shell FeS2@C as high-performance cathode materials for Li-ion batteries. Carbon 140, 433–440 (2018). https://doi.org/10.1016/j.carbon.2018.08.049
S. Venkateshalu, P.G. Kumar, S.K. Jeong, A.N. Grace, Solvothermal synthesis and electrochemical properties of phase pure pyrite FeS2 for supercapacitor applications. Electrochim. Acta 290, 378–389 (2018). https://doi.org/10.1016/j.electacta.2018.09.027
J. Jiang, L. Zhu, H. Chen, Y. Sun, W. Qian, H. Lin, S. Han, Highly active and stable electrocatalysts of FeS2–reduced graphene oxide for hydrogen evolution. J. Mater. Sci. 54(2), 1422–1433 (2019). https://doi.org/10.1007/s10853-018-2913-0
H. Fang, T. Huang, J. Mao, S. Yao, M.M. Dinesh, Investigation on the catalytic performance of reduced-graphene-oxide-interpolated FeS2 and FeS for oxygen reduction reaction. ChemistrySelect 3, 10418–10427 (2018). https://doi.org/10.1002/slct.201800835
G. Chen, X. Yao, Q. Cao, S. Ding, J. He, S. Wang, Flexible free-standing SnS2/carbon nanofibers anode for high performance sodium-ion batteries. Mater. Lett. 234, 121–124 (2019). https://doi.org/10.1016/j.matlet.2018.09.082
M. Wang, Y. Huang, Y. Zhu, X. Wu, N. Zhang, H. Zhang, Binder-free flower-like SnS2 nanoplates decorated on the graphene as a flexible anode for high-performance lithium-ion batteries. J. Alloys Compd. 774, 601–609 (2019). https://doi.org/10.1016/j.jallcom.2018.09.378
Y. Zhang, Y. Guo, Y. Wang, T. Peng, Y. Lu et al., Rational design of 3D honeycomb-like SnS2 quantum dots/rGO composites as high-performance anode materials for lithium/sodium-ion batteries. Nanoscale Res. Lett. 13, 389 (2018). https://doi.org/10.1186/s11671-018-2805-x
L. Yin, R. Cheng, Q. Song, J. Yang, X. Kong, J. Huang, Y. Lin, H. Ouyang, Construction of nanoflower SnS2 anchored on g-C3N4 nanosheets composite as highly efficient anode for lithium ion batteries. Electrochim. Acta 293, 408–418 (2019). https://doi.org/10.1016/j.electacta.2018.10.020
J.S. Ross, S. Wu, H. Yu, N.J. Ghimire, A.M. Jones et al., Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Commun. 4, 1473–1476 (2013). https://doi.org/10.1038/ncomms2498
P. Zhao, H. Cui, J. Luan, Z. Guo, Y. Zhou, H. Xue, Porous FeS2 nanoparticles wrapped by reduced graphene oxide as high-performance Lithium-ion battery cathodes. Mater. Lett. 186, 62–65 (2017). https://doi.org/10.1016/j.matlet.2016.09.074
L. Li, C. Gao, A. Kovalchuk, Z. Peng, G. Ruan et al., Sandwich structured graphene-wrapped FeS–graphene nanoribbons with improved cycling stability for lithium ion batteries. Nano Res. 9(10), 2904–2911 (2016). https://doi.org/10.1007/s12274-016-1175-x
P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014). https://doi.org/10.1126/science.1249625
T. Brousse, D. Belanger, J.W. Long, To be or not to be pseudocapacitive? J. Electrochem. Soc. 162(5), A5185–A5189 (2015). https://doi.org/10.1149/2.0201505jes
L. Shen, Q. Che, H. Li, X. Zhang, Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv. Funct. Mater. 24(18), 2630–2637 (2014). https://doi.org/10.1002/adfm.201303138
J. Lee, G. Ali, D.H. Kim, K.Y. Chung, Metal-organic framework cathodes based on a vanadium hexacyanoferrate prussian blue analogue for high- performance aqueous rechargeable batteries. Adv. Energy Mater. 7, 1601491 (2016). https://doi.org/10.1002/aenm.201601491
M.H. Alfaruqi, S. Islam, D.Y. Putro, V. Mathew, S. Kim et al., Structural transformation and electrochemical study of layered MnO2 in rechargeable aqueous zinc-ion battery. Electrochim. Acta 276, 1–11 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
Y. Li, Y. Xu, W. Yang, W. Shen, H. Xue, H. Pang, MOF-derived metal oxide composites for advanced electrochemical energy storage. Small 101, 1704435 (2018). https://doi.org/10.1016/j.electacta.2018.04.139
H. Yao, Y. You, Y. Yin, L. Wan, Y. Guo, Rechargeable dual-metal-ion batteries for advanced energy storage. Phys. Chem. Chem. Phys. 18, 9326–9333 (2016). https://doi.org/10.1039/c6cp00586a
X. Li, S. Zheng, L. Jin, Y. Li, P. Geng, H. Xue, H. Pang, Metal-organic framework-derived carbons for battery applications. Adv. Energy Mater. 8, 1800716 (2018). https://doi.org/10.1002/aenm.201800716
Y. Li, Y. Lu, C. Zhao, Y. Hu, M. Titirici, H. Li, X. Huang, L. Chen, Recent advances of electrode materials for low-cost sodium-ion batteries towards practical application for grid energy storage. Energy Storage Mater. 7, 130–151 (2017). https://doi.org/10.1016/j.ensm.2017.01.002
Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208, 210–224 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.038
K.T. Lee, S. Jeong, J. Cho, Roles of surface chemistry on safety and electrochemistry in lithium ion batteries. Acc. Chem. Res. 46(5), 1161–1170 (2013). https://doi.org/10.1021/ar200224h
J. Wang, H. Wang, D. Cao, X. Lu, X. Han, C. Niu, Epitaxial growth of urchin-like CoSe2 nanorods from electrospun co-embedded porous carbon nanofibers and their superior lithium storage properties. Part. Part. Syst. Charact. 34(10), 1700185 (2017). https://doi.org/10.1002/ppsc.201700185
H. Hu, J. Zhang, B. Guan, X.W.D. Lou, Unusual formation of CoSe@carbon nanoboxes, which have an inhomogeneous shell, for efficient lithium storage. Angew. Chem. Int. Ed. 55(33), 9514–9518 (2016). https://doi.org/10.1002/anie.201603852
J. Li, D. Yan, T. Lu, Y. Yao, L. Pan, An advanced CoSe embedded within porous carbon polyhedra hybrid for high performance lithium-ion and sodium-ion batteries. Chem. Eng. J. 325, 14–24 (2017). https://doi.org/10.1016/j.cej.2017.05.046
J. Yang, H. Gao, S. Men, Z. Shi, Z. Lin, X. Kang, S. Chen, CoSe2 nanoparticles encapsulated by n-doped carbon framework intertwined with carbon nanotubes: high-performance dual-role anode materials for both Li- and Na-ion batteries. Adv. Sci. 5(12), 1800763 (2018). https://doi.org/10.1002/advs.201800763
J. Gao, Y. Li, L. Shi, J. Li, G. Zhang, Rational design of hierarchical nanotubes through encapsulating CoSe2 nanoparticles into MoSe2/C composite shells with enhanced lithium and sodium storage performance. ACS Appl. Mater. Interfaces 10(24), 20635–20642 (2018). https://doi.org/10.1021/acsami.8b06442
Z. Li, H. Xue, J. Wang, Y. Tang, C.-S. Lee, S. Yang, Reduced graphene oxide/marcasite-type cobalt selenide nanocrystals as an anode for lithium-ion batteries with excellent cyclic performance. ChemElectroChem 2(11), 1682–1686 (2015). https://doi.org/10.1002/celc.201500179
D. Chen, G. Chen, J. Pei, Y. Hu, Z. Qin, J. Wang, F. Wu, Formation of porous Cu-doped CoSe2 connected by nanoparticles for efficient lithium storage. ChemElectroChem 4(9), 2158–2163 (2017). https://doi.org/10.1002/celc.201700384
Y. Yang, J. Liu, H.-Q. Dai, Y. Cui, J. Liu, X. Liu, Z.-W. Fu, Pulsed laser deposited NiO–NiSe nanocomposite as a new anode material for lithium storage. J. Alloys Compd. 661, 190–195 (2016). https://doi.org/10.1016/j.jallcom.2015.11.119
L. Mi, H. Sun, Q. Ding, W. Chen, C. Liu, H. Hou, Z. Zheng, C. Shen, 3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design. Dalton Trans. 41(40), 12595 (2012). https://doi.org/10.1039/C2DT31787G
Z. Zhang, X. Shi, X. Yang, Synthesis of core–shell NiSe/C nanospheres as anodes for lithium and sodium storage. Electrochim. Acta 208, 238–243 (2016). https://doi.org/10.1016/j.electacta.2016.04.183
A.D. Roberts, X. Li, H. Zhang, Porous carbon spheres and monoliths: morphology control, pore size tuning and their applications as Li-ion battery anode materials. Chem. Soc. Rev. 43(13), 4341–4356 (2014). https://doi.org/10.1039/C4CS00071D
J. Liu, Y. Yang, X. Liu, M. Xue, J. Liu, Y. Cui, Facile synthesis and electrochemical properties of Fe2SeS for lithium ion batteries. J. Power Sources 306, 317–321 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.113
D. Wei, J. Liang, Y. Zhu, L. Hu, K. Zhang, J. Zhang, Z. Yuan, Y. Qian, Layer structured α-FeSe: a potential anode material for lithium storage. Electrochem. Commun. 38, 124–127 (2014). https://doi.org/10.1016/j.elecom.2013.11.021
K. Mizushima, P. Jones, P. Wiseman, J. Goodenough, LixCoO2 (0 < x ⩽ 1): a new cathode material for batteries of high energy density. Solid State Ion. 3–4(C), 171–174 (1981). https://doi.org/10.1016/0167-2738(81)90077-1
B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, A multifunctional iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6(10), 749–753 (2007). https://doi.org/10.1038/nmat2007
Y. Zhang, A. Pan, L. Ding, Z. Zhou, Y. Wang, S. Niu, S. Liang, G. Cao, Nitrogen-doped yolk–shell-structured CoSe/C dodecahedra for high-performance sodium ion batteries. ACS Appl. Mater. Interfaces 9(4), 3624–3633 (2017). https://doi.org/10.1021/acsami.6b13153
G.D. Park, Y.C. Kang, One-pot synthesis of CoSex–rGO composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Chem. A Eur. J. 22(4), 4140–4146 (2016). https://doi.org/10.1002/chem.201504398
X. Yang, J. Zhang, Z. Wang, H. Wang, C. Zhi, D.Y.W. Yu, A.L. Rogach, One-pot synthesis of CoSex–rGO composite powders by spray pyrolysis and their application as anode material for sodium-ion batteries. Small 14(7), 1702669 (2018). https://doi.org/10.1002/smll.201702669
J.-S. Park, Y. Chan Kang, Multicomponent (Mo, Ni) metal sulfide and selenide microspheres with empty nanovoids as anode materials for Na-ion batteries. J. Mater. Chem. A 5(18), 8616–8623 (2017). https://doi.org/10.1039/C7TA01088E
D. Li, J. Zhou, X. Chen, H. Song, Achieving ultrafast and stable Na-ion storage in FeSe2 nanorods/graphene anodes by controlling the surface oxide. ACS Appl. Mater. Interfaces 10(26), 22841–22850 (2018). https://doi.org/10.1021/acsami.8b06318
X. Wei, C. Tang, Q. An, M. Yan, X. Wang, P. Hu, X. Cai, L. Mai, FeSe2 clusters with excellent cyclability and rate capability for sodium-ion batteries. Nano Res. 10(9), 3202–3211 (2017). https://doi.org/10.1007/s12274-017-1537-z
G.D. Park, J.S. Cho, J.-K. Lee, Y.C. Kang, Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale Kirkendall diffusion process. Sci. Rep. 6(1), 22432 (2016). https://doi.org/10.1038/srep22432
X. Xu, J. Liu, J. Liu, L. Ouyang, R. Hu, H. Wang, L. Yang, M. Zhu, A general metal-organic framework (MOF)-derived selenidation strategy for in situ carbon-encapsulated metal selenides as high-rate anodes for Na-ion batteries. Adv. Funct. Mater. 28(16), 1 (2018). https://doi.org/10.1002/adfm.201707573
Z. Ali, M. Asif, X. Huang, T. Tang, Y. Hou, Hierarchically porous Fe2CoSe4 binary-metal selenide for extraordinary rate performance and durable anode of sodium-ion batteries. Adv. Mater. 30(36), 1–9 (2018). https://doi.org/10.1002/adma.201802745
Y. Duan, Q. Tang, B. He, Z. Zhao, L. Zhu, L. Yu, Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes. J. Power Sources 284, 349–354 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.045
J. Liu, Q. Tang, B. He, L. Yu, Cost-effective bifacial dye-sensitized solar cells with transparent iron selenide counter electrodes. An avenue of enhancing rear-side electricity generation capability. J. Power Sources 275, 288–293 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.152
Y. Li, H. Peng, L. Yang, H. Dong, P. Xiao, Investigating the effect of sulfur and selenium on the electrochemical properties of nickel–cobalt oxides: enhanced charge capacity and composition–property relationships. J. Mater. Sci. 51(15), 7108–7118 (2016). https://doi.org/10.1007/s10853-016-9968-6
M.-Z. Xue, Z.-W. Fu, Lithium electrochemistry of NiSe2: a new kind of storage energy material. Electrochem. Commun. 8(12), 1855–1862 (2006). https://doi.org/10.1016/j.elecom.2006.08.025
J. Yang, H. Gao, D. Ma, J. Zou, Z. Lin, X. Kang, S. Chen, High-performance Li–Se battery cathode based on CoSe2-porous carbon composites. Electrochim. Acta 264, 341–349 (2018). https://doi.org/10.1016/j.electacta.2018.01.105
P. Geng, S. Zheng, H. Tang, R. Zhu, L. Zhang, S. Cao, H. Xue, H. Pang, Transition metal sulfides based on graphene for electrochemical energy storage. Adv. Energy Mater. 8(15), 1703259 (2018). https://doi.org/10.1002/aenm.201703259
J.S. Cho, J.-S. Park, K.M. Jeon, Y. Chan Kang, 1-D nanostructure comprising porous Fe2O3/Se composite nanorods with numerous nanovoids, and their electrochemical properties for use in lithium-ion batteries. J. Mater. Chem. A 5(21), 10632–10639 (2017). https://doi.org/10.1039/C7TA02616A
E.S. Davydova, I.N. Atamanyuk, A.S. Ilyukhin, E.I. Shkolnikov, A.Z. Zhuk, Nitrogen-doped carbonaceous catalysts for gas-diffusion cathodes for alkaline aluminum-air batteries. J. Power Sources 306, 329–336 (2016). https://doi.org/10.1016/j.elecom.2013.11.021
G.D. Park, J.S. Cho, J.K. Lee, Y.C. Kang, Na-ion storage performances of FeSex and Fe2O3 hollow nanoparticles-decorated reduced graphene oxide balls prepared by nanoscale kirkendall diffusion process. Sci. Rep. 6, 1–10 (2016). https://doi.org/10.1038/srep22432
D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44(7), 1777–1790 (2015). https://doi.org/10.1039/C4CS00266K
Y. Zhu, Z. Huang, Z. Hu, L. Xi, X. Ji, Y. Liu, 3D interconnected ultrathin cobalt selenide nanosheets as cathode materials for hybrid supercapacitors. Electrochim. Acta 269, 30–37 (2018). https://doi.org/10.1016/j.electacta.2018.02.146
G. Ma, F. Hua, K. Sun, E. Fenga, H. Peng, Z. Zhang, Z. Lei, Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor. R. Soc. Open Sci. 5(1), 171186 (2018). https://doi.org/10.1098/rsos.171186
B. Kirubasankar, V. Murugadoss, S. Angaiah, Hydrothermal assisted in situ growth of CoSe onto graphene nanosheets as a nanohybrid positive electrode for asymmetric supercapacitors. RSC Adv. 7(10), 5853–5862 (2017). https://doi.org/10.1039/C6RA25078E
Y. Zhang, A. Pan, Y. Wang, X. Cao, Z. Zhou, T. Zhu, S. Liang, G. Cao, Self-templated synthesis of N-doped CoSe2/C double-shelled dodecahedra for high-performance supercapacitors. Energy Storage Mater. 8, 28–34 (2017). https://doi.org/10.1016/j.ensm.2017.03.005
C. Gong, M. Huang, P. Zhou, Z. Sun, L. Fan, J. Lin, J. Wu, Mesoporous Co0.85Se nanosheets supported on Ni foam as a positive electrode material for asymmetric supercapacitor. Appl. Surf. Sci. 362, 469–476 (2016). https://doi.org/10.1016/j.apsusc.2015.11.194
S. Tang, S. Vongehr, Y. Wang, J. Cui, X. Wang, X. Meng, Versatile synthesis of high surface area multi-metallic nanosponges allowing control over nanostructure and alloying for catalysis and sers detection. J. Mater. Chem. A 2(10), 3648–3660 (2014). https://doi.org/10.1039/C3TA14541G
H. Peng, J. Zhou, K. Sun, G. Ma, Z. Zhang, E. Feng, Z. Lei, High-performance asymmetric supercapacitor designed with a novel NiSe@MoSe2 nanosheet array and nitrogen-doped carbon nanosheet. ACS Sustain. Chem. Eng. 5(7), 5951–5963 (2017). https://doi.org/10.1021/acssuschemeng.7b00729
Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang, C. Wang, Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochim. Acta 250, 327–334 (2017). https://doi.org/10.1016/j.electacta.2017.08.084
B. Chen, Y. Tian, Z. Yang, Y. Ruan, J. Jiang, C. Wang, Construction of (Ni, Cu) Se2//reduced graphene oxide for high energy density asymmetric supercapacitor. ChemElectroChem 4(11), 3004–3010 (2017). https://doi.org/10.1002/celc.201700742
Q. Bao, J. Wu, L. Fan, J. Ge, J. Dong, J. Jia, J. Zeng, J. Lin, Electrodeposited NiSe2 on carbon fiber cloth as a flexible electrode for high-performance supercapacitors. J. Energy Chem. 26(6), 1252–1259 (2017). https://doi.org/10.1016/j.jechem.2017.09.023
Z. Tang, C. Jia, Z. Wan, Q. Zhou, X. Ye, Y. Zhu, Facile preparation of CoNi2S4 @NiSe nano arrays on compressed nickel foam for high performance flexible supercapacitors. RSC Adv. 6(113), 112307–112316 (2016). https://doi.org/10.1039/C6RA20871A
K. Guo, F. Yang, S. Cui, W. Chen, L. Mi, Controlled synthesis of 3D hierarchical NiSe microspheres for high-performance supercapacitor design. RSC Adv. 6(52), 46523–46530 (2016). https://doi.org/10.1039/C6RA06909F
P. Yang, Z. Wu, Y. Jiang, Z. Pan, W. Tian, L. Jiang, L. Hu, Fractal (NixCo1−x)9Se8 nanodendrite arrays with highly exposed (011) surface for wearable, all-solid-state supercapacitor. Adv. Energy Mater. 8(26), 1801392 (2018). https://doi.org/10.1002/aenm.201801392
H. Chen, M. Fan, C. Li, G. Tian, C. Lv, D. Chen, K. Shu, J. Jiang, One-pot synthesis of hollow NiSe–CoSe nanoparticles with improved performance for hybrid supercapacitors. J. Power Sources 329, 314–322 (2016). https://doi.org/10.1016/j.jpowsour.2016.08.097
C. Zhang, M. Hou, X. Cai, J. Lin, X. Liu et al., One-step coaxial electrodeposition of Co0.85Se on CoNi2S4 nanotube arrays for flexible solid-state asymmetric supercapacitors. J. Mater. Chem. A 6(32), 15630–15639 (2018). https://doi.org/10.1039/C8TA05131C
Y. Liang, H. Wang, J. Zhou, Y. Li, J. Wang, T. Regier, H. Dai, Covalent hybrid of spinel manganese–cobalt oxide and graphene as advanced oxygen reduction electrocatalysts. J. Am. Chem. Soc. 134(7), 3517–3523 (2012). https://doi.org/10.1021/ja210924t
M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923), 71–74 (2009)
R. Cao, R. Thapa, H. Kim, X. Xu, M. Gyu Kim et al., Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst. Nat. Commun. 4(1), 2076 (2013). https://doi.org/10.1038/ncomms3076
C. Xu, Z. Lin, D. Zhao, Y. Sun, Y. Zhong et al., Facile in situ fabrication of Co nanoparticles embedded in 3D N-enriched mesoporous carbon foam electrocatalyst with enhanced activity and stability toward oxygen reduction reaction. J. Mater. Sci. 54(7), 5412–5423 (2019). https://doi.org/10.1007/s10853-018-03255-0
S. Wen, K. Qin, P. Liu, N. Zhao, L. Ma, C. Shi, E. Liu, Ultrahigh volumetric capacitance and cycle stability via structure design and synergistic action between CoMoO4 nanosheets and 3D porous Ni–Co film. Appl. Surf. Sci. 465, 389–396 (2019). https://doi.org/10.1016/j.apsusc.2018.09.207
L. Ding, Q. Xin, X. Zhou, J. Qiao, H. Li, H. Wang, Electrochemical behavior of nanostructured nickel phthalocyanine (NiPc/C) for oxygen reduction reaction in alkaline media. J. Appl. Electrochem. 43(1), 43–51 (2013). https://doi.org/10.1007/s10800-012-0503-4
D. Shin, B. Jeong, B.S. Mun, H. Jeon, H.-J. Shin, J. Baik, J. Lee, On the origin of electrocatalytic oxygen reduction reaction on electrospun nitrogen–carbon species. J. Phys. Chem. C 117(22), 11619–11624 (2013). https://doi.org/10.1021/jp401186a
S. Liu, Z. Zhang, J. Bao, Y. Lan, W. Tu, M. Han, Z. Dai, Controllable synthesis of tetragonal and cubic phase Cu2Se nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction. J. Phys. Chem. C 117(29), 15164–15173 (2013). https://doi.org/10.1021/jp4044122
L. Yang, S. Jiang, Y. Zhao, L. Zhu, S. Chen, Boron-doped carbon nanotubes as metal-free electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 50(31), 7132–7135 (2011). https://doi.org/10.1002/anie.201101287
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915), 760–764 (2009). https://doi.org/10.1126/science.1168049
T. Hibino, K. Kobayashi, P. Heo, Oxygen reduction reaction over nitrogen-doped graphene oxide cathodes in acid and alkaline fuel cells at intermediate temperatures. Electrochim. Acta 112, 82–89 (2013). https://doi.org/10.1016/j.electacta.2013.08.101
J. Wu, Z. Yang, X. Li, Q. Sun, C. Jin, P. Strasser, R. Yang, Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 1(34), 9889–9896 (2013). https://doi.org/10.1039/C3TA11849E
J. Zhu, G. He, L. Liang, Q. Wan, P.K. Shen, Direct anchoring of platinum nanoparticles on nitrogen and phosphorus-dual-doped carbon nanotube arrays for oxygen reduction reaction. Electrochim. Acta 158, 374–382 (2015). https://doi.org/10.1016/j.electacta.2015.01.173
J. Liang, Y. Jiao, M. Jaroniec, S.Z. Qiao, Sulfur and nitrogen dual-doped mesoporous graphene electrocatalyst for oxygen reduction with synergistically enhanced performance. Angew. Chem. Int. Ed. 51(46), 11496–11500 (2012). https://doi.org/10.1002/anie.201206720
D. Susac, L. Zhu, M. Teo, A. Sode, K.C. Wong et al., Characterization of FeS2-based thin films as model catalysts for the oxygen reduction reaction. J. Phys. Chem. C 111(50), 18715–18723 (2007). https://doi.org/10.1021/jp073395i
Z. Jin, H. Nie, Z. Yang, J. Zhang, Z. Liu, X. Xu, S. Huang, Metal-free selenium doped carbon nanotube/graphene networks as a synergistically improved cathode catalyst for oxygen reduction reaction. Nanoscale 4(20), 6455–6460 (2012). https://doi.org/10.1039/C2NR31858J
L.F. Zhang, C.Y. Zhang, Multifunctional Co0.85Se/graphene hybrid nanosheets: Controlled synthesis and enhanced performances for the oxygen reduction reaction and decomposition of hydrazine hydrate. Nanoscale 6(3), 1782–1789 (2014). https://doi.org/10.1039/C3NR05509D
Y.S. Chao, D.S. Tsai, A.P. Wu, L.W. Tseng, Y.S. Huang, Cobalt selenide electrocatalyst supported by nitrogen-doped carbon and its stable activity toward oxygen reduction reaction. Int. J. Hydrog. Energy 38(14), 5655–5664 (2013). https://doi.org/10.1016/j.ijhydene.2013.03.006
D. Zhao, S. Zhang, G. Yin, C. Du, Z. Wang, J. Wei, Effect of Se in Co-based selenides towards oxygen reduction electrocatalytic activity. J. Power Sources 206, 103–107 (2012). https://doi.org/10.1016/j.jpowsour.2012.01.018
P. Nekooi, M. Akbari, M.K. Amini, CoSe nanoparticles prepared by the microwave-assisted polyol method as an alcohol and formic acid tolerant oxygen reduction catalyst. Renew. Energy 35(12), 6392–6398 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.134
L. Zhu, D. Susac, A. Lam, M. Teo, P.C. Wong, D. Bizzotto, S.A. Campbell, R.R. Parsons, K.A.R. Mitchell, Structure of sputtered Co–Se thin films prepared for an application in catalysis. J. Solid State Chem. 179(12), 3942–3948 (2006). https://doi.org/10.1016/j.jssc.2006.08.028
Q. Zheng, X. Cheng, H. Li, Microwave synthesis of high activity FeSe2/C catalyst toward oxygen reduction reaction. Catalysts 5(3), 1079–1091 (2015). https://doi.org/10.3390/catal5031079
A. Ezeta, E.M. Arce, O. Solorza, R.G. González, H. Dorantes, Effect of the leaching of Ru–Se–Fe and Ru–Mo–Fe obtained by mechanical alloying on electrocatalytical behavior for the oxygen reduction reaction. J. Alloys Compd. 483(1–2), 429–431 (2009). https://doi.org/10.1016/j.jallcom.2008.08.115
S.P. Chiao, D.S. Tsai, D.P. Wilkinson, Y.M. Chen, Y.S. Huang, Carbon supported Ru1−xFexSey electrocatalysts of pyrite structure for oxygen reduction reaction. Int. J. Hydrog. Energy 35(13), 6508–6517 (2010). https://doi.org/10.1016/j.ijhydene.2010.04.032
C. Dai, X. Tian, Y. Nie, C. Tian, C. Yang, Z. Zhou, Y. Li, X. Gao, Successful synthesis of 3D CoSe2 hollow microspheres with high surface roughness and its excellent performance in catalytic hydrogen evolution reaction. Chem. Eng. J. 321, 105–112 (2017). https://doi.org/10.1016/j.cej.2017.03.068
X. Chen, Y. Qiu, G. Liu, W. Zheng, W. Feng et al., Tuning electrochemical catalytic activity of defective 2D terrace MoSe2 heterogeneous catalyst: via cobalt doping. J. Mater. Chem. A 5(22), 11357–11363 (2017). https://doi.org/10.1039/C7TA02327H
W. Zhou, J. Lu, K. Zhou, L. Yang, Y. Ke, Z. Tang, S. Chen, CoSe2 nanoparticles embedded defective carbon nanotubes derived from MOFs as efficient electrocatalyst for hydrogen evolution reaction. Nano Energy 28, 143–150 (2016). https://doi.org/10.1016/j.nanoen.2016.08.040
X. Chang, J. Jian, G. Cai, R. Wu, J. Li, Three-dimensional FeSe2 microflowers assembled by nanosheets: synthesis, optical properties, and catalytic activity for the hydrogen evolution reaction. Electron. Mater. Lett. 12(2), 237–242 (2016). https://doi.org/10.1007/s13391-016-5377-x
M. Xiao, Z. Zhang, Y. Tian, Y. Miao, J. Wang, Co–Fe–Se ultrathin nanosheet-fabricated microspheres for efficient electrocatalysis of hydrogen evolution. J. Appl. Electrochem. 47(3), 361–367 (2017). https://doi.org/10.1007/s10800-016-1014-5
J. Du, Z. Zou, C. Liu, C. Xu, Hierarchical Fe-doped Ni3Se4 ultrathin nanosheets as an efficient electrocatalyst for oxygen evolution reaction. Nanoscale 10, 5163–5170 (2018). https://doi.org/10.1039/c8nr00426a
J. Yu, G. Cheng, W. Luo, 3D mesoporous rose-like nickel-iron selenide microspheres as advanced electrocatalysts for the oxygen evolution reaction. Nano Res. 11(4), 2149–2158 (2018). https://doi.org/10.1007/s12274-017-1832-8
R. Bose, V.R. Jothi, D.B. Velusamy, P. Arunkumar, S.C. Yi, A highly effective, stable oxygen evolution catalyst derived from transition metal selenides and phosphides. Part. Part. Syst. Charact. 35(8), 1800135 (2018). https://doi.org/10.1002/ppsc.201800135
Y. Hou, M.R. Lohe, J. Zhang, S. Liu, X. Zhuang, X. Feng, Vertically oriented cobalt selenide/NiFe layered-double-hydroxide nanosheets supported on exfoliated graphene foil: an efficient 3D electrode for overall water splitting. Energy Environ. Sci. 9(2), 478–483 (2016). https://doi.org/10.1039/C5EE03440J
X. Zhang, M. Zhen, J. Bai, S. Jin, L. Liu, Efficient NiSe–Ni3Se2/graphene electrocatalyst in dye-sensitized solar cells: the role of hollow hybrid nanostructure. ACS Appl. Mater. Interfaces 8(27), 17187–17193 (2016). https://doi.org/10.1021/acsami.6b02350
K. Xu, H. Ding, K. Jia, X. Lu, P. Chen et al., Solution–liquid–solid synthesis of hexagonal nickel selenide nanowire arrays with a nonmetal catalyst. Angew. Chem. Int. Ed. 55(5), 1710–1713 (2016). https://doi.org/10.1002/anie.201508704
Y.J. Kim, K. Yuan, B.R. Ellis, U. Becker, Redox reactions of selenium as catalyzed by magnetite: lessons learned from using electrochemistry and spectroscopic methods. Geochim. Cosmochim. Acta 199, 304–323 (2017). https://doi.org/10.1016/j.gca.2016.10.039
F. Qiao, Z. Wang, K. Xu, S. Ai, Double enzymatic cascade reactions within FeSe–Pt@SiO2 nanospheres: synthesis and application toward colorimetric biosensing of H2O2 and glucose. Analyst 140(19), 6684–6691 (2015). https://doi.org/10.1039/C5AN01268F
L. Shao, X. Qian, H. Li, C. Xu, L. Hou, Shape-controllable syntheses of ternary Ni–Co–Se alloy hollow microspheres as highly efficient catalytic materials for dye-sensitized solar cells. Chem. Eng. J. 315, 562–572 (2017). https://doi.org/10.1016/j.cej.2017.01.055
E. Reisner, J.C. Fontecilla-Camps, F.A. Armstrong, Catalytic electrochemistry of a [NiFeSe]-hydrogenase on TiO2 and demonstration of its suitability for visible-light driven H2 production. Chem. Commun. 550–552 (2009). https://doi.org/10.1039/B817371K
C. Wombwell, E. Reisner, Synthetic active site model of the [NiFeSe] hydrogenase. Chem. A Eur. J. 21(22), 8096–8104 (2015). https://doi.org/10.1002/chem.201500311
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). https://doi.org/10.1021/cr1002326
F.E. Osterloh, Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42(6), 2294–2320 (2013). https://doi.org/10.1039/C2CS35266D
L. An, Y. Li, M. Luo, J. Yin, Y.Q. Zhao et al., Atomic-level coupled interfaces and lattice distortion on CuS/NiS2 nanocrystals boost oxygen catalysis for flexible Zn-air batteries. Adv. Funct. Mater. 27(42), 1–9 (2017). https://doi.org/10.1002/adfm.201703779
X. Chen, B. Liu, C. Zhong, Z. Liu, J. Liu et al., Ultrathin Co3O4 layers with large contact area on carbon fibers as high-performance electrode for flexible zinc–air battery integrated with flexible display. Adv. Energy Mater. 7(18), 1–11 (2017). https://doi.org/10.1002/aenm.201700779
Y. Liu, H. Cheng, M. Lyu, S. Fan, Q. Liu et al., Low overpotential in vacancies-rich ultrathin CoSe2 nanosheets for water oxidation. J. Am. Chem. Soc. 136, 15670–15675 (2014). https://doi.org/10.1021/ja5085157
A. Sivanantham, S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Appl. Catal. B Environ. 203, 485–493 (2017). https://doi.org/10.1016/j.apcatb.2016.10.050
Z. Zhuang, Q. Peng, J. Zhuang, X. Wang, Y. Li, Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chem. A Eur. J. 12(1), 211–217 (2006). https://doi.org/10.1002/chem.200500724
B. Anugop, S. Prasanth, D. Rithesh Raj, T.V. Vineeshkumar, S. Pranitha, V.P. Mahadevan Pillai, C. Sudarsanakumar, Role of Mn2+ concentration in the linear and nonlinear optical properties of Ni1−xMnxSe nanoparticles. Opt. Mater. 62, 297–305 (2016). https://doi.org/10.1016/j.optmat.2016.10.017
T. Wang, X. Li, Y. Jiang, Y. Zhou, L. Jia, C. Wang, Reduced graphene oxide-polyimide/carbon nanotube film decorated with NiSe nanoparticles for electrocatalytic hydrogen evolution reactions. Electrochim. Acta 243, 291–298 (2017). https://doi.org/10.1016/j.electacta.2017.05.084
X. Zheng, X. Han, H. Liu, J. Chen, D. Fu, J. Wang, C. Zhong, Y. Deng, W. Hu, Controllable synthesis of NixSe (0.5 ≤ x ≤ 1) nanocrystals for efficient rechargeable zinc–air batteries and water splitting. ACS Appl. Mater. Interfaces 10(16), 13675–13684 (2018). https://doi.org/10.1021/acsami.8b01651
J. Zheng, Q. Gong, X. Cheng, S. Gong, W. Yang, L. Huang, Microwave synthesis of carbon-supported cobalt nickel selenide ternary catalyst toward the oxygen reduction reaction. ChemElectroChem 5(14), 2019–2028 (2018). https://doi.org/10.1002/celc.201800190