Inorganic Interface Engineering for Stabilizing Zn Metal Anode
Corresponding Author: Qingli Zou
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 120
Abstract
Aqueous zinc (Zn) metal batteries (AZMBs) have distinct advantages in terms of safety and cost-effectiveness. However, the industrial application of AZMBs is currently not ready due to challenges of Zn dendrite growth and the side reactions such as hydrogen evolution reaction (HER) on the Zn anodes. In this review, we discuss how inorganic interfaces impact the Zn2+ plating/stripping reaction and overall cell performance. The discussion is categorized based on the types of inorganic materials, including metal oxides, other metal compounds, and inorganic salts. The proposed protection mechanisms for Zn metal anodes are highlighted, with a focus on the dendrite and HER inhibition mechanisms facilitated by various inorganic materials. We also provide our perspective on the rational design of advanced interfaces to enable highly reversible Zn2+ plating/stripping reactions toward highly stable AZMBs, paving the way for their practical implementation in energy storage.
Highlights:
1 A broad overview of the inorganic interface engineering strategies, along with deep analysis of the mechanisms on regulating the Zn2+ plating/stripping process.
2 Identify the limitations of interface engineering strategies and provide our perspective on the future research, highlighting more comprehensive analysis of the interfaces.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
- Y. Dai, R. Lu, C. Zhang, J. Li, Y. Yuan et al., Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 7(7), 776–784 (2024). https://doi.org/10.1038/s41929-024-01169-6
- S. Yang, H. Du, Y. Li, X. Wu, B. Xiao et al., Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 8(6), 1531–1552 (2023). https://doi.org/10.1016/j.gee.2022.08.009
- Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
- Z. Liu, Z. Chen, S. Lei, B. Lu, S. Liang et al., Validating operating stability and biocompatibility toward safer zinc-based batteries. Adv. Mater. 36(15), 2308836 (2024). https://doi.org/10.1002/adma.202308836
- X. Zhang, L. Zhang, X. Jia, W. Song, Y. Liu, Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nano-Micro Lett. 16(1), 75 (2024). https://doi.org/10.1007/s40820-023-01304-1
- X. Ji, L.F. Nazar, Best practices for zinc metal batteries. Nat. Sustain. 7(2), 98–99 (2024). https://doi.org/10.1038/s41893-023-01257-8
- L. Wang, B. Zhang, W. Zhou, H. Li, H. Dong et al., Cation-in-mesopore complex for 20 ah-level aqueous battery. Angew. Chem. Int. Ed. 64(22), e202501010 (2025). https://doi.org/10.1002/anie.202501010
- X. Fu, G. Li, X. Wang, J. Wang, W. Yu et al., The etching strategy of zinc anode to enable high performance zinc-ion batteries. J. Energy Chem. 88, 125–143 (2024). https://doi.org/10.1016/j.jechem.2023.08.052
- H.J. Fan, C. Zhi, J. Zhou, D. Chao, Editorial: aqueous rechargeable batteries: current status and what’s next. Next Energy 4, 100129 (2024). https://doi.org/10.1016/j.nxener.2024.100129
- Q. Wen, H. Fu, R.-D. Cui, H.-Z. Chen, R.-H. Ji et al., Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. J. Energy Chem. 83, 287–303 (2023). https://doi.org/10.1016/j.jechem.2023.03.059
- W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu et al., Design strategies toward high-performance Zn metal anode. Small Methods 8(6), 2201572 (2024). https://doi.org/10.1002/smtd.202201572
- F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO(3) for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35(23), e2208764 (2023). https://doi.org/10.1002/adma.202208764
- J. Li, L. Zhu, H. Xie, W. Zheng, K. Zhang, Graphitic carbon nitride assisted PVDF-HFP based solid electrolyte to realize high performance solid-state lithium metal batteries. Colloids Surf. A, Physicochem. Eng. Aspects 657, 130520 (2023). https://doi.org/10.1016/j.colsurfa.2022.130520
- C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
- B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
- Y. Zhang, X. Zheng, N. Wang, W.-H. Lai, Y. Liu et al., Anode optimization strategies for aqueous zinc-ion batteries. Chem. Sci. 13(48), 14246–14263 (2022). https://doi.org/10.1039/d2sc04945g
- X. Yang, X. Tang, J. Lei, X. Zeng, J. Wen et al., A fluorine-free organic/inorganic interphase for highly reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 64(26), e202504003 (2025). https://doi.org/10.1002/anie.202504003
- X. Geng, X. Hou, X. He, H.J. Fan, Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv. Energy Mater. 14(12), 2304094 (2024). https://doi.org/10.1002/aenm.202304094
- H.-X. Zhang, P.-F. Wang, C.-G. Yao, S.-P. Chen, K.-D. Cai et al., Recent advances of ferro-/ piezoelectric polarization effect for dendrite-free metal anodes. Rare Met. 42(8), 2516–2544 (2023). https://doi.org/10.1007/s12598-023-02319-8
- W. Hu, J. Ju, N. Deng, M. Liu, W. Liu et al., Recent progress in tackling Zn anode challenges for Zn ion batteries. J. Mater. Chem. A 9(46), 25750–25772 (2021). https://doi.org/10.1039/d1ta08184e
- H. He, H. Qin, J. Wu, X. Chen, R. Huang et al., Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater. 43, 317–336 (2021). https://doi.org/10.1016/j.ensm.2021.09.012
- C. Li, L. Wang, J. Zhang, D. Zhang, J. Du et al., Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater. 44, 104–135 (2022). https://doi.org/10.1016/j.ensm.2021.10.020
- R. Qin, Y. Wang, L. Yao, L. Yang, Q. Zhao et al., Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy 98, 107333 (2022). https://doi.org/10.1016/j.nanoen.2022.107333
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/d2ee02931f
- Q. Zou, Z. Liang, W. Wang, D. Dong, Y.-C. Lu, A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes. Energy Environ. Sci. 16(12), 6026–6034 (2023). https://doi.org/10.1039/d3ee03246a
- S.H. Baek, J.S. Byun, H.J. Kim, S.J. Lee, J.M. Park et al., Polyoxometalate–polymer hybrid artificial layers for ultrastable and reversible Zn metal anodes. Chem. Eng. J. 468, 143644 (2023). https://doi.org/10.1016/j.cej.2023.143644
- Y. Zhu, Z. Huang, M. Zheng, H. Chen, S. Qian et al., Scalable construction of multifunctional protection layer with low-cost water glass for robust and high-performance zinc anode. Adv. Funct. Mater. 34(3), 2306085 (2024). https://doi.org/10.1002/adfm.202306085
- H. Qin, W. Kuang, D. Huang, X. Zhang, J. Liu et al., Achieving high-rate and high-capacity Zn metal anodes via a three-in-one carbon protective layer. J. Mater. Chem. A 10(34), 17440–17451 (2022). https://doi.org/10.1039/D2TA04875B
- W. Xu, X. Liao, W. Xu, K. Zhao, G. Yao et al., Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv. Energy Mater. 13(14), 2300283 (2023). https://doi.org/10.1002/aenm.202300283
- C. Fan, W. Meng, D. Li, L. Jiang, Stratified adsorption strategy facilitates highly stable dendrite free zinc metal anode. Energy Storage Mater. 56, 468–477 (2023). https://doi.org/10.1016/j.ensm.2023.01.037
- Q. Ren, X. Tang, K. He, C. Zhang, W. Wang et al., Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv. Funct. Mater. 34(13), 2312220 (2024). https://doi.org/10.1002/adfm.202312220
- H. Kim, J.C. Hyun, D.-H. Kim, J.H. Kwak, J.B. Lee et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv. Mater. 35(12), 2209128 (2023). https://doi.org/10.1002/adma.202209128
- X. Cai, W. Tian, Z. Zhang, Y. Sun, L. Yang et al., Polymer coating with balanced coordination strength and ion conductivity for dendrite-free zinc anode. Adv. Mater. 36(3), 2307727 (2024). https://doi.org/10.1002/adma.202307727
- Y. Wang, Z. Deng, B. Luo, G. Duan, S. Zheng et al., Highly reversible Zn metal anodes realized by synergistically enhancing ion migration kinetics and regulating surface energy. Adv. Funct. Mater. 32(52), 2209028 (2022). https://doi.org/10.1002/adfm.202209028
- Y. Li, Q. Zhu, M. Xu, B. Zang, Y. Wang et al., Cu-modified Ti3C2Cl2 MXene with zincophilic and hydrophobic characteristics as a protective coating for highly stable Zn anode. Adv. Funct. Mater. 33(18), 2213416 (2023). https://doi.org/10.1002/adfm.202213416
- X. Liu, Q. Ma, M. Shi, Q. Han, C. Liu, A biomimetic polymer-clay nanocomposite coating for dendrite-free Zn metal anode. Chem. Eng. J. 456, 141016 (2023). https://doi.org/10.1016/j.cej.2022.141016
- D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), e2001894 (2020). https://doi.org/10.1002/adma.202001894
- X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
- Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu et al., 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A 8(23), 11719–11727 (2020). https://doi.org/10.1039/d0ta02791j
- Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
- Y. Sasaki, K. Yoshida, T. Kawasaki, A. Kuwabara, Y. Ukyo et al., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power Sources 481, 228831 (2021). https://doi.org/10.1016/j.jpowsour.2020.228831
- X. Wang, F. Wang, L. Wang, M. Li, Y. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28(24), 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
- S. Wang, C. Yuan, N. Chang, Y. Song, H. Zhang et al., Act in contravention: a non-planar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 66(9), 889–896 (2021). https://doi.org/10.1016/j.scib.2020.12.029
- C. Zhu, P. Li, G. Xu, H. Cheng, G. Gao, Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev. 485, 215142 (2023). https://doi.org/10.1016/j.ccr.2023.215142
- X. Liu, G. Wang, Z. Lv, A. Du, S. Dong et al., A perspective on uniform plating behavior of Mg metal anode: diffusion limited theory versus nucleation theory. Adv. Mater. 36(9), 2306395 (2024). https://doi.org/10.1002/adma.202306395
- J. Zhou, L. Zhang, M. Peng, X. Zhou, Y. Cao et al., Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries. Adv. Mater. 34(21), 2200131 (2022). https://doi.org/10.1002/adma.202200131
- H. Glatz, E. Tervoort, D. Kundu, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(3), 3522–3530 (2020). https://doi.org/10.1021/acsami.9b16125
- L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
- H. Yang, Y. Yang, W. Yang, G. Wu, R. Zhu, Correlating hydrogen evolution and zinc deposition/dissolution kinetics to the cyclability of metallic zinc electrodes. Energy Environ. Sci. 17(5), 1975–1983 (2024). https://doi.org/10.1039/D3EE04515C
- J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006
- S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim et al., Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power Sources 227, 177–184 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.046
- Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8(1), 372–380 (2023). https://doi.org/10.1021/acsenergylett.2c02359
- X. Zhang, J.-P. Hu, N. Fu, W.-B. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022). https://doi.org/10.1002/inf2.12306
- C. Fan, W. Meng, J. Ye, Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries. J. Energy Chem. 93, 79–110 (2024). https://doi.org/10.1016/j.jechem.2023.12.054
- W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
- Y. Yu, W. Xu, X. Liu, X. Lu, Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: recent progress and future perspectives. Adv. Sustain. Syst. 4(9), 2000082 (2020). https://doi.org/10.1002/adsu.202000082
- M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
- S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu et al., Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 31(46), 2104361 (2021). https://doi.org/10.1002/adfm.202104361
- T.-B. Song, Q.-L. Ma, X.-R. Zhang, J.-W. Ni, T.-L. He et al., Zn anode surface engineering for stable zinc-ion batteries: carbon dots incorporated mesoporous TiO2 as a coating layer. Chem. Eng. J. 471, 144735 (2023). https://doi.org/10.1016/j.cej.2023.144735
- J.Y. Kim, G. Liu, G.Y. Shim, H. Kim, J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30(36), 2004210 (2020). https://doi.org/10.1002/adfm.202004210
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
- H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
- M. Zhou, S. Guo, G. Fang, H. Sun, X. Cao et al., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549–556 (2021). https://doi.org/10.1016/j.jechem.2020.07.021
- S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb2O5 layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40–51 (2022). https://doi.org/10.1016/j.ensm.2022.07.036
- P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
- P. Xiao, L. Xue, Y. Guo, L. Hu, C. Cui et al., On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Sci. Bull. 66(6), 545–552 (2021). https://doi.org/10.1016/j.scib.2020.10.017
- Y. Yang, C. Liu, Z. Lv, H. Yang, X. Cheng et al., Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Storage Mater. 41, 230–239 (2021). https://doi.org/10.1016/j.ensm.2021.06.002
- L. Gao, L. Qin, B. Wang, M. Bao, Y. Cao et al., Highly-efficient and robust Zn anodes enabled by sub-1-µm zincophilic CrN coatings. Small 20(16), 2308818 (2024). https://doi.org/10.1002/smll.202308818
- J. Zheng, Z. Cao, F. Ming, H. Liang, Z. Qi et al., Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 7(1), 197–203 (2022). https://doi.org/10.1021/acsenergylett.1c02299
- G. Jiang, R. Xue, L. He, J. Zhu, N. Qiu et al., Tailoring zincophilicity via amorphous Se-rich selenides coating for stable Zn anode. Chem. Eng. J. 472, 145016 (2023). https://doi.org/10.1016/j.cej.2023.145016
- X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), e2105951 (2021). https://doi.org/10.1002/adma.202105951
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
- C. Zhang, J. Zhang, Y. Fu, J. Liu, S. Wang et al., Facile synthesis of MoSe2/carbon nanotubes (CNTs) composite with improved electrochemical performance for lithium/sodium storage. Ionics 29(3), 941–950 (2023). https://doi.org/10.1007/s11581-022-04865-0
- L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31(26), 2100186 (2021). https://doi.org/10.1002/adfm.202100186
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- H. Liu, Z. Xin, B. Cao, B. Zhang, H.J. Fan et al., Versatile MXenes for aqueous zinc batteries. Adv. Sci. 11(8), 2305806 (2024). https://doi.org/10.1002/advs.202305806
- J. Chen, Y. Shi, S. Zheng, W. Zhao, R. Li et al., Blocking interfacial proton transport via self-assembled monolayer for hydrogen evolution-free zinc batteries. Angew. Chem. Int. Ed. 63(26), e202404825 (2024). https://doi.org/10.1002/anie.202404825
- H. Luo, J. Jiang, M. Arramel, K.S. Li et al., Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries. J. Colloid Interface Sci. 654, 289–299 (2024). https://doi.org/10.1016/j.jcis.2023.10.029
- X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 50, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
- Y. Shen, Y. Liu, K. Sun, T. Gu, G. Wang et al., Zincophilic Ti3C2Cl2 MXene and anti-corrosive Cu NPs for synergistically regulated deposition of dendrite-free Zn metal anode. J. Mater. Sci. Technol. 169, 137–147 (2024). https://doi.org/10.1016/j.jmst.2023.06.017
- H. Liu, Z. Xu, B. Cao, Z. Xin, H. Lai et al., Marangoni-driven self-assembly MXene as functional membrane enables dendrite-free and flexible zinc–iodine pouch cells. Adv. Energy Mater. 14(26), 2400318 (2024). https://doi.org/10.1002/aenm.202400318
- H.J. Kim, S. Kim, K. Heo, J.-H. Lim, H. Yashiro et al., Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery. Adv. Energy Mater. 13(2), 2203189 (2023). https://doi.org/10.1002/aenm.202203189
- X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
- X. Du, Y. Huang, Z. Feng, X. Han, J. Wang et al., Encapsulating yolk-shelled Si@Co9S8 ps in carbon fibers to construct a free-standing anode for lithium-ion batteries. Appl. Surf. Sci. 610, 155491 (2023). https://doi.org/10.1016/j.apsusc.2022.155491
- C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- H. Zhao, Z.-Y. Yuan, Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 12(15), 3797–3810 (2020). https://doi.org/10.1002/cctc.202000360
- S.-J. Yang, L.-L. Zhao, Z.-X. Li, P. Wang, Z.-L. Liu et al., Achieving stable Zn anode via artificial interfacial layers protection strategies toward aqueous Zn-ion batteries. Coord. Chem. Rev. 517, 216044 (2024). https://doi.org/10.1016/j.ccr.2024.216044
- T. Chen, B. Liu, M. Zheng, Y. Luo, Suspensions based on LiFePO4/carbon nanotubes composites with three-dimensional conductive network for lithium-ion semi-solid flow batteries. J. Energy Storage 57, 106300 (2023). https://doi.org/10.1016/j.est.2022.106300
- Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62(5), e202215324 (2023). https://doi.org/10.1002/anie.202215324
- S. Wang, Z. Yang, B. Chen, H. Zhou, S. Wan et al., A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Mater. 47, 491–499 (2022). https://doi.org/10.1016/j.ensm.2022.02.024
- Y. Shang, N. Chen, Y. Li, S. Chen, J. Lai et al., An “ether-In-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv. Mater. 32(40), 2004017 (2020). https://doi.org/10.1002/adma.202004017
- P. Liu, L. Miao, Z. Sun, X. Chen, Y. Si et al., Inorganic–organic hybrid multifunctional solid electrolyte interphase layers for dendrite-free sodium metal anodes. Angew. Chem. Int. Ed. 62(47), e202312413 (2023). https://doi.org/10.1002/anie.202312413
- Z. Zheng, X. Zhong, Q. Zhang, M. Zhang, L. Dai et al., An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 15, 753 (2024). https://doi.org/10.1038/s41467-024-44893-0
- Y. Song, Y. Liu, S. Luo, Y. Yang, F. Chen et al., Blocking the dendrite-growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc-ion batteries. Adv. Funct. Mater. 34(25), 2316070 (2024). https://doi.org/10.1002/adfm.202316070
- B. Wei, J. Zheng, X. Abhishek, J.W. Liu et al., Design principle of insulating surface protective layers for metallic Zn anodes: a case study of ZrO2. Adv. Energy Mater. 14(24), 2401018 (2024). https://doi.org/10.1002/aenm.202401018
- N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
- Z. Shi, M. Yang, Y. Ren, Y. Wang, J. Guo et al., Highly reversible Zn anodes achieved by enhancing ion-transport kinetics and modulating Zn (002) deposition. ACS Nano 17(21), 21893–21904 (2023). https://doi.org/10.1021/acsnano.3c08197
References
G. Zampardi, F. La Mantia, Open challenges and good experimental practices in the research field of aqueous Zn-ion batteries. Nat. Commun. 13(1), 687 (2022). https://doi.org/10.1038/s41467-022-28381-x
Y. Dai, R. Lu, C. Zhang, J. Li, Y. Yuan et al., Zn2+-mediated catalysis for fast-charging aqueous Zn-ion batteries. Nat. Catal. 7(7), 776–784 (2024). https://doi.org/10.1038/s41929-024-01169-6
S. Yang, H. Du, Y. Li, X. Wu, B. Xiao et al., Advances in the structure design of substrate materials for zinc anode of aqueous zinc ion batteries. Green Energy Environ. 8(6), 1531–1552 (2023). https://doi.org/10.1016/j.gee.2022.08.009
Y. Zhu, G. Liang, X. Cui, X. Liu, H. Zhong et al., Engineering hosts for Zn anodes in aqueous Zn-ion batteries. Energy Environ. Sci. 17(2), 369–385 (2024). https://doi.org/10.1039/d3ee03584k
Z. Liu, Z. Chen, S. Lei, B. Lu, S. Liang et al., Validating operating stability and biocompatibility toward safer zinc-based batteries. Adv. Mater. 36(15), 2308836 (2024). https://doi.org/10.1002/adma.202308836
X. Zhang, L. Zhang, X. Jia, W. Song, Y. Liu, Design strategies for aqueous zinc metal batteries with high zinc utilization: from metal anodes to anode-free structures. Nano-Micro Lett. 16(1), 75 (2024). https://doi.org/10.1007/s40820-023-01304-1
X. Ji, L.F. Nazar, Best practices for zinc metal batteries. Nat. Sustain. 7(2), 98–99 (2024). https://doi.org/10.1038/s41893-023-01257-8
L. Wang, B. Zhang, W. Zhou, H. Li, H. Dong et al., Cation-in-mesopore complex for 20 ah-level aqueous battery. Angew. Chem. Int. Ed. 64(22), e202501010 (2025). https://doi.org/10.1002/anie.202501010
X. Fu, G. Li, X. Wang, J. Wang, W. Yu et al., The etching strategy of zinc anode to enable high performance zinc-ion batteries. J. Energy Chem. 88, 125–143 (2024). https://doi.org/10.1016/j.jechem.2023.08.052
H.J. Fan, C. Zhi, J. Zhou, D. Chao, Editorial: aqueous rechargeable batteries: current status and what’s next. Next Energy 4, 100129 (2024). https://doi.org/10.1016/j.nxener.2024.100129
Q. Wen, H. Fu, R.-D. Cui, H.-Z. Chen, R.-H. Ji et al., Recent advances in interfacial modification of zinc anode for aqueous rechargeable zinc ion batteries. J. Energy Chem. 83, 287–303 (2023). https://doi.org/10.1016/j.jechem.2023.03.059
W. Nie, H. Cheng, Q. Sun, S. Liang, X. Lu et al., Design strategies toward high-performance Zn metal anode. Small Methods 8(6), 2201572 (2024). https://doi.org/10.1002/smtd.202201572
F. Ling, L. Wang, F. Liu, M. Ma, S. Zhang et al., Multi-scale structure engineering of ZnSnO(3) for ultra-long-life aqueous zinc-metal batteries. Adv. Mater. 35(23), e2208764 (2023). https://doi.org/10.1002/adma.202208764
J. Li, L. Zhu, H. Xie, W. Zheng, K. Zhang, Graphitic carbon nitride assisted PVDF-HFP based solid electrolyte to realize high performance solid-state lithium metal batteries. Colloids Surf. A, Physicochem. Eng. Aspects 657, 130520 (2023). https://doi.org/10.1016/j.colsurfa.2022.130520
C. Li, X. Xie, H. Liu, P. Wang, C. Deng et al., Integrated ‘all-in-one’ strategy to stabilize zinc anodes for high-performance zinc-ion batteries. Natl. Sci. Rev. 9(3), nwab177 (2022). https://doi.org/10.1093/nsr/nwab177
B. Tang, L. Shan, S. Liang, J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 12(11), 3288–3304 (2019). https://doi.org/10.1039/c9ee02526j
Y. Zhang, X. Zheng, N. Wang, W.-H. Lai, Y. Liu et al., Anode optimization strategies for aqueous zinc-ion batteries. Chem. Sci. 13(48), 14246–14263 (2022). https://doi.org/10.1039/d2sc04945g
X. Yang, X. Tang, J. Lei, X. Zeng, J. Wen et al., A fluorine-free organic/inorganic interphase for highly reversible aqueous zinc batteries. Angew. Chem. Int. Ed. 64(26), e202504003 (2025). https://doi.org/10.1002/anie.202504003
X. Geng, X. Hou, X. He, H.J. Fan, Challenges and strategies on interphasial regulation for aqueous rechargeable batteries. Adv. Energy Mater. 14(12), 2304094 (2024). https://doi.org/10.1002/aenm.202304094
H.-X. Zhang, P.-F. Wang, C.-G. Yao, S.-P. Chen, K.-D. Cai et al., Recent advances of ferro-/ piezoelectric polarization effect for dendrite-free metal anodes. Rare Met. 42(8), 2516–2544 (2023). https://doi.org/10.1007/s12598-023-02319-8
W. Hu, J. Ju, N. Deng, M. Liu, W. Liu et al., Recent progress in tackling Zn anode challenges for Zn ion batteries. J. Mater. Chem. A 9(46), 25750–25772 (2021). https://doi.org/10.1039/d1ta08184e
H. He, H. Qin, J. Wu, X. Chen, R. Huang et al., Engineering interfacial layers to enable Zn metal anodes for aqueous zinc-ion batteries. Energy Storage Mater. 43, 317–336 (2021). https://doi.org/10.1016/j.ensm.2021.09.012
C. Li, L. Wang, J. Zhang, D. Zhang, J. Du et al., Roadmap on the protective strategies of zinc anodes in aqueous electrolyte. Energy Storage Mater. 44, 104–135 (2022). https://doi.org/10.1016/j.ensm.2021.10.020
R. Qin, Y. Wang, L. Yao, L. Yang, Q. Zhao et al., Progress in interface structure and modification of zinc anode for aqueous batteries. Nano Energy 98, 107333 (2022). https://doi.org/10.1016/j.nanoen.2022.107333
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16(1), 275–284 (2023). https://doi.org/10.1039/d2ee02931f
Q. Zou, Z. Liang, W. Wang, D. Dong, Y.-C. Lu, A nuclei-rich strategy for highly reversible dendrite-free zinc metal anodes. Energy Environ. Sci. 16(12), 6026–6034 (2023). https://doi.org/10.1039/d3ee03246a
S.H. Baek, J.S. Byun, H.J. Kim, S.J. Lee, J.M. Park et al., Polyoxometalate–polymer hybrid artificial layers for ultrastable and reversible Zn metal anodes. Chem. Eng. J. 468, 143644 (2023). https://doi.org/10.1016/j.cej.2023.143644
Y. Zhu, Z. Huang, M. Zheng, H. Chen, S. Qian et al., Scalable construction of multifunctional protection layer with low-cost water glass for robust and high-performance zinc anode. Adv. Funct. Mater. 34(3), 2306085 (2024). https://doi.org/10.1002/adfm.202306085
H. Qin, W. Kuang, D. Huang, X. Zhang, J. Liu et al., Achieving high-rate and high-capacity Zn metal anodes via a three-in-one carbon protective layer. J. Mater. Chem. A 10(34), 17440–17451 (2022). https://doi.org/10.1039/D2TA04875B
W. Xu, X. Liao, W. Xu, K. Zhao, G. Yao et al., Ion selective and water resistant cellulose nanofiber/MXene membrane enabled cycling Zn anode at high currents. Adv. Energy Mater. 13(14), 2300283 (2023). https://doi.org/10.1002/aenm.202300283
C. Fan, W. Meng, D. Li, L. Jiang, Stratified adsorption strategy facilitates highly stable dendrite free zinc metal anode. Energy Storage Mater. 56, 468–477 (2023). https://doi.org/10.1016/j.ensm.2023.01.037
Q. Ren, X. Tang, K. He, C. Zhang, W. Wang et al., Long-cycling zinc metal anodes enabled by an in situ constructed ZnO coating layer. Adv. Funct. Mater. 34(13), 2312220 (2024). https://doi.org/10.1002/adfm.202312220
H. Kim, J.C. Hyun, D.-H. Kim, J.H. Kwak, J.B. Lee et al., Revisiting lithium- and sodium-ion storage in hard carbon anodes. Adv. Mater. 35(12), 2209128 (2023). https://doi.org/10.1002/adma.202209128
X. Cai, W. Tian, Z. Zhang, Y. Sun, L. Yang et al., Polymer coating with balanced coordination strength and ion conductivity for dendrite-free zinc anode. Adv. Mater. 36(3), 2307727 (2024). https://doi.org/10.1002/adma.202307727
Y. Wang, Z. Deng, B. Luo, G. Duan, S. Zheng et al., Highly reversible Zn metal anodes realized by synergistically enhancing ion migration kinetics and regulating surface energy. Adv. Funct. Mater. 32(52), 2209028 (2022). https://doi.org/10.1002/adfm.202209028
Y. Li, Q. Zhu, M. Xu, B. Zang, Y. Wang et al., Cu-modified Ti3C2Cl2 MXene with zincophilic and hydrophobic characteristics as a protective coating for highly stable Zn anode. Adv. Funct. Mater. 33(18), 2213416 (2023). https://doi.org/10.1002/adfm.202213416
X. Liu, Q. Ma, M. Shi, Q. Han, C. Liu, A biomimetic polymer-clay nanocomposite coating for dendrite-free Zn metal anode. Chem. Eng. J. 456, 141016 (2023). https://doi.org/10.1016/j.cej.2022.141016
D. Chao, C. Ye, F. Xie, W. Zhou, Q. Zhang et al., Atomic engineering catalyzed MnO2 electrolysis kinetics for a hybrid aqueous battery with high power and energy density. Adv. Mater. 32(25), e2001894 (2020). https://doi.org/10.1002/adma.202001894
X. Yu, Z. Li, X. Wu, H. Zhang, Q. Zhao et al., Ten concerns of Zn metal anode for rechargeable aqueous zinc batteries. Joule 7(6), 1145–1175 (2023). https://doi.org/10.1016/j.joule.2023.05.004
Y. Zhou, X. Wang, X. Shen, Y. Shi, C. Zhu et al., 3D confined zinc plating/stripping with high discharge depth and excellent high-rate reversibility. J. Mater. Chem. A 8(23), 11719–11727 (2020). https://doi.org/10.1039/d0ta02791j
Z. Zhao, J. Zhao, Z. Hu, J. Li, J. Li et al., Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 12(6), 1938–1949 (2019). https://doi.org/10.1039/c9ee00596j
Y. Sasaki, K. Yoshida, T. Kawasaki, A. Kuwabara, Y. Ukyo et al., In situ electron microscopy analysis of electrochemical Zn deposition onto an electrode. J. Power Sources 481, 228831 (2021). https://doi.org/10.1016/j.jpowsour.2020.228831
X. Wang, F. Wang, L. Wang, M. Li, Y. Wang et al., An aqueous rechargeable Zn//Co3O4 battery with high energy density and good cycling behavior. Adv. Mater. 28(24), 4904–4911 (2016). https://doi.org/10.1002/adma.201505370
S. Wang, C. Yuan, N. Chang, Y. Song, H. Zhang et al., Act in contravention: a non-planar coupled electrode design utilizing “tip effect” for ultra-high areal capacity, long cycle life zinc-based batteries. Sci. Bull. 66(9), 889–896 (2021). https://doi.org/10.1016/j.scib.2020.12.029
C. Zhu, P. Li, G. Xu, H. Cheng, G. Gao, Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord. Chem. Rev. 485, 215142 (2023). https://doi.org/10.1016/j.ccr.2023.215142
X. Liu, G. Wang, Z. Lv, A. Du, S. Dong et al., A perspective on uniform plating behavior of Mg metal anode: diffusion limited theory versus nucleation theory. Adv. Mater. 36(9), 2306395 (2024). https://doi.org/10.1002/adma.202306395
J. Zhou, L. Zhang, M. Peng, X. Zhou, Y. Cao et al., Diminishing interfacial turbulence by colloid-polymer electrolyte to stabilize zinc ion flux for deep-cycling Zn metal batteries. Adv. Mater. 34(21), 2200131 (2022). https://doi.org/10.1002/adma.202200131
H. Glatz, E. Tervoort, D. Kundu, Unveiling critical insight into the Zn metal anode cyclability in mildly acidic aqueous electrolytes: implications for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12(3), 3522–3530 (2020). https://doi.org/10.1021/acsami.9b16125
L. Ma, M.A. Schroeder, O. Borodin, T.P. Pollard, M.S. Ding et al., Realizing high zinc reversibility in rechargeable batteries. Nat. Energy 5(10), 743–749 (2020). https://doi.org/10.1038/s41560-020-0674-x
H. Yang, Y. Yang, W. Yang, G. Wu, R. Zhu, Correlating hydrogen evolution and zinc deposition/dissolution kinetics to the cyclability of metallic zinc electrodes. Energy Environ. Sci. 17(5), 1975–1983 (2024). https://doi.org/10.1039/D3EE04515C
J. Chen, W. Zhao, J. Jiang, X. Zhao, S. Zheng et al., Challenges and perspectives of hydrogen evolution-free aqueous Zn-ion batteries. Energy Storage Mater. 59, 102767 (2023). https://doi.org/10.1016/j.ensm.2023.04.006
S.-M. Lee, Y.-J. Kim, S.-W. Eom, N.-S. Choi, K.-W. Kim et al., Improvement in self-discharge of Zn anode by applying surface modification for Zn–air batteries with high energy density. J. Power Sources 227, 177–184 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.046
Z. Huang, Z. Li, Y. Wang, J. Cong, X. Wu et al., Regulating Zn(002) deposition toward long cycle life for Zn metal batteries. ACS Energy Lett. 8(1), 372–380 (2023). https://doi.org/10.1021/acsenergylett.2c02359
X. Zhang, J.-P. Hu, N. Fu, W.-B. Zhou, B. Liu et al., Comprehensive review on zinc-ion battery anode: challenges and strategies. InfoMat 4(7), e12306 (2022). https://doi.org/10.1002/inf2.12306
C. Fan, W. Meng, J. Ye, Towards advanced zinc anodes by interfacial modification strategies for efficient aqueous zinc metal batteries. J. Energy Chem. 93, 79–110 (2024). https://doi.org/10.1016/j.jechem.2023.12.054
W. Lu, C. Zhang, H. Zhang, X. Li, Anode for zinc-based batteries: challenges, strategies, and prospects. ACS Energy Lett. 6(8), 2765–2785 (2021). https://doi.org/10.1021/acsenergylett.1c00939
Y. Yu, W. Xu, X. Liu, X. Lu, Challenges and strategies for constructing highly reversible zinc anodes in aqueous zinc-ion batteries: recent progress and future perspectives. Adv. Sustain. Syst. 4(9), 2000082 (2020). https://doi.org/10.1002/adsu.202000082
M. Li, Z. Li, X. Wang, J. Meng, X. Liu et al., Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ. Sci. 14(7), 3796–3839 (2021). https://doi.org/10.1039/d1ee00030f
S. Zhou, Y. Wang, H. Lu, Y. Zhang, C. Fu et al., Anti-corrosive and Zn-ion-regulating composite interlayer enabling long-life Zn metal anodes. Adv. Funct. Mater. 31(46), 2104361 (2021). https://doi.org/10.1002/adfm.202104361
T.-B. Song, Q.-L. Ma, X.-R. Zhang, J.-W. Ni, T.-L. He et al., Zn anode surface engineering for stable zinc-ion batteries: carbon dots incorporated mesoporous TiO2 as a coating layer. Chem. Eng. J. 471, 144735 (2023). https://doi.org/10.1016/j.cej.2023.144735
J.Y. Kim, G. Liu, G.Y. Shim, H. Kim, J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes. Adv. Funct. Mater. 30(36), 2004210 (2020). https://doi.org/10.1002/adfm.202004210
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13(2), 503–510 (2020). https://doi.org/10.1039/c9ee03545a
H. He, H. Tong, X. Song, X. Song, J. Liu, Highly stable Zn metal anodes enabled by atomic layer deposited Al2O3 coating for aqueous zinc-ion batteries. J. Mater. Chem. A 8(16), 7836–7846 (2020). https://doi.org/10.1039/d0ta00748j
M. Zhou, S. Guo, G. Fang, H. Sun, X. Cao et al., Suppressing by-product via stratified adsorption effect to assist highly reversible zinc anode in aqueous electrolyte. J. Energy Chem. 55, 549–556 (2021). https://doi.org/10.1016/j.jechem.2020.07.021
S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb2O5 layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40–51 (2022). https://doi.org/10.1016/j.ensm.2022.07.036
P. Liang, J. Yi, X. Liu, K. Wu, Z. Wang et al., Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 30(13), 1908528 (2020). https://doi.org/10.1002/adfm.201908528
P. Xiao, L. Xue, Y. Guo, L. Hu, C. Cui et al., On-site building of a Zn2+-conductive interfacial layer via short-circuit energization for stable Zn anode. Sci. Bull. 66(6), 545–552 (2021). https://doi.org/10.1016/j.scib.2020.10.017
Y. Yang, C. Liu, Z. Lv, H. Yang, X. Cheng et al., Redistributing Zn-ion flux by interlayer ion channels in Mg-Al layered double hydroxide-based artificial solid electrolyte interface for ultra-stable and dendrite-free Zn metal anodes. Energy Storage Mater. 41, 230–239 (2021). https://doi.org/10.1016/j.ensm.2021.06.002
L. Gao, L. Qin, B. Wang, M. Bao, Y. Cao et al., Highly-efficient and robust Zn anodes enabled by sub-1-µm zincophilic CrN coatings. Small 20(16), 2308818 (2024). https://doi.org/10.1002/smll.202308818
J. Zheng, Z. Cao, F. Ming, H. Liang, Z. Qi et al., Preferred orientation of TiN coatings enables stable zinc anodes. ACS Energy Lett. 7(1), 197–203 (2022). https://doi.org/10.1021/acsenergylett.1c02299
G. Jiang, R. Xue, L. He, J. Zhu, N. Qiu et al., Tailoring zincophilicity via amorphous Se-rich selenides coating for stable Zn anode. Chem. Eng. J. 472, 145016 (2023). https://doi.org/10.1016/j.cej.2023.145016
X. Yang, C. Li, Z. Sun, S. Yang, Z. Shi et al., Interfacial manipulation via in situ grown ZnSe cultivator toward highly reversible Zn metal anodes. Adv. Mater. 33(52), e2105951 (2021). https://doi.org/10.1002/adma.202105951
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32(34), 2003021 (2020). https://doi.org/10.1002/adma.202003021
C. Zhang, J. Zhang, Y. Fu, J. Liu, S. Wang et al., Facile synthesis of MoSe2/carbon nanotubes (CNTs) composite with improved electrochemical performance for lithium/sodium storage. Ionics 29(3), 941–950 (2023). https://doi.org/10.1007/s11581-022-04865-0
L. Zhang, B. Zhang, T. Zhang, T. Li, T. Shi et al., Eliminating dendrites and side reactions via a multifunctional ZnSe protective layer toward advanced aqueous Zn metal batteries. Adv. Funct. Mater. 31(26), 2100186 (2021). https://doi.org/10.1002/adfm.202100186
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao et al., Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
H. Liu, Z. Xin, B. Cao, B. Zhang, H.J. Fan et al., Versatile MXenes for aqueous zinc batteries. Adv. Sci. 11(8), 2305806 (2024). https://doi.org/10.1002/advs.202305806
J. Chen, Y. Shi, S. Zheng, W. Zhao, R. Li et al., Blocking interfacial proton transport via self-assembled monolayer for hydrogen evolution-free zinc batteries. Angew. Chem. Int. Ed. 63(26), e202404825 (2024). https://doi.org/10.1002/anie.202404825
H. Luo, J. Jiang, M. Arramel, K.S. Li et al., Working mechanism of MXene as the anode protection layer of aqueous zinc-ion batteries. J. Colloid Interface Sci. 654, 289–299 (2024). https://doi.org/10.1016/j.jcis.2023.10.029
X. Zhu, X. Li, M.L.K. Essandoh, J. Tan, Z. Cao et al., Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 50, 243–251 (2022). https://doi.org/10.1016/j.ensm.2022.05.022
Y. Shen, Y. Liu, K. Sun, T. Gu, G. Wang et al., Zincophilic Ti3C2Cl2 MXene and anti-corrosive Cu NPs for synergistically regulated deposition of dendrite-free Zn metal anode. J. Mater. Sci. Technol. 169, 137–147 (2024). https://doi.org/10.1016/j.jmst.2023.06.017
H. Liu, Z. Xu, B. Cao, Z. Xin, H. Lai et al., Marangoni-driven self-assembly MXene as functional membrane enables dendrite-free and flexible zinc–iodine pouch cells. Adv. Energy Mater. 14(26), 2400318 (2024). https://doi.org/10.1002/aenm.202400318
H.J. Kim, S. Kim, K. Heo, J.-H. Lim, H. Yashiro et al., Nature of zinc-derived dendrite and its suppression in mildly acidic aqueous zinc-ion battery. Adv. Energy Mater. 13(2), 2203189 (2023). https://doi.org/10.1002/aenm.202203189
X. Song, L. Bai, C. Wang, D. Wang, K. Xu et al., Synergistic cooperation of Zn(002) texture and amorphous zinc phosphate for dendrite-free Zn anodes. ACS Nano 17(15), 15113–15124 (2023). https://doi.org/10.1021/acsnano.3c04343
X. Du, Y. Huang, Z. Feng, X. Han, J. Wang et al., Encapsulating yolk-shelled Si@Co9S8 ps in carbon fibers to construct a free-standing anode for lithium-ion batteries. Appl. Surf. Sci. 610, 155491 (2023). https://doi.org/10.1016/j.apsusc.2022.155491
C. Deng, X. Xie, J. Han, Y. Tang, J. Gao et al., A sieve-functional and uniform-porous Kaolin layer toward stable zinc metal anode. Adv. Funct. Mater. 30(21), 2000599 (2020). https://doi.org/10.1002/adfm.202000599
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8(25), 1801090 (2018). https://doi.org/10.1002/aenm.201801090
H. Zhao, Z.-Y. Yuan, Insights into transition metal phosphate materials for efficient electrocatalysis. ChemCatChem 12(15), 3797–3810 (2020). https://doi.org/10.1002/cctc.202000360
S.-J. Yang, L.-L. Zhao, Z.-X. Li, P. Wang, Z.-L. Liu et al., Achieving stable Zn anode via artificial interfacial layers protection strategies toward aqueous Zn-ion batteries. Coord. Chem. Rev. 517, 216044 (2024). https://doi.org/10.1016/j.ccr.2024.216044
T. Chen, B. Liu, M. Zheng, Y. Luo, Suspensions based on LiFePO4/carbon nanotubes composites with three-dimensional conductive network for lithium-ion semi-solid flow batteries. J. Energy Storage 57, 106300 (2023). https://doi.org/10.1016/j.est.2022.106300
Z. Xing, Y. Sun, X. Xie, Y. Tang, G. Xu et al., Zincophilic electrode interphase with appended proton reservoir ability stabilizes Zn metal anodes. Angew. Chem. Int. Ed. 62(5), e202215324 (2023). https://doi.org/10.1002/anie.202215324
S. Wang, Z. Yang, B. Chen, H. Zhou, S. Wan et al., A highly reversible, dendrite-free zinc metal anodes enabled by a dual-layered interface. Energy Storage Mater. 47, 491–499 (2022). https://doi.org/10.1016/j.ensm.2022.02.024
Y. Shang, N. Chen, Y. Li, S. Chen, J. Lai et al., An “ether-In-water” electrolyte boosts stable interfacial chemistry for aqueous lithium-ion batteries. Adv. Mater. 32(40), 2004017 (2020). https://doi.org/10.1002/adma.202004017
P. Liu, L. Miao, Z. Sun, X. Chen, Y. Si et al., Inorganic–organic hybrid multifunctional solid electrolyte interphase layers for dendrite-free sodium metal anodes. Angew. Chem. Int. Ed. 62(47), e202312413 (2023). https://doi.org/10.1002/anie.202312413
Z. Zheng, X. Zhong, Q. Zhang, M. Zhang, L. Dai et al., An extended substrate screening strategy enabling a low lattice mismatch for highly reversible zinc anodes. Nat. Commun. 15, 753 (2024). https://doi.org/10.1038/s41467-024-44893-0
Y. Song, Y. Liu, S. Luo, Y. Yang, F. Chen et al., Blocking the dendrite-growth of Zn anode by constructing Ti4O7 interfacial layer in aqueous zinc-ion batteries. Adv. Funct. Mater. 34(25), 2316070 (2024). https://doi.org/10.1002/adfm.202316070
B. Wei, J. Zheng, X. Abhishek, J.W. Liu et al., Design principle of insulating surface protective layers for metallic Zn anodes: a case study of ZrO2. Adv. Energy Mater. 14(24), 2401018 (2024). https://doi.org/10.1002/aenm.202401018
N. Zhang, S. Huang, Z. Yuan, J. Zhu, Z. Zhao, Z. Niu, Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 60(6), 2861–2865 (2021). https://doi.org/10.1002/anie.202012322
Z. Shi, M. Yang, Y. Ren, Y. Wang, J. Guo et al., Highly reversible Zn anodes achieved by enhancing ion-transport kinetics and modulating Zn (002) deposition. ACS Nano 17(21), 21893–21904 (2023). https://doi.org/10.1021/acsnano.3c08197