Design Refinement of Catalytic System for Scale-Up Mild Nitrogen Photo-Fixation
Corresponding Author: Hong Qun Luo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 182
Abstract
Ammonia and nitric acid, versatile industrial feedstocks, and burgeoning clean energy vectors hold immense promise for sustainable development. However, Haber–Bosch and Ostwald processes, which generates carbon dioxide as massive by-product, contribute to greenhouse effects and pose environmental challenges. Thus, the pursuit of nitrogen fixation through carbon–neutral pathways under benign conditions is a frontier of scientific topics, with the harnessing of solar energy emerging as an enticing and viable option. This review delves into the refinement strategies for scale-up mild photocatalytic nitrogen fixation, fields ripe with potential for innovation. The narrative is centered on enhancing the intrinsic capabilities of catalysts to surmount current efficiency barriers. Key focus areas include the in-depth exploration of fundamental mechanisms underpinning photocatalytic procedures, rational element selection, and functional planning, state-of-the-art experimental protocols for understanding photo-fixation processes, valid photocatalytic activity evaluation, and the rational design of catalysts. Furthermore, the review offers a suite of forward-looking recommendations aimed at propelling the advancement of mild nitrogen photo-fixation. It scrutinizes the existing challenges and prospects within this burgeoning domain, aspiring to equip researchers with insightful perspectives that can catalyze the evolution of cutting-edge nitrogen fixation methodologies and steer the development of next-generation photocatalytic systems.
Highlights:
1 The review provides a brief overview of basic mechanisms, element selections, activity confirmation, and experimental protocols of photocatalytic nitrogen fixation under mild conditions.
2 The review details strategies for scale-up photocatalysts in nitrogen fixation, emphasizing defect engineering, facet optimization, heteroatom doping, single-atom site creation, and composite synthesis.
3 The review emphasizes the importance of environmental assessment for photocatalyst lifecycle sustainability in mild nitrogen fixation for the future.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008). https://doi.org/10.1038/ngeo325
- R. Schlögl, Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem. Int. Ed. 42, 2004–2008 (2003). https://doi.org/10.1002/anie.200301553
- I. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy efficiency improvements in ammonia production: perspectives and uncertainties. Energy 30, 2487–2504 (2005). https://doi.org/10.1016/j.energy.2004.12.004
- N.C. Neumann, D. Baumstark, P. López Martínez, N. Monnerie, M. Roeb, Exploiting synergies between sustainable ammonia and nitric acid production: a techno-economic assessment. J. Clean. Prod. 438, 140740 (2024). https://doi.org/10.1016/j.jclepro.2024.140740
- R.C. Izaurralde, W.B. McGill, N.J. Rosenberg, Carbon cost of applying nitrogen fertilizer. Science 288, 809 (2000). https://doi.org/10.1126/science.288.5467.809c
- C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020). https://doi.org/10.1039/C9EE02873K
- C.M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin et al., operando probing of the surface chemistry during the Haber-Bosch process. Nature 625, 282–286 (2024). https://doi.org/10.1038/s41586-023-06844-5
- M. Byun, D. Lim, B. Lee, A. Kim, I.-B. Lee et al., Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration. Appl. Energy 307, 118183 (2022). https://doi.org/10.1016/j.apenergy.2021.118183
- J.N. Galloway, A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai et al., Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008). https://doi.org/10.1126/science.1136674
- J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R. Morris Bullock et al., Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018). https://doi.org/10.1126/science.aar6611
- Editorials, Green ammonia synthesis. Nat. Synth 2, 581–582 (2023). https://doi.org/10.1038/s44160-023-00362-y
- A.J. Medford, M.C. Hatzell, Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7, 2624–2643 (2017). https://doi.org/10.1021/acscatal.7b00439
- S. Zhang, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Photocatalytic ammonia synthesis: recent progress and future. EnergyChem 1, 100013 (2019). https://doi.org/10.1016/j.enchem.2019.100013
- Y. Zhao, Y. Miao, C. Zhou, T. Zhang, Artificial photocatalytic nitrogen fixation: where are we now? Where is its future? Mol. Catal. 518, 112107 (2022). https://doi.org/10.1016/j.mcat.2021.112107
- X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater. Horiz. 5, 9–27 (2018). https://doi.org/10.1039/C7MH00557A
- C. Van Stappen, L. Decamps, G.E. Cutsail III., R. Bjornsson, J.T. Henthorn et al., The spectroscopy of nitrogenases. Chem. Rev. 120, 5005–5081 (2020). https://doi.org/10.1021/acs.chemrev.9b00650
- R. Shi, X. Zhang, G.I.N. Waterhouse, Y. Zhao, T. Zhang, The journey toward low temperature, low pressure catalytic nitrogen fixation. Adv. Energy Mater. 10, 2000659 (2020). https://doi.org/10.1002/aenm.202000659
- D.F. Swearer, N.R. Knowles, H.O. Everitt, N.J. Halas, Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. 4, 1505–1512 (2019). https://doi.org/10.1021/acsenergylett.9b00860
- S. Chen, D. Liu, T. Peng, Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Sol. RRL 5, 2000487 (2021). https://doi.org/10.1002/solr.202000487
- H. Li, W. Tu, Y. Zhou, Z. Zou, Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv. Sci. 3, 1500389 (2016). https://doi.org/10.1002/advs.201500389
- H. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015). https://doi.org/10.1002/adfm.201401636
- E. Pastor, M. Sachs, S. Selim, J.R. Durrant, A.A. Bakulin et al., Electronic defects in metal oxide photocatalysts. Nat. Rev. Mater. 7, 503–521 (2022). https://doi.org/10.1038/s41578-022-00433-0
- X. Wang, L. Yang, Composition engineering opens an avenue toward efficient and sustainable nitrogen fixation. Energy Environ. Mater. 7, e12600 (2024). https://doi.org/10.1002/eem2.12600
- S.-L. Meng, X.-B. Li, C.-H. Tung, L.-Z. Wu, Nitrogenase inspired artificial photosynthetic nitrogen fixation. Chem 7, 1431–1450 (2021). https://doi.org/10.1016/j.chempr.2020.11.002
- M.L. Bols, J. Ma, F. Rammal, D. Plessers, X. Wu et al., In situ UV-vis-NIR absorption spectroscopy and catalysis. Chem. Rev. 124, 2352–2418 (2024). https://doi.org/10.1021/acs.chemrev.3c00602
- Y. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin et al., Engineering photocatalytic ammonia synthesis. Chem. Soc. Rev. 52, 6938–6956 (2023). https://doi.org/10.1039/d2cs00797e
- Y. Xia, Y. Xu, X. Yu, K. Chang, H. Gong et al., Structural design and control of photocatalytic nitrogen-fixing catalysts. J. Mater. Chem. A 10, 17377–17394 (2022). https://doi.org/10.1039/d2ta03977j
- M. Saliba, J.P. Atanas, T.M. Howayek, R. Habchi, Molybdenum disulfide, exfoliation methods and applications to photocatalysis: a review. Nanoscale Adv. 5, 6787–6803 (2023). https://doi.org/10.1039/d3na00741c
- L. Zhang, S. Hou, T. Wang, S. Liu, X. Gao et al., Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small 18, e2202252 (2022). https://doi.org/10.1002/smll.202202252
- C. Hu, Y.-R. Lin, H.-C. Yang, Recent developments in graphitic carbon nitride based hydrogels as photocatalysts. ChemSusChem 12, 1794–1806 (2019). https://doi.org/10.1002/cssc.201802257
- X. Chen, Y. Guo, X. Du, Y. Zeng, J. Chu et al., Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 10, 1903172 (2020). https://doi.org/10.1002/aenm.201903172
- G. Li, C. Yang, Q. He, J. Liu, Ag-based photocatalytic heterostructures: construction and photocatalytic energy conversion application. J. Environ. Chem. Eng. 10, 107374 (2022). https://doi.org/10.1016/j.jece.2022.107374
- R. Shi, L. Shang, T. Zhang, Three phase interface engineering for advanced catalytic applications. ACS Appl. Energy Mater. 4, 1045–1052 (2021). https://doi.org/10.1021/acsaem.0c02989
- C. Gan, W. Yan, Y. Zhang, Q. Jiang, J. Tang, Research progress of two-dimensional layered and related derived materials for nitrogen reduction reaction. Sustainable Energy Fuels 5, 3260–3277 (2021). https://doi.org/10.1039/D1SE00594D
- R. Manjunatha, A. Karajić, M. Liu, Z. Zhai, L. Dong et al., A review of composite/hybrid electrocatalysts and photocatalysts for nitrogen reduction reactions: advanced materials, mechanisms, challenges and perspectives. Electrochem. Energy Rev. 3, 506–540 (2020). https://doi.org/10.1007/s41918-020-00069-0
- H. Yu, M. Dai, J. Zhang, W. Chen, Q. Jin et al., Interface engineering in 2D/2D heterogeneous photocatalysts. Small 19, 2205767 (2023). https://doi.org/10.1002/smll.202205767
- Y. Zhong, C. Peng, Z. He, D. Chen, H. Jia et al., Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal. Sci. Technol. 11, 27–42 (2021). https://doi.org/10.1039/d0cy01847c
- X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/c5cs00838g
- Z. Kuspanov, B. Bakbolat, A. Baimenov, A. Issadykov, M. Yeleuov et al., Photocatalysts for a sustainable future: innovations in large-scale environmental and energy applications. Sci. Total. Environ. 885, 163914 (2023). https://doi.org/10.1016/j.scitotenv.2023.163914
- Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama et al., A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018). https://doi.org/10.1016/j.joule.2017.12.009
- T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6
- Y. Dong, P. Duchesne, A. Mohan, K.K. Ghuman, P. Kant et al., Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem. Soc. Rev. 49, 5648–5663 (2020). https://doi.org/10.1039/d0cs00597e
- R. Samriti, O. Tyagi, J. Ruzimuradov, Prakash, Fabrication methods and mechanisms for designing highly-efficient photocatalysts for energy and environmental applications. Mater. Chem. Phys. 307, 128108 (2023). https://doi.org/10.1016/j.matchemphys.2023.128108
- Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013). https://doi.org/10.1039/c2cs35355e
- F. Salvadores, O.M. Alfano, M.M. Ballari, Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content. Appl. Catal. B Environ. 268, 118694 (2020). https://doi.org/10.1016/j.apcatb.2020.118694
- T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x
- H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi et al., Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598, 304–307 (2021). https://doi.org/10.1038/s41586-021-03907-3
- T.-Y. Dai, C.-C. Yang, Q. Jiang, Recent progress on catalyst design of nitrogen reduction reaction by density functional theory. Sci. China Mater. 67, 1101–1123 (2024). https://doi.org/10.1007/s40843-023-2847-1
- A.N. Singh, R. Anand, M. Zafari, M. Ha, K.S. Kim, Progress in single/multi atoms and 2D-nanomaterials for electro/photocatalytic nitrogen reduction: experimental, computational and machine leaning developments. Adv. Energy Mater. 14, 2304106 (2024). https://doi.org/10.1002/aenm.202304106
- A.E. Shilov, Catalytic reduction of molecular nitrogen in solutions. Russ. Chem. Bull. 52, 2555–2562 (2003). https://doi.org/10.1023/b:rucb.0000019873.81002.60
- N. Bauer, Theoretical pathways for the reduction of N2 molecules in aqueous media: thermodynamics of N2Hn1. J. Phys. Chem. 64, 833–837 (1960). https://doi.org/10.1021/j100836a001
- C.J.M. van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014). https://doi.org/10.1039/C4CS00085D
- B.M. Hoffman, D.R. Dean, L.C. Seefeldt, Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 42, 609–619 (2009). https://doi.org/10.1021/ar8002128
- T.H. Rod, A. Logadottir, J.K. Nørskov, Ammonia synthesis at low temperatures. J. Chem. Phys. 112, 5343–5347 (2000). https://doi.org/10.1063/1.481103
- H.P. Jia, E.A. Quadrelli, Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014). https://doi.org/10.1039/c3cs60206k
- C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/C7EE02220D
- X. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018). https://doi.org/10.1002/aenm.201800369
- V. Kordali, G. Kyriacou, C. Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Cheminform 31, 48–010 (2000). https://doi.org/10.1002/chin.200048010
- E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl et al., A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/C1CP22271F
- Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
- C. Yue, L. Qiu, M. Trudeau, D. Antonelli, Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis. Inorg. Chem. 46, 5084–5092 (2007). https://doi.org/10.1021/ic062385d
- S. Back, Y. Jung, On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 18, 9161–9166 (2016). https://doi.org/10.1039/C5CP07363D
- J. Lin, X. Lin, S. Lu, W. Liao, T. Qi et al., Sulfur defect engineering boosted nitrogen activation over FeS2 for efficient electrosynthesis of ammonia. Chem. Eng. Sci. 300, 120664 (2024). https://doi.org/10.1016/j.ces.2024.120664
- Z. Sun, J. Lin, S. Lu, Y. Li, T. Qi et al., Interfacial engineering boosting the activity and stability of MIL-53(Fe) toward electrocatalytic nitrogen reduction. Langmuir 40, 5469–5478 (2024). https://doi.org/10.1021/acs.langmuir.3c04025
- W. Liao, L. Qi, Y. Wang, J. Qin, G. Liu et al., Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Adv. Funct. Mater. 31, 2009151 (2021). https://doi.org/10.1002/adfm.202009151
- Y. Xiong, B. Li, Y. Gu, T. Yan, Z. Ni et al., Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat. Chem. 15, 286–293 (2023). https://doi.org/10.1038/s41557-022-01088-8
- C. Hu, X. Chen, J. Jin, Y. Han, S. Chen et al., Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 141, 7807–7814 (2019). https://doi.org/10.1021/jacs.9b01375
- B.-H. Wang, B. Hu, G.-H. Chen, X. Wang, S. Tian et al., Plasmon-induced photocatalytic nitrogen fixation on medium-spin Au3Fe1/Mo single-atom alloy antenna reactor. Chem Catal. 4, 101083 (2024). https://doi.org/10.1016/j.checat.2024.101083
- N. Lehnert, B.W. Musselman, L.C. Seefeldt, Grand challenges in the nitrogen cycle. Chem. Soc. Rev. 50, 3640–3646 (2021). https://doi.org/10.1039/d0cs00923g
- X. Wei, C. Chen, X.-Z. Fu, S. Wang, Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv. Energy Mater. 14, 2303027 (2024). https://doi.org/10.1002/aenm.202303027
- X. Zhang, R. Shi, Z. Li, J. Zhao, H. Huang et al., Photothermal-assisted photocatalytic nitrogen oxidation to nitric acid on palladium-decorated titanium oxide. Adv. Energy Mater. 12, 2103740 (2022). https://doi.org/10.1002/aenm.202103740
- Y. Liu, M. Cheng, Z. He, B. Gu, C. Xiao et al., Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem. Int. Ed. 58, 731–735 (2019). https://doi.org/10.1002/anie.201808177
- S. Lu, G. Lin, H. Yan, Y. Li, T. Qi et al., In situ facet transformation engineering over Co3O4 for highly efficient electroreduction of nitrate to ammonia. ACS Catal. 14, 14887–14894 (2024). https://doi.org/10.1021/acscatal.4c05292
- Y. Nie, H. Yan, S. Lu, H. Zhang, T. Qi et al., Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction. Chin. J. Catal. 59, 293–302 (2024). https://doi.org/10.1016/S1872-2067(23)64618-2
- D. Liu, H. Yan, J. Lin, S. Lu, Y. Xie et al., Regulation of cerium species in Keggin structure of phosphotungstic acid for efficient nitrogen electroreduction to ammonia. Chem. Eng. Sci. 283, 119448 (2024). https://doi.org/10.1016/j.ces.2023.119448
- A. Slattery, Z. Wen, P. Tenblad, J. Sanjosé-Orduna, D. Pintossi et al., Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024). https://doi.org/10.1126/science.adj1817
- Y. Zhou, D.E. Doronkin, Z. Zhao, P.N. Plessow, J. Jelic et al., Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando HERFD-XANES, resonant XES, and DRIFTS. ACS Catal. 8, 11398–11406 (2018). https://doi.org/10.1021/acscatal.8b03724
- O.B. Lapina, Modern ssNMR for heterogeneous catalysis. Catal. Today 285, 179–193 (2017). https://doi.org/10.1016/j.cattod.2016.11.005
- L. Shen, L. Peng, 17O solid-state NMR studies of oxygen-containing catalysts. Chin. J. Catal. 36, 1494–1504 (2015). https://doi.org/10.1016/S1872-2067(15)60931-7
- X. Yao, Z. Zhao, G. Hou, Development of in situ mas nmr and its applications in material synthesis and heterogeneous catalysis Chin. J. Struc. Chem. 41, 2210045–2210055 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0166
- G. Porat-Dahlerbruch, J. Struppe, T. Polenova, High-efficiency low-power 13C–15N cross polarization in MAS NMR. J. Magn. Reson. 361, 107649 (2024). https://doi.org/10.1016/j.jmr.2024.107649
- D.L. Bryce, Double-rotation (DOR) NMR spectroscopy: progress and perspectives. Solid State Nucl. Magn. Reson. 130, 101923 (2024). https://doi.org/10.1016/j.ssnmr.2024.101923
- Y. Xie, L. Hua, K. Hou, P. Chen, W. Zhao et al., Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry. Anal. Chem. 86, 7681–7687 (2014). https://doi.org/10.1021/ac501576f
- S. Bourgeois, D. Diakite, M. Perdereau, A study of TiO2 powders as a support for the photochemical synthesis of ammonia. React. Solids 6, 95–104 (1988). https://doi.org/10.1016/0168-7336(88)80048-2
- H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 139, 10929–10936 (2017). https://doi.org/10.1021/jacs.7b06634
- H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed{001}facets. J. Am. Chem. Soc. 137, 6393–6399 (2015). https://doi.org/10.1021/jacs.5b03105
- G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3, 23435–23441 (2015). https://doi.org/10.1039/C5TA06540B
- S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 6, 5884–5890 (2016). https://doi.org/10.1039/C6CY00622A
- Y. Cao, S. Hu, F. Li, Z. Fan, J. Bai et al., Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Adv. 6, 49862–49867 (2016). https://doi.org/10.1039/C6RA08247E
- S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang et al., Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem. Eng. J. 353, 147–156 (2018). https://doi.org/10.1016/j.cej.2018.07.116
- S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang et al., Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 29, 1701774 (2017). https://doi.org/10.1002/adma.201701774
- H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 8, 1986–1993 (2016). https://doi.org/10.1039/c5nr07380d
- Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi et al., Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl. Mater. Interfaces 8, 27661–27668 (2016). https://doi.org/10.1021/acsami.6b08129
- G.N. Schrauzer, T.D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99, 7189–7193 (1977). https://doi.org/10.1021/ja00464a015
- P.P. Radford, C.G. Francis, Photoreduction of nitrogen by metal doped titanium dioxide powders: a novel use for metal vapour techniques. J. Chem. Soc. Chem. Commun. (1983). https://doi.org/10.1039/c39830001520
- J. Soria, J.C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello et al., Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J. Phys. Chem. 95, 274–282 (1991). https://doi.org/10.1021/j100154a052
- W. Zhao, J. Zhang, X. Zhu, M. Zhang, J. Tang et al., Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl. Catal. B Environ. 144, 468–477 (2014). https://doi.org/10.1016/j.apcatb.2013.07.047
- O.A. Ileperuma, K. Tennakone, W.D.D.P. Dissanayake, Photocatalytic behaviour of metal doped titanium dioxide studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems. Appl. Catal. 62, L1–L5 (1990). https://doi.org/10.1016/S0166-9834(00)82226-5
- L. Palmisano, V. Augugliaro, A. Sclafani, M. Schiavello, Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem. 92, 6710–6713 (1988). https://doi.org/10.1021/j100334a044
- O.A. Ileperuma, C.T.K. Thaminimulla, W.C.B. Kiridena, Photoreduction of N2 to NH3 and H2O to H2 on metal doped TiO2 catalysts (M = Ce, V). Sol. Energy Mater. Sol. Cells 28, 335–343 (1993). https://doi.org/10.1016/0927-0248(93)90121-I
- K.T. Ranjit, T.K. Varadarajan, B. Viswanathan, Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J. Photochem. Photobiol. A Chem. 96, 181–185 (1996). https://doi.org/10.1016/1010-6030(95)04290-3
- O.P. Linnik, H. Kisch, Dinitrogen photofixation at ruthenium-modified titania films. Mendeleev Commun. 18, 10–11 (2008). https://doi.org/10.1016/j.mencom.2008.01.004
- H. Miyama, N. Fujii, Y. Nagae, Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen. Chem. Phys. Lett. 74, 523–524 (1980). https://doi.org/10.1016/0009-2614(80)85266-3
- C.M. Janet, S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Heterogeneous wet chemical synthesis of superlattice-type hierarchical ZnO architectures for concurrent H2 production and N2 reduction. J. Phys. Chem. C 114, 2622–2632 (2010). https://doi.org/10.1021/jp908683x
- S. Hu, X. Chen, Q. Li, F. Li, Z. Fan et al., Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl. Catal. B Environ. 201, 58–69 (2017). https://doi.org/10.1016/j.apcatb.2016.08.002
- N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu et al., Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 140, 9434–9443 (2018). https://doi.org/10.1021/jacs.8b02076
- X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang et al., Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chemistry 22, 13819–13822 (2016). https://doi.org/10.1002/chem.201603277
- D. Zhu, L. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013). https://doi.org/10.1038/nmat3696
- G. Ren, J. Zhao, Z. Zhao, Z. Li, L. Wang et al., Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 63, e202314408 (2024). https://doi.org/10.1002/anie.202314408
- T. Ogawa, T. Kitamura, T. Shibuya, K. Hoshino, Characterization and material conditions of conducting polymer/titanium oxide hybrid systems used for dinitrogen fixation under ordinary pressure and temperature. Electrochem. Commun. 6, 55–60 (2004). https://doi.org/10.1016/j.elecom.2003.10.015
- K. Hoshino, R. Kuchii, T. Ogawa, Dinitrogen photofixation properties of different titanium oxides in conducting polymer/titanium oxide hybrid systems. Appl. Catal. B Environ. 79, 81–88 (2008). https://doi.org/10.1016/j.apcatb.2007.10.007
- V. Augugliaro, F. D’Alba, L. Rizzuti, M. Schiavello, A. Sclafani, Conversion of solar energy to chemical energy by photoassisted processes: II. Influence of the iron content on the activity of doped titanium dioxide catalysts for ammonia photoproduction. Int. J. Hydrog. Energy 7, 851–855 (1982). https://doi.org/10.1016/0360-3199(82)90002-7
- V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, A. Sclafani, Conversion of solar energy to chemical energy by photoassisted processes: I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor. Int. J. Hydrog. Energy 7, 845–849 (1982). https://doi.org/10.1016/0360-3199(82)90001-5
- M.M. Khader, N.N. Lichtin, G.H. Vurens, M. Salmeron, G.A. Somorjai, Photoassisted catalytic dissociation of water and reduction of nitrogen to ammonia on partially reduced ferric oxide. Langmuir 3, 303–304 (1987). https://doi.org/10.1021/la00074a028
- M.M. Taqui Khan, R.C. Bhardwaj, C. Bhardwaj, Catalytic fixation of nitrogen by the photocatalytic CdS/Pt/RuO2 particulate system in the presence of aqueous [Ru(hedta)N2] ⊖ complex. Angew. Chem. Int. Ed. 27, 923–925 (1988). https://doi.org/10.1002/anie.198809231
- M.M. Taqui Khan, N. Nageswara Rao, Stepwise reduction of coordinated dinitrogen to ammonia via diazinido and hydrazido intermediates on a visible light irradiated Pt/CdS · Ag2S/RuO2 particulate system suspended in an aqueous solution of K[Ru(EDTA-H)Cl]2H2O. J. Photochem. Photobiol. A Chem. 56, 101–111 (1991). https://doi.org/10.1016/1010-6030(91)80010-F
- K.A. Brown, D.F. Harris, M.B. Wilker, A. Rasmussen, N. Khadka et al., Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016). https://doi.org/10.1126/science.aaf2091
- A. Banerjee, B.D. Yuhas, E.A. Margulies, Y. Zhang, Y. Shim et al., Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 137, 2030–2034 (2015). https://doi.org/10.1021/ja512491v
- J. Liu, M.S. Kelley, W. Wu, A. Banerjee, A.P. Douvalis et al., Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. U.S.A. 113, 5530–5535 (2016). https://doi.org/10.1073/pnas.1605512113
- S. Hu, Y. Li, F. Li, Z. Fan, H. Ma et al., Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies. ACS Sustainable Chem. Eng. 4, 2269–2278 (2016). https://doi.org/10.1021/acssuschemeng.5b01742
- J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi et al., A review of direct Z-scheme photocatalysts. Small Meth. 1, 1700080 (2017). https://doi.org/10.1002/smtd.201700080
- Y. Wang, W. Wei, M. Li, S. Hu, J. Zhang et al., In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N2 photofixation ability under visible light. RSC Adv. 7, 18099–18107 (2017). https://doi.org/10.1039/C7RA00097A
- H. Liang, H. Zou, S. Hu, Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New J. Chem. 41, 8920–8926 (2017). https://doi.org/10.1039/C7NJ01848G
- S. Cao, N. Zhou, F. Gao, H. Chen, F. Jiang, All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B Environ. 218, 600–610 (2017). https://doi.org/10.1016/j.apcatb.2017.07.013
- W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang et al., Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 58, 16644–16650 (2019). https://doi.org/10.1002/anie.201908640
- S. Hu, W. Zhang, J. Bai, G. Lu, L. Zhang et al., Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv. 6, 25695–25702 (2016). https://doi.org/10.1039/C5RA28123G
- Y. Yang, T. Zhang, Z. Ge, Y. Lu, H. Chang et al., Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon 124, 72–78 (2017). https://doi.org/10.1016/j.carbon.2017.07.014
- Y. Lu, Y. Yang, T. Zhang, Z. Ge, H. Chang et al., Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 10, 10507–10515 (2016). https://doi.org/10.1021/acsnano.6b06472
- J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang et al., High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 140, 8497–8508 (2018). https://doi.org/10.1021/jacs.8b03537
- L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi et al., Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity. Angew. Chem. Int. Ed. 56, 8701–8705 (2017). https://doi.org/10.1002/anie.201703301
- C.R. Dickson, A.J. Nozik, Nitrogen fixation via photoenhanced reduction on p-gallium phosphide electrodes. J. Am. Chem. Soc. 100, 8007–8009 (1978). https://doi.org/10.1021/ja00493a039
- L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang et al., Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 10, 2000214 (2020). https://doi.org/10.1002/aenm.202000214
- J. Yuan, W. Feng, Y. Zhang, J. Xiao, X. Zhang et al., Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo-photocatalytic N2 reduction. Adv. Mater. 36, 2303845 (2024). https://doi.org/10.1002/adma.202303845
- Q.-S. Li, K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysts. Chem. Lett. 12, 321–324 (1983). https://doi.org/10.1246/cl.1983.321
- O. Rusina, O. Linnik, A. Eremenko, H. Kisch, Nitrogen photofixation on nanostructured iron titanate films. Chemistry 9, 561–565 (2003). https://doi.org/10.1002/chem.200390059
- S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/nmat3151
- T. Oshikiri, K. Ueno, H. Misawa, Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014). https://doi.org/10.1002/anie.201404748
- T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55, 3942–3946 (2016). https://doi.org/10.1002/anie.201511189
- Y. Hao, X. Dong, S. Zhai, H. Ma, X. Wang et al., Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chemistry 22, 18722–18728 (2016). https://doi.org/10.1002/chem.201604510
- C. Li, T. Wang, Z.-J. Zhao, W. Yang, J.-F. Li et al., Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57, 5278–5282 (2018). https://doi.org/10.1002/anie.201713229
- H. Zeng, S. Terazono, T. Tanuma, A novel catalyst for ammonia synthesis at ambient temperature and pressure: Visible light responsive photocatalyst using localized surface plasmon resonance. Catal. Commun. 59, 40–44 (2015). https://doi.org/10.1016/j.catcom.2014.09.034
- M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao et al., Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016). https://doi.org/10.1038/ncomms11335
- J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou et al., Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem 5, 617–633 (2019). https://doi.org/10.1016/j.chempr.2018.12.003
- J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50, 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
- Y. Mi, M. Zhou, L. Wen, H. Zhao, Y. Lei, A highly efficient visible-light driven photocatalyst: two dimensional square-like bismuth oxyiodine nanosheets. Dalton Trans. 43, 9549–9556 (2014). https://doi.org/10.1039/c4dt00798k
- D.S. Bhachu, S.J.A. Moniz, S. Sathasivam, D.O. Scanlon, A. Walsh et al., Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chem. Sci. 7, 4832–4841 (2016). https://doi.org/10.1039/c6sc00389c
- A. Henríquez, H.D. Mansilla, A.M. Martínez-de la Cruz, J. Freer, D. Contreras, Selective oxofunctionalization of cyclohexane over titanium dioxide–based and bismuth oxyhalide (BiOX, X=Cl-, Br-, I-) photocatalysts by visible light irradiation. Appl. Catal. B Environ. 206, 252–262 (2017). https://doi.org/10.1016/j.apcatb.2017.01.022
- H. Cheng, B. Huang, Y. Dai, Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6, 2009–2026 (2014). https://doi.org/10.1039/C3NR05529A
- W. Dai, S. Zhang, H. Shang, S. Xiao, Z. Tian et al., Breaking the selectivity barrier: reactive oxygen species control in photocatalytic nitric oxide conversion. Adv. Funct. Mater. 34, 2309426 (2024). https://doi.org/10.1002/adfm.202309426
- M. Cheng, H. Li, Z. Wu, Z. Yu, X. Tao et al., Synergistic effects of CQDs and oxygen vacancies on CeO2 photocatalyst for efficient photocatalytic nitrogen fixation. Sep. Purif. Technol. 354, 129299 (2025). https://doi.org/10.1016/j.seppur.2024.129299
- J. Wu, N. Li, H.-B. Fang, X. Li, Y.-Z. Zheng et al., Nitrogen vacancies modified graphitic carbon nitride: scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution. Chem. Eng. J. 358, 20–29 (2019). https://doi.org/10.1016/j.cej.2018.09.208
- H. Wang, M. Li, H. Li, Q. Lu, Y. Zhang et al., Porous graphitic carbon nitride with controllable nitrogen vacancies: as promising catalyst for enhanced degradation of pollutant under visible light. Mater. Des. 162, 210–218 (2019). https://doi.org/10.1016/j.matdes.2018.11.049
- L.J. Fang, X.L. Wang, J.J. Zhao, Y.H. Li, Y.L. Wang et al., One-step fabrication of porous oxygen-doped g-C3N4 with feeble nitrogen vacancies for enhanced photocatalytic performance. Chem. Commun. 52, 14408–14411 (2016). https://doi.org/10.1039/C6CC08187H
- G. Wu, Y. Gao, B. Zheng, Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies. Ceram. Int. 42, 6985–6992 (2016). https://doi.org/10.1016/j.ceramint.2016.01.086
- X. Bao, X. Lv, Z. Wang, M. Wang, M. Liu et al., Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4. Int. J. Hydrog. Energy 46, 37782–37791 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.052
- G. Zhang, C.D. Sewell, P. Zhang, H. Mi, Z. Lin, Nanostructured photocatalysts for nitrogen fixation. Nano Energy 71, 104645 (2020). https://doi.org/10.1016/j.nanoen.2020.104645
- X. Wang, J. You, Y. Xue, J. Ren, K. Zhang et al., Structural regulation of three-dimensional bismuth vanadate nanochannels for excellent visible light photocatalytic nitrogen fixation. Appl. Catal. B Environ. Energy 363, 124817 (2025). https://doi.org/10.1016/j.apcatb.2024.124817
- S.R. Ede, S. Anantharaj, K. Sakthikumar, K. Karthick, S. Kundu, Investigation of various synthetic protocols for self-assembled nanomaterials and their role in catalysis: progress and perspectives. Mater. Today Chem. 10, 31–78 (2018). https://doi.org/10.1016/j.mtchem.2018.07.003
- X. Han, W.-W. He, T. Zhou, S. Ma, Prussian blue analogue-derived materials for photocatalysis. Inorg. Chem. Front. 11, 3707–3730 (2024). https://doi.org/10.1039/d4qi00612g
- Z. Ye, P. Lu, Y. Chen, Z. Xu, H. Huang et al., Synthesis and photocatalytic property of Au-TiO2 nanocomposites with controlled morphologies in microfluidic chips. Lab Chip 24, 2253–2261 (2024). https://doi.org/10.1039/d3lc01053h
- S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- L. Jiang, K. Liu, S.F. Hung, L. Zhou, R. Qin et al., Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020). https://doi.org/10.1038/s41565-020-0746-x
- M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
- J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134, 4473–4476 (2012). https://doi.org/10.1021/ja210484t
- L. Xiong, Y. Hu, Y. Yang, Q. Deng, Z. Tang et al., Electron pump strengthened facet engineering: organic half-metallic C(CN)3 enclosed (100) facet exposed WO3 for efficient and selective photocatalytic nitrogen fixation. Appl. Catal. B Environ. 317, 121660 (2022). https://doi.org/10.1016/j.apcatb.2022.121660
- R. Wu, S. Gao, C. Jones, M. Sun, M. Guo et al., Bi/BSO heterojunctions via vacancy engineering for efficient photocatalytic nitrogen fixation. Adv. Funct. Mater. 34, 2314051 (2024). https://doi.org/10.1002/adfm.202314051
- F. Guo, J.-H. Guo, P. Wang, Y.-S. Kang, Y. Liu et al., Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 10, 4834–4838 (2019). https://doi.org/10.1039/c8sc05060k
- C.-H. Kuo, I.M. Mosa, S. Thanneeru, V. Sharma, L. Zhang et al., Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 51, 5951–5954 (2015). https://doi.org/10.1039/C5CC01152C
- S. Rej, C.-F. Hsia, T.-Y. Chen, F.-C. Lin, J.-S. Huang et al., Facet-dependent and light-assisted efficient hydrogen evolution from ammonia borane using gold-palladium core-shell nanocatalysts. Angew. Chem. Int. Ed. 55, 7222–7226 (2016). https://doi.org/10.1002/anie.201603021
- C. Ran, W. Gao, N. Li, Y. Xia, Q. Li et al., Facet-dependent control of PbI2 colloids for over 20% efficient perovskite solar cells. ACS Energy Lett. 4, 358–367 (2019). https://doi.org/10.1021/acsenergylett.8b02262
- H. Tong, Y. Zhou, G. Chang, P. Li, R. Zhu et al., Anatase TiO2 single crystals with dominant{0 0 1}facets: synthesis, shape-control mechanism and photocatalytic activity. Appl. Surf. Sci. 444, 267–275 (2018). https://doi.org/10.1016/j.apsusc.2018.03.069
- S. Wu, Z. Chen, W. Yue, S. Mine, T. Toyao et al., Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catal. 11, 4362–4371 (2021). https://doi.org/10.1021/acscatal.1c00072
- O. Samuel, M.H.D. Othman, R. Kamaludin, O. Sinsamphanh, H. Abdullah et al., WO3–based photocatalysts: a review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram. Int. 48, 5845–5875 (2022). https://doi.org/10.1016/j.ceramint.2021.11.158
- A. Chawla, A. Sudhaik, P. Sonu, T.A. Raizada et al., Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: a review. Coord. Chem. Rev. 491, 215246 (2023). https://doi.org/10.1016/j.ccr.2023.215246
- R.-T. Guo, X. Hu, X. Chen, Z.-X. Bi, J. Wang et al., Recent progress of three-dimensionally ordered macroporous (3DOM) materials in photocatalytic applications: a review. Small 19, e2207767 (2023). https://doi.org/10.1002/smll.202207767
- Z.-F. Huang, J. Song, L. Pan, X. Zhang, L. Wang et al., Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 5309–5327 (2015). https://doi.org/10.1002/adma.201501217
- S.-R. Fan, Y.-H. Chen, L.-M. Xu, J.-Q. Shen, X.-L. Chen et al., Amophous-crystalline interface coupling p-n junction over Co3O4@MoS2 to synergical trigger nitrogen reduction to ammonia. Surf. Interfaces 46, 103967 (2024). https://doi.org/10.1016/j.surfin.2024.103967
- K. Li, S. Zhang, Q. Tan, X. Wu, Y. Li et al., Insulator in photocatalysis: essential roles and activation strategies. Chem. Eng. J. 426, 130772 (2021). https://doi.org/10.1016/j.cej.2021.130772
- S. Liu, C.-W. Pao, J.-L. Chen, S. Li, K. Chen et al., A general flame aerosol route to high-entropy nanoceramics. Matter 7, 3994–4013 (2024). https://doi.org/10.1016/j.matt.2024.07.019
- R. Koirala, S.E. Pratsinis, A. Baiker, Synthesis of catalytic materials in flames: opportunities and challenges. Chem. Soc. Rev. 45, 3053–3068 (2016). https://doi.org/10.1039/C5CS00011D
- S. Liu, M.M. Mohammadi, M.T. Swihart, Fundamentals and recent applications of catalyst synthesis using flame aerosol technology. Chem. Eng. J. 405, 126958 (2021). https://doi.org/10.1016/j.cej.2020.126958
- A. Samriti, R. Upadhyay, O. Gupta, J.P. Ruzimuradov, Recent progress on doped ZnO nanostructures and its photocatalytic applications (Springer, Cham, 2022), pp.1–30. https://doi.org/10.1007/978-3-030-69023-6_59-1
- W. Jin, C.-Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg et al., Photocatalytic doping of organic semiconductors. Nature 630, 96–101 (2024). https://doi.org/10.1038/s41586-024-07400-5
- J.A. Oke, T.-C. Jen, Atomic layer deposition and other thin film deposition techniques: from principles to film properties. J. Mater. Res. Technol. 21, 2481–2514 (2022). https://doi.org/10.1016/j.jmrt.2022.10.064
- M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin et al., Visible light photocatalysis with c-WO(3–x)/WO3 × H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J. Am. Chem. Soc. 135, 4467–4475 (2013). https://doi.org/10.1021/ja3126678
- A.A. Wood, D.J. McCloskey, N. Dontschuk, A. Lozovoi, R.M. Goldblatt et al., 3D-mapping and manipulation of photocurrent in an optoelectronic diamond device. Adv. Mater. 36, e2405338 (2024). https://doi.org/10.1002/adma.202405338
- C. He, H. Wu, K. Zhang, Y. Liu, Q. Wang et al., Efficient deep ultraviolet emission from self-organized AlGaN quantum wire array grown on ultrathin step-bunched AlN templates. Cryst. Growth Des. 24, 1551–1559 (2024). https://doi.org/10.1021/acs.cgd.3c00990
- B.T. Tran, H. Hirayama, Growth and fabrication of high external quantum efficiency AlGaN-based deep ultraviolet light-emitting diode grown on pattern Si substrate. Sci. Rep. 7, 12176 (2017). https://doi.org/10.1038/s41598-017-11757-1
- M.S. Iqbal, Z.-B. Yao, Y.-K. Ruan, R. Iftikhar, L.-D. Hao et al., Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 42, 1075–1097 (2023). https://doi.org/10.1007/s12598-022-02215-7
- X.-F. Li, Q.-K. Li, J. Cheng, L. Liu, Q. Yan et al., Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 138, 8706–8709 (2016). https://doi.org/10.1021/jacs.6b04778
- C. Ling, X. Niu, Q. Li, A. Du, J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 140, 14161–14168 (2018). https://doi.org/10.1021/jacs.8b07472
- B. Fan, M. Jiang, G. Wang, Y. Zhao, B. Mei et al., Elucidation of hemilabile-coordination-induced tunable regioselectivity in single-site Rh-catalyzed heterogeneous hydroformylation. Nat. Commun. 15, 6967 (2024). https://doi.org/10.1038/s41467-024-51281-1
- L. Zeng, K. Cheng, F. Sun, Q. Fan, L. Li et al., Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts. Science 383, 998–1004 (2024). https://doi.org/10.1126/science.adk5195
- G.-F. Han, F. Li, A.I. Rykov, Y.-K. Im, S.-Y. Yu et al., Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022). https://doi.org/10.1038/s41565-022-01075-7
- K. Hoshino, M. Inui, T. Kitamura, H. Kokado, Fixation of dinitrogen to a mesoscale solid salt using a titanium oxide/conducting polymer system. Angew. Chem. Int. Ed. 39, 2509–2512 (2000). https://doi.org/10.1002/1521-3773(20000717)39:14%3c2509::AID-ANIE2509%3e3.0.CO;2-I
- K. Hoshino, New avenues in dinitrogen fixation research. Chemistry 7, 2727–2731 (2001). https://doi.org/10.1002/1521-3765(20010702)7:13%3c2727::aid-chem2727%3e3.0.co;2-4
- C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C.J. Chang et al., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015). https://doi.org/10.1021/acs.nanolett.5b01254
- K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016). https://doi.org/10.1126/science.aad3317
- C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). https://doi.org/10.1126/science.aaf5039
- N. Kornienko, J.Z. Zhang, K.K. Sakimoto, P. Yang, E. Reisner, Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018). https://doi.org/10.1038/s41565-018-0251-7
- Q. Zhang, S. Hu, Z. Fan, D. Liu, Y. Zhao et al., Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans. 45, 3497–3505 (2016). https://doi.org/10.1039/C5DT04901F
- H.-S. Choi, M. Suh, Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew. Chem. Int. Ed. 48, 6865–6869 (2009). https://doi.org/10.1002/anie.200902836
- M. Zhang, J. Cheng, X. Xuan, J. Zhou, K. Cen, Pt/graphene aerogel deposited in Cu foam as a 3D binder-free cathode for CO2 reduction into liquid chemicals in a TiO2 photoanode-driven photoelectrochemical cell. Chem. Eng. J. 322, 22–32 (2017). https://doi.org/10.1016/j.cej.2017.03.126
- J. Jiao, Y. Wei, Z. Zhao, W. Zhong, J. Liu et al., Synthesis of 3D ordered macroporous TiO2-supported Au nanop photocatalysts and their photocatalytic performances for the reduction of CO2 to methane. Catal. Today 258, 319–326 (2015). https://doi.org/10.1016/j.cattod.2015.01.030
- H. Jung, K.M. Cho, K.H. Kim, H.-W. Yoo, A. Al-Saggaf et al., Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustain. Chem. Eng. 6, 5718–5724 (2018). https://doi.org/10.1021/acssuschemeng.8b00002
- Y. Wang, Q. Xia, X. Bai, Z. Ge, Q. Yang et al., Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Appl. Catal. B Environ. 239, 196–203 (2018). https://doi.org/10.1016/j.apcatb.2018.08.018
- L. Chen, X. Tang, P. Xie, J. Xu, Z. Chen et al., 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction. Chem. Mater. 30, 799–806 (2018). https://doi.org/10.1021/acs.chemmater.7b04313
- T. Ma, R. Li, Y.-C. Huang, Y. Lu, L. Guo et al., Interfacial chemical-bonded MoS2/In–Bi2MoO6 heterostructure for enhanced photocatalytic nitrogen-to-ammonia conversion. ACS Catal. 14, 6292–6304 (2024). https://doi.org/10.1021/acscatal.3c05416
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
- S.Z. Andersen, V. Čolić, S. Yang, J.A. Schwalbe, A.C. Nielander et al., A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019). https://doi.org/10.1038/s41586-019-1260-x
- Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao et al., Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv. Sci. 6, 1802109 (2019). https://doi.org/10.1002/advs.201802109
- Y. Ren, C. Yu, X. Tan, X. Han, H. Huang et al., Is it appropriate to use the nafion membrane in electrocatalytic N2 reduction? Small Meth. 3, 1900474 (2019). https://doi.org/10.1002/smtd.201900474
- S. Joseph Sekhar, A.S.A. Al-Shahri, G. Glivin, T. Le, T. imani, A critical review of the state-of-the-art green ammonia production technologies- mechanism, advancement, challenges, and future potential. Fuel 358, 130307 (2024). https://doi.org/10.1016/j.fuel.2023.130307
- H. Iriawan, S.Z. Andersen, X. Zhang, B.M. Comer, J. Barrio et al., Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Meth. Primers 1, 56 (2021). https://doi.org/10.1038/s43586-021-00053-y
- C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015). https://doi.org/10.1126/science.aab3987
- L. Zhu, C. Cadigan, C. Duan, J. Huang, L. Bian et al., Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 4, 121 (2021). https://doi.org/10.1038/s42004-021-00559-2
- X. Zhang, C. Pei, Z.-J. Zhao, J. Gong, Towards green and efficient chemical looping ammonia synthesis: design principles and advanced redox catalysts. Energy Environ. Sci. 17, 2381–2405 (2024). https://doi.org/10.1039/d4ee00037d
- Y. Shi, H. Li, X. Liu, X. Zhang, G. Zhan et al., Green energy-driven ammonia production for sustainable development goals. Chem 10, 2636–2650 (2024). https://doi.org/10.1016/j.chempr.2024.06.014
References
J.W. Erisman, M.A. Sutton, J. Galloway, Z. Klimont, W. Winiwarter, How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008). https://doi.org/10.1038/ngeo325
R. Schlögl, Catalytic synthesis of ammonia-a “never-ending story”? Angew. Chem. Int. Ed. 42, 2004–2008 (2003). https://doi.org/10.1002/anie.200301553
I. Rafiqul, C. Weber, B. Lehmann, A. Voss, Energy efficiency improvements in ammonia production: perspectives and uncertainties. Energy 30, 2487–2504 (2005). https://doi.org/10.1016/j.energy.2004.12.004
N.C. Neumann, D. Baumstark, P. López Martínez, N. Monnerie, M. Roeb, Exploiting synergies between sustainable ammonia and nitric acid production: a techno-economic assessment. J. Clean. Prod. 438, 140740 (2024). https://doi.org/10.1016/j.jclepro.2024.140740
R.C. Izaurralde, W.B. McGill, N.J. Rosenberg, Carbon cost of applying nitrogen fertilizer. Science 288, 809 (2000). https://doi.org/10.1126/science.288.5467.809c
C. Smith, A.K. Hill, L. Torrente-Murciano, Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 13, 331–344 (2020). https://doi.org/10.1039/C9EE02873K
C.M. Goodwin, P. Lömker, D. Degerman, B. Davies, M. Shipilin et al., operando probing of the surface chemistry during the Haber-Bosch process. Nature 625, 282–286 (2024). https://doi.org/10.1038/s41586-023-06844-5
M. Byun, D. Lim, B. Lee, A. Kim, I.-B. Lee et al., Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration. Appl. Energy 307, 118183 (2022). https://doi.org/10.1016/j.apenergy.2021.118183
J.N. Galloway, A.R. Townsend, J.W. Erisman, M. Bekunda, Z. Cai et al., Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008). https://doi.org/10.1126/science.1136674
J.G. Chen, R.M. Crooks, L.C. Seefeldt, K.L. Bren, R. Morris Bullock et al., Beyond fossil fuel-driven nitrogen transformations. Science 360, eaar6611 (2018). https://doi.org/10.1126/science.aar6611
Editorials, Green ammonia synthesis. Nat. Synth 2, 581–582 (2023). https://doi.org/10.1038/s44160-023-00362-y
A.J. Medford, M.C. Hatzell, Photon-driven nitrogen fixation: current progress, thermodynamic considerations, and future outlook. ACS Catal. 7, 2624–2643 (2017). https://doi.org/10.1021/acscatal.7b00439
S. Zhang, Y. Zhao, R. Shi, G.I.N. Waterhouse, T. Zhang, Photocatalytic ammonia synthesis: recent progress and future. EnergyChem 1, 100013 (2019). https://doi.org/10.1016/j.enchem.2019.100013
Y. Zhao, Y. Miao, C. Zhou, T. Zhang, Artificial photocatalytic nitrogen fixation: where are we now? Where is its future? Mol. Catal. 518, 112107 (2022). https://doi.org/10.1016/j.mcat.2021.112107
X. Chen, N. Li, Z. Kong, W.-J. Ong, X. Zhao, Photocatalytic fixation of nitrogen to ammonia: state-of-the-art advancements and future prospects. Mater. Horiz. 5, 9–27 (2018). https://doi.org/10.1039/C7MH00557A
C. Van Stappen, L. Decamps, G.E. Cutsail III., R. Bjornsson, J.T. Henthorn et al., The spectroscopy of nitrogenases. Chem. Rev. 120, 5005–5081 (2020). https://doi.org/10.1021/acs.chemrev.9b00650
R. Shi, X. Zhang, G.I.N. Waterhouse, Y. Zhao, T. Zhang, The journey toward low temperature, low pressure catalytic nitrogen fixation. Adv. Energy Mater. 10, 2000659 (2020). https://doi.org/10.1002/aenm.202000659
D.F. Swearer, N.R. Knowles, H.O. Everitt, N.J. Halas, Light-driven chemical looping for ammonia synthesis. ACS Energy Lett. 4, 1505–1512 (2019). https://doi.org/10.1021/acsenergylett.9b00860
S. Chen, D. Liu, T. Peng, Fundamentals and recent progress of photocatalytic nitrogen-fixation reaction over semiconductors. Sol. RRL 5, 2000487 (2021). https://doi.org/10.1002/solr.202000487
H. Li, W. Tu, Y. Zhou, Z. Zou, Z-scheme photocatalytic systems for promoting photocatalytic performance: recent progress and future challenges. Adv. Sci. 3, 1500389 (2016). https://doi.org/10.1002/advs.201500389
H. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance. Adv. Funct. Mater. 25, 998–1013 (2015). https://doi.org/10.1002/adfm.201401636
E. Pastor, M. Sachs, S. Selim, J.R. Durrant, A.A. Bakulin et al., Electronic defects in metal oxide photocatalysts. Nat. Rev. Mater. 7, 503–521 (2022). https://doi.org/10.1038/s41578-022-00433-0
X. Wang, L. Yang, Composition engineering opens an avenue toward efficient and sustainable nitrogen fixation. Energy Environ. Mater. 7, e12600 (2024). https://doi.org/10.1002/eem2.12600
S.-L. Meng, X.-B. Li, C.-H. Tung, L.-Z. Wu, Nitrogenase inspired artificial photosynthetic nitrogen fixation. Chem 7, 1431–1450 (2021). https://doi.org/10.1016/j.chempr.2020.11.002
M.L. Bols, J. Ma, F. Rammal, D. Plessers, X. Wu et al., In situ UV-vis-NIR absorption spectroscopy and catalysis. Chem. Rev. 124, 2352–2418 (2024). https://doi.org/10.1021/acs.chemrev.3c00602
Y. Shi, Z. Zhao, D. Yang, J. Tan, X. Xin et al., Engineering photocatalytic ammonia synthesis. Chem. Soc. Rev. 52, 6938–6956 (2023). https://doi.org/10.1039/d2cs00797e
Y. Xia, Y. Xu, X. Yu, K. Chang, H. Gong et al., Structural design and control of photocatalytic nitrogen-fixing catalysts. J. Mater. Chem. A 10, 17377–17394 (2022). https://doi.org/10.1039/d2ta03977j
M. Saliba, J.P. Atanas, T.M. Howayek, R. Habchi, Molybdenum disulfide, exfoliation methods and applications to photocatalysis: a review. Nanoscale Adv. 5, 6787–6803 (2023). https://doi.org/10.1039/d3na00741c
L. Zhang, S. Hou, T. Wang, S. Liu, X. Gao et al., Recent advances in application of graphitic carbon nitride-based catalysts for photocatalytic nitrogen fixation. Small 18, e2202252 (2022). https://doi.org/10.1002/smll.202202252
C. Hu, Y.-R. Lin, H.-C. Yang, Recent developments in graphitic carbon nitride based hydrogels as photocatalysts. ChemSusChem 12, 1794–1806 (2019). https://doi.org/10.1002/cssc.201802257
X. Chen, Y. Guo, X. Du, Y. Zeng, J. Chu et al., Atomic structure modification for electrochemical nitrogen reduction to ammonia. Adv. Energy Mater. 10, 1903172 (2020). https://doi.org/10.1002/aenm.201903172
G. Li, C. Yang, Q. He, J. Liu, Ag-based photocatalytic heterostructures: construction and photocatalytic energy conversion application. J. Environ. Chem. Eng. 10, 107374 (2022). https://doi.org/10.1016/j.jece.2022.107374
R. Shi, L. Shang, T. Zhang, Three phase interface engineering for advanced catalytic applications. ACS Appl. Energy Mater. 4, 1045–1052 (2021). https://doi.org/10.1021/acsaem.0c02989
C. Gan, W. Yan, Y. Zhang, Q. Jiang, J. Tang, Research progress of two-dimensional layered and related derived materials for nitrogen reduction reaction. Sustainable Energy Fuels 5, 3260–3277 (2021). https://doi.org/10.1039/D1SE00594D
R. Manjunatha, A. Karajić, M. Liu, Z. Zhai, L. Dong et al., A review of composite/hybrid electrocatalysts and photocatalysts for nitrogen reduction reactions: advanced materials, mechanisms, challenges and perspectives. Electrochem. Energy Rev. 3, 506–540 (2020). https://doi.org/10.1007/s41918-020-00069-0
H. Yu, M. Dai, J. Zhang, W. Chen, Q. Jin et al., Interface engineering in 2D/2D heterogeneous photocatalysts. Small 19, 2205767 (2023). https://doi.org/10.1002/smll.202205767
Y. Zhong, C. Peng, Z. He, D. Chen, H. Jia et al., Interface engineering of heterojunction photocatalysts based on 1D nanomaterials. Catal. Sci. Technol. 11, 27–42 (2021). https://doi.org/10.1039/d0cy01847c
X. Li, J. Yu, M. Jaroniec, Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603–2636 (2016). https://doi.org/10.1039/c5cs00838g
Z. Kuspanov, B. Bakbolat, A. Baimenov, A. Issadykov, M. Yeleuov et al., Photocatalysts for a sustainable future: innovations in large-scale environmental and energy applications. Sci. Total. Environ. 885, 163914 (2023). https://doi.org/10.1016/j.scitotenv.2023.163914
Y. Goto, T. Hisatomi, Q. Wang, T. Higashi, K. Ishikiriyama et al., A particulate photocatalyst water-splitting panel for large-scale solar hydrogen generation. Joule 2, 509–520 (2018). https://doi.org/10.1016/j.joule.2017.12.009
T. Hisatomi, K. Domen, Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat. Catal. 2, 387–399 (2019). https://doi.org/10.1038/s41929-019-0242-6
Y. Dong, P. Duchesne, A. Mohan, K.K. Ghuman, P. Kant et al., Shining light on CO2: from materials discovery to photocatalyst, photoreactor and process engineering. Chem. Soc. Rev. 49, 5648–5663 (2020). https://doi.org/10.1039/d0cs00597e
R. Samriti, O. Tyagi, J. Ruzimuradov, Prakash, Fabrication methods and mechanisms for designing highly-efficient photocatalysts for energy and environmental applications. Mater. Chem. Phys. 307, 128108 (2023). https://doi.org/10.1016/j.matchemphys.2023.128108
Y. Qu, X. Duan, Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 42, 2568–2580 (2013). https://doi.org/10.1039/c2cs35355e
F. Salvadores, O.M. Alfano, M.M. Ballari, Kinetic study of air treatment by photocatalytic paints under indoor radiation source: Influence of ambient conditions and photocatalyst content. Appl. Catal. B Environ. 268, 118694 (2020). https://doi.org/10.1016/j.apcatb.2020.118694
T.W. van Deelen, C. Hernández Mejía, K.P. de Jong, Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019). https://doi.org/10.1038/s41929-019-0364-x
H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi et al., Photocatalytic solar hydrogen production from water on a 100–m2 scale. Nature 598, 304–307 (2021). https://doi.org/10.1038/s41586-021-03907-3
T.-Y. Dai, C.-C. Yang, Q. Jiang, Recent progress on catalyst design of nitrogen reduction reaction by density functional theory. Sci. China Mater. 67, 1101–1123 (2024). https://doi.org/10.1007/s40843-023-2847-1
A.N. Singh, R. Anand, M. Zafari, M. Ha, K.S. Kim, Progress in single/multi atoms and 2D-nanomaterials for electro/photocatalytic nitrogen reduction: experimental, computational and machine leaning developments. Adv. Energy Mater. 14, 2304106 (2024). https://doi.org/10.1002/aenm.202304106
A.E. Shilov, Catalytic reduction of molecular nitrogen in solutions. Russ. Chem. Bull. 52, 2555–2562 (2003). https://doi.org/10.1023/b:rucb.0000019873.81002.60
N. Bauer, Theoretical pathways for the reduction of N2 molecules in aqueous media: thermodynamics of N2Hn1. J. Phys. Chem. 64, 833–837 (1960). https://doi.org/10.1021/j100836a001
C.J.M. van der Ham, M.T.M. Koper, D.G.H. Hetterscheid, Challenges in reduction of dinitrogen by proton and electron transfer. Chem. Soc. Rev. 43, 5183–5191 (2014). https://doi.org/10.1039/C4CS00085D
B.M. Hoffman, D.R. Dean, L.C. Seefeldt, Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc. Chem. Res. 42, 609–619 (2009). https://doi.org/10.1021/ar8002128
T.H. Rod, A. Logadottir, J.K. Nørskov, Ammonia synthesis at low temperatures. J. Chem. Phys. 112, 5343–5347 (2000). https://doi.org/10.1063/1.481103
H.P. Jia, E.A. Quadrelli, Mechanistic aspects of dinitrogen cleavage and hydrogenation to produce ammonia in catalysis and organometallic chemistry: relevance of metal hydride bonds and dihydrogen. Chem. Soc. Rev. 43, 547–564 (2014). https://doi.org/10.1039/c3cs60206k
C. Guo, J. Ran, A. Vasileff, S.-Z. Qiao, Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH3) under ambient conditions. Energy Environ. Sci. 11, 45–56 (2018). https://doi.org/10.1039/C7EE02220D
X. Cui, C. Tang, Q. Zhang, A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions. Adv. Energy Mater. 8, 1800369 (2018). https://doi.org/10.1002/aenm.201800369
V. Kordali, G. Kyriacou, C. Lambrou, Electrochemical synthesis of ammonia at atmospheric pressure and low temperature in a solid polymer electrolyte cell. Cheminform 31, 48–010 (2000). https://doi.org/10.1002/chin.200048010
E. Skúlason, T. Bligaard, S. Gudmundsdóttir, F. Studt, J. Rossmeisl et al., A theoretical evaluation of possible transition metal electro-catalysts for N2 reduction. Phys. Chem. Chem. Phys. 14, 1235–1245 (2012). https://doi.org/10.1039/C1CP22271F
Z.W. Seh, J. Kibsgaard, C.F. Dickens, I. Chorkendorff, J.K. Nørskov et al., Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017). https://doi.org/10.1126/science.aad4998
C. Yue, L. Qiu, M. Trudeau, D. Antonelli, Compositional effects in Ru, Pd, Pt, and Rh-doped mesoporous tantalum oxide catalysts for ammonia synthesis. Inorg. Chem. 46, 5084–5092 (2007). https://doi.org/10.1021/ic062385d
S. Back, Y. Jung, On the mechanism of electrochemical ammonia synthesis on the Ru catalyst. Phys. Chem. Chem. Phys. 18, 9161–9166 (2016). https://doi.org/10.1039/C5CP07363D
J. Lin, X. Lin, S. Lu, W. Liao, T. Qi et al., Sulfur defect engineering boosted nitrogen activation over FeS2 for efficient electrosynthesis of ammonia. Chem. Eng. Sci. 300, 120664 (2024). https://doi.org/10.1016/j.ces.2024.120664
Z. Sun, J. Lin, S. Lu, Y. Li, T. Qi et al., Interfacial engineering boosting the activity and stability of MIL-53(Fe) toward electrocatalytic nitrogen reduction. Langmuir 40, 5469–5478 (2024). https://doi.org/10.1021/acs.langmuir.3c04025
W. Liao, L. Qi, Y. Wang, J. Qin, G. Liu et al., Interfacial engineering promoting electrosynthesis of ammonia over Mo/phosphotungstic acid with high performance. Adv. Funct. Mater. 31, 2009151 (2021). https://doi.org/10.1002/adfm.202009151
Y. Xiong, B. Li, Y. Gu, T. Yan, Z. Ni et al., Photocatalytic nitrogen fixation under an ambient atmosphere using a porous coordination polymer with bridging dinitrogen anions. Nat. Chem. 15, 286–293 (2023). https://doi.org/10.1038/s41557-022-01088-8
C. Hu, X. Chen, J. Jin, Y. Han, S. Chen et al., Surface plasmon enabling nitrogen fixation in pure water through a dissociative mechanism under mild conditions. J. Am. Chem. Soc. 141, 7807–7814 (2019). https://doi.org/10.1021/jacs.9b01375
B.-H. Wang, B. Hu, G.-H. Chen, X. Wang, S. Tian et al., Plasmon-induced photocatalytic nitrogen fixation on medium-spin Au3Fe1/Mo single-atom alloy antenna reactor. Chem Catal. 4, 101083 (2024). https://doi.org/10.1016/j.checat.2024.101083
N. Lehnert, B.W. Musselman, L.C. Seefeldt, Grand challenges in the nitrogen cycle. Chem. Soc. Rev. 50, 3640–3646 (2021). https://doi.org/10.1039/d0cs00923g
X. Wei, C. Chen, X.-Z. Fu, S. Wang, Oxygen vacancies-rich metal oxide for electrocatalytic nitrogen cycle. Adv. Energy Mater. 14, 2303027 (2024). https://doi.org/10.1002/aenm.202303027
X. Zhang, R. Shi, Z. Li, J. Zhao, H. Huang et al., Photothermal-assisted photocatalytic nitrogen oxidation to nitric acid on palladium-decorated titanium oxide. Adv. Energy Mater. 12, 2103740 (2022). https://doi.org/10.1002/aenm.202103740
Y. Liu, M. Cheng, Z. He, B. Gu, C. Xiao et al., Pothole-rich ultrathin WO3 nanosheets that trigger N≡N bond activation of nitrogen for direct nitrate photosynthesis. Angew. Chem. Int. Ed. 58, 731–735 (2019). https://doi.org/10.1002/anie.201808177
S. Lu, G. Lin, H. Yan, Y. Li, T. Qi et al., In situ facet transformation engineering over Co3O4 for highly efficient electroreduction of nitrate to ammonia. ACS Catal. 14, 14887–14894 (2024). https://doi.org/10.1021/acscatal.4c05292
Y. Nie, H. Yan, S. Lu, H. Zhang, T. Qi et al., Theory-guided construction of Cu-O-Ti-Ov active sites on Cu/TiO2 catalysts for efficient electrocatalytic nitrate reduction. Chin. J. Catal. 59, 293–302 (2024). https://doi.org/10.1016/S1872-2067(23)64618-2
D. Liu, H. Yan, J. Lin, S. Lu, Y. Xie et al., Regulation of cerium species in Keggin structure of phosphotungstic acid for efficient nitrogen electroreduction to ammonia. Chem. Eng. Sci. 283, 119448 (2024). https://doi.org/10.1016/j.ces.2023.119448
A. Slattery, Z. Wen, P. Tenblad, J. Sanjosé-Orduna, D. Pintossi et al., Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024). https://doi.org/10.1126/science.adj1817
Y. Zhou, D.E. Doronkin, Z. Zhao, P.N. Plessow, J. Jelic et al., Photothermal catalysis over nonplasmonic Pt/TiO2 studied by operando HERFD-XANES, resonant XES, and DRIFTS. ACS Catal. 8, 11398–11406 (2018). https://doi.org/10.1021/acscatal.8b03724
O.B. Lapina, Modern ssNMR for heterogeneous catalysis. Catal. Today 285, 179–193 (2017). https://doi.org/10.1016/j.cattod.2016.11.005
L. Shen, L. Peng, 17O solid-state NMR studies of oxygen-containing catalysts. Chin. J. Catal. 36, 1494–1504 (2015). https://doi.org/10.1016/S1872-2067(15)60931-7
X. Yao, Z. Zhao, G. Hou, Development of in situ mas nmr and its applications in material synthesis and heterogeneous catalysis Chin. J. Struc. Chem. 41, 2210045–2210055 (2022). https://doi.org/10.14102/j.cnki.0254-5861.2022-0166
G. Porat-Dahlerbruch, J. Struppe, T. Polenova, High-efficiency low-power 13C–15N cross polarization in MAS NMR. J. Magn. Reson. 361, 107649 (2024). https://doi.org/10.1016/j.jmr.2024.107649
D.L. Bryce, Double-rotation (DOR) NMR spectroscopy: progress and perspectives. Solid State Nucl. Magn. Reson. 130, 101923 (2024). https://doi.org/10.1016/j.ssnmr.2024.101923
Y. Xie, L. Hua, K. Hou, P. Chen, W. Zhao et al., Long-term real-time monitoring catalytic synthesis of ammonia in a microreactor by VUV-lamp-based charge-transfer ionization time-of-flight mass spectrometry. Anal. Chem. 86, 7681–7687 (2014). https://doi.org/10.1021/ac501576f
S. Bourgeois, D. Diakite, M. Perdereau, A study of TiO2 powders as a support for the photochemical synthesis of ammonia. React. Solids 6, 95–104 (1988). https://doi.org/10.1016/0168-7336(88)80048-2
H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, Photocatalytic conversion of nitrogen to ammonia with water on surface oxygen vacancies of titanium dioxide. J. Am. Chem. Soc. 139, 10929–10936 (2017). https://doi.org/10.1021/jacs.7b06634
H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed{001}facets. J. Am. Chem. Soc. 137, 6393–6399 (2015). https://doi.org/10.1021/jacs.5b03105
G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3, 23435–23441 (2015). https://doi.org/10.1039/C5TA06540B
S. Hu, X. Chen, Q. Li, Y. Zhao, W. Mao, Effect of sulfur vacancies on the nitrogen photofixation performance of ternary metal sulfide photocatalysts. Catal. Sci. Technol. 6, 5884–5890 (2016). https://doi.org/10.1039/C6CY00622A
Y. Cao, S. Hu, F. Li, Z. Fan, J. Bai et al., Photofixation of atmospheric nitrogen to ammonia with a novel ternary metal sulfide catalyst under visible light. RSC Adv. 6, 49862–49867 (2016). https://doi.org/10.1039/C6RA08247E
S. Cao, B. Fan, Y. Feng, H. Chen, F. Jiang et al., Sulfur-doped g-C3N4 nanosheets with carbon vacancies: general synthesis and improved activity for simulated solar-light photocatalytic nitrogen fixation. Chem. Eng. J. 353, 147–156 (2018). https://doi.org/10.1016/j.cej.2018.07.116
S. Wang, X. Hai, X. Ding, K. Chang, Y. Xiang et al., Light-switchable oxygen vacancies in ultrafine Bi5O7Br nanotubes for boosting solar-driven nitrogen fixation in pure water. Adv. Mater. 29, 1701774 (2017). https://doi.org/10.1002/adma.201701774
H. Li, J. Shang, J. Shi, K. Zhao, L. Zhang, Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 8, 1986–1993 (2016). https://doi.org/10.1039/c5nr07380d
Y. Bai, L. Ye, T. Chen, L. Wang, X. Shi et al., Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets. ACS Appl. Mater. Interfaces 8, 27661–27668 (2016). https://doi.org/10.1021/acsami.6b08129
G.N. Schrauzer, T.D. Guth, Photolysis of water and photoreduction of nitrogen on titanium dioxide. J. Am. Chem. Soc. 99, 7189–7193 (1977). https://doi.org/10.1021/ja00464a015
P.P. Radford, C.G. Francis, Photoreduction of nitrogen by metal doped titanium dioxide powders: a novel use for metal vapour techniques. J. Chem. Soc. Chem. Commun. (1983). https://doi.org/10.1039/c39830001520
J. Soria, J.C. Conesa, V. Augugliaro, L. Palmisano, M. Schiavello et al., Dinitrogen photoreduction to ammonia over titanium dioxide powders doped with ferric ions. J. Phys. Chem. 95, 274–282 (1991). https://doi.org/10.1021/j100154a052
W. Zhao, J. Zhang, X. Zhu, M. Zhang, J. Tang et al., Enhanced nitrogen photofixation on Fe-doped TiO2 with highly exposed (101) facets in the presence of ethanol as scavenger. Appl. Catal. B Environ. 144, 468–477 (2014). https://doi.org/10.1016/j.apcatb.2013.07.047
O.A. Ileperuma, K. Tennakone, W.D.D.P. Dissanayake, Photocatalytic behaviour of metal doped titanium dioxide studies on the photochemical synthesis of ammonia on Mg/TiO2 catalyst systems. Appl. Catal. 62, L1–L5 (1990). https://doi.org/10.1016/S0166-9834(00)82226-5
L. Palmisano, V. Augugliaro, A. Sclafani, M. Schiavello, Activity of chromium-ion-doped titania for the dinitrogen photoreduction to ammonia and for the phenol photodegradation. J. Phys. Chem. 92, 6710–6713 (1988). https://doi.org/10.1021/j100334a044
O.A. Ileperuma, C.T.K. Thaminimulla, W.C.B. Kiridena, Photoreduction of N2 to NH3 and H2O to H2 on metal doped TiO2 catalysts (M = Ce, V). Sol. Energy Mater. Sol. Cells 28, 335–343 (1993). https://doi.org/10.1016/0927-0248(93)90121-I
K.T. Ranjit, T.K. Varadarajan, B. Viswanathan, Photocatalytic reduction of dinitrogen to ammonia over noble-metal-loaded TiO2. J. Photochem. Photobiol. A Chem. 96, 181–185 (1996). https://doi.org/10.1016/1010-6030(95)04290-3
O.P. Linnik, H. Kisch, Dinitrogen photofixation at ruthenium-modified titania films. Mendeleev Commun. 18, 10–11 (2008). https://doi.org/10.1016/j.mencom.2008.01.004
H. Miyama, N. Fujii, Y. Nagae, Heterogeneous photocatalytic synthesis of ammonia from water and nitrogen. Chem. Phys. Lett. 74, 523–524 (1980). https://doi.org/10.1016/0009-2614(80)85266-3
C.M. Janet, S. Navaladian, B. Viswanathan, T.K. Varadarajan, R.P. Viswanath, Heterogeneous wet chemical synthesis of superlattice-type hierarchical ZnO architectures for concurrent H2 production and N2 reduction. J. Phys. Chem. C 114, 2622–2632 (2010). https://doi.org/10.1021/jp908683x
S. Hu, X. Chen, Q. Li, F. Li, Z. Fan et al., Fe3+ doping promoted N2 photofixation ability of honeycombed graphitic carbon nitride: The experimental and density functional theory simulation analysis. Appl. Catal. B Environ. 201, 58–69 (2017). https://doi.org/10.1016/j.apcatb.2016.08.002
N. Zhang, A. Jalil, D. Wu, S. Chen, Y. Liu et al., Refining defect states in W18O49 by Mo doping: a strategy for tuning N2 activation towards solar-driven nitrogen fixation. J. Am. Chem. Soc. 140, 9434–9443 (2018). https://doi.org/10.1021/jacs.8b02076
X. Li, W. Wang, D. Jiang, S. Sun, L. Zhang et al., Efficient solar-driven nitrogen fixation over carbon-tungstic-acid hybrids. Chemistry 22, 13819–13822 (2016). https://doi.org/10.1002/chem.201603277
D. Zhu, L. Zhang, R.E. Ruther, R.J. Hamers, Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction. Nat. Mater. 12, 836–841 (2013). https://doi.org/10.1038/nmat3696
G. Ren, J. Zhao, Z. Zhao, Z. Li, L. Wang et al., Defects-induced single-atom anchoring on metal-organic frameworks for high-efficiency photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 63, e202314408 (2024). https://doi.org/10.1002/anie.202314408
T. Ogawa, T. Kitamura, T. Shibuya, K. Hoshino, Characterization and material conditions of conducting polymer/titanium oxide hybrid systems used for dinitrogen fixation under ordinary pressure and temperature. Electrochem. Commun. 6, 55–60 (2004). https://doi.org/10.1016/j.elecom.2003.10.015
K. Hoshino, R. Kuchii, T. Ogawa, Dinitrogen photofixation properties of different titanium oxides in conducting polymer/titanium oxide hybrid systems. Appl. Catal. B Environ. 79, 81–88 (2008). https://doi.org/10.1016/j.apcatb.2007.10.007
V. Augugliaro, F. D’Alba, L. Rizzuti, M. Schiavello, A. Sclafani, Conversion of solar energy to chemical energy by photoassisted processes: II. Influence of the iron content on the activity of doped titanium dioxide catalysts for ammonia photoproduction. Int. J. Hydrog. Energy 7, 851–855 (1982). https://doi.org/10.1016/0360-3199(82)90002-7
V. Augugliaro, A. Lauricella, L. Rizzuti, M. Schiavello, A. Sclafani, Conversion of solar energy to chemical energy by photoassisted processes: I. Preliminary results on ammonia production over doped titanium dioxide catalysts in a fluidized bed reactor. Int. J. Hydrog. Energy 7, 845–849 (1982). https://doi.org/10.1016/0360-3199(82)90001-5
M.M. Khader, N.N. Lichtin, G.H. Vurens, M. Salmeron, G.A. Somorjai, Photoassisted catalytic dissociation of water and reduction of nitrogen to ammonia on partially reduced ferric oxide. Langmuir 3, 303–304 (1987). https://doi.org/10.1021/la00074a028
M.M. Taqui Khan, R.C. Bhardwaj, C. Bhardwaj, Catalytic fixation of nitrogen by the photocatalytic CdS/Pt/RuO2 particulate system in the presence of aqueous [Ru(hedta)N2] ⊖ complex. Angew. Chem. Int. Ed. 27, 923–925 (1988). https://doi.org/10.1002/anie.198809231
M.M. Taqui Khan, N. Nageswara Rao, Stepwise reduction of coordinated dinitrogen to ammonia via diazinido and hydrazido intermediates on a visible light irradiated Pt/CdS · Ag2S/RuO2 particulate system suspended in an aqueous solution of K[Ru(EDTA-H)Cl]2H2O. J. Photochem. Photobiol. A Chem. 56, 101–111 (1991). https://doi.org/10.1016/1010-6030(91)80010-F
K.A. Brown, D.F. Harris, M.B. Wilker, A. Rasmussen, N. Khadka et al., Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid. Science 352, 448–450 (2016). https://doi.org/10.1126/science.aaf2091
A. Banerjee, B.D. Yuhas, E.A. Margulies, Y. Zhang, Y. Shim et al., Photochemical nitrogen conversion to ammonia in ambient conditions with FeMoS-chalcogels. J. Am. Chem. Soc. 137, 2030–2034 (2015). https://doi.org/10.1021/ja512491v
J. Liu, M.S. Kelley, W. Wu, A. Banerjee, A.P. Douvalis et al., Nitrogenase-mimic iron-containing chalcogels for photochemical reduction of dinitrogen to ammonia. Proc. Natl. Acad. Sci. U.S.A. 113, 5530–5535 (2016). https://doi.org/10.1073/pnas.1605512113
S. Hu, Y. Li, F. Li, Z. Fan, H. Ma et al., Construction of g-C3N4/Zn0.11Sn0.12Cd0.88S1.12 hybrid heterojunction catalyst with outstanding nitrogen photofixation performance induced by sulfur vacancies. ACS Sustainable Chem. Eng. 4, 2269–2278 (2016). https://doi.org/10.1021/acssuschemeng.5b01742
J. Low, C. Jiang, B. Cheng, S. Wageh, A.A. Al-Ghamdi et al., A review of direct Z-scheme photocatalysts. Small Meth. 1, 1700080 (2017). https://doi.org/10.1002/smtd.201700080
Y. Wang, W. Wei, M. Li, S. Hu, J. Zhang et al., In situ construction of Z-scheme g-C3N4/Mg1.1Al0.3Fe0.2O1.7 nanorod heterostructures with high N2 photofixation ability under visible light. RSC Adv. 7, 18099–18107 (2017). https://doi.org/10.1039/C7RA00097A
H. Liang, H. Zou, S. Hu, Preparation of the W18O49/g-C3N4 heterojunction catalyst with full-spectrum-driven photocatalytic N2 photofixation ability from the UV to near infrared region. New J. Chem. 41, 8920–8926 (2017). https://doi.org/10.1039/C7NJ01848G
S. Cao, N. Zhou, F. Gao, H. Chen, F. Jiang, All-solid-state Z-scheme 3, 4-dihydroxybenzaldehyde-functionalized Ga2O3/graphitic carbon nitride photocatalyst with aromatic rings as electron mediators for visible-light photocatalytic nitrogen fixation. Appl. Catal. B Environ. 218, 600–610 (2017). https://doi.org/10.1016/j.apcatb.2017.07.013
W. Wang, H. Zhang, S. Zhang, Y. Liu, G. Wang et al., Potassium-ion-assisted regeneration of active cyano groups in carbon nitride nanoribbons: visible-light-driven photocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 58, 16644–16650 (2019). https://doi.org/10.1002/anie.201908640
S. Hu, W. Zhang, J. Bai, G. Lu, L. Zhang et al., Construction of a 2D/2D g-C3N4/rGO hybrid heterojunction catalyst with outstanding charge separation ability and nitrogen photofixation performance via a surface protonation process. RSC Adv. 6, 25695–25702 (2016). https://doi.org/10.1039/C5RA28123G
Y. Yang, T. Zhang, Z. Ge, Y. Lu, H. Chang et al., Highly enhanced stability and efficiency for atmospheric ammonia photocatalysis by hot electrons from a graphene composite catalyst with Al2O3. Carbon 124, 72–78 (2017). https://doi.org/10.1016/j.carbon.2017.07.014
Y. Lu, Y. Yang, T. Zhang, Z. Ge, H. Chang et al., Photoprompted hot electrons from bulk cross-linked graphene materials and their efficient catalysis for atmospheric ammonia synthesis. ACS Nano 10, 10507–10515 (2016). https://doi.org/10.1021/acsnano.6b06472
J. Yang, Y. Guo, R. Jiang, F. Qin, H. Zhang et al., High-efficiency “working-in-tandem” nitrogen photofixation achieved by assembling plasmonic gold nanocrystals on ultrathin titania nanosheets. J. Am. Chem. Soc. 140, 8497–8508 (2018). https://doi.org/10.1021/jacs.8b03537
L. Li, Y. Wang, S. Vanka, X. Mu, Z. Mi et al., Nitrogen photofixation over III-nitride nanowires assisted by ruthenium clusters of low atomicity. Angew. Chem. Int. Ed. 56, 8701–8705 (2017). https://doi.org/10.1002/anie.201703301
C.R. Dickson, A.J. Nozik, Nitrogen fixation via photoenhanced reduction on p-gallium phosphide electrodes. J. Am. Chem. Soc. 100, 8007–8009 (1978). https://doi.org/10.1021/ja00493a039
L. Pan, S. Sun, Y. Chen, P. Wang, J. Wang et al., Advances in piezo-phototronic effect enhanced photocatalysis and photoelectrocatalysis. Adv. Energy Mater. 10, 2000214 (2020). https://doi.org/10.1002/aenm.202000214
J. Yuan, W. Feng, Y. Zhang, J. Xiao, X. Zhang et al., Unraveling synergistic effect of defects and piezoelectric field in breakthrough piezo-photocatalytic N2 reduction. Adv. Mater. 36, 2303845 (2024). https://doi.org/10.1002/adma.202303845
Q.-S. Li, K. Domen, S. Naito, T. Onishi, K. Tamaru, Photocatalytic synthesis and photodecomposition of ammonia over SrTiO3 and BaTiO3 based catalysts. Chem. Lett. 12, 321–324 (1983). https://doi.org/10.1246/cl.1983.321
O. Rusina, O. Linnik, A. Eremenko, H. Kisch, Nitrogen photofixation on nanostructured iron titanate films. Chemistry 9, 561–565 (2003). https://doi.org/10.1002/chem.200390059
S. Linic, P. Christopher, D.B. Ingram, Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011). https://doi.org/10.1038/nmat3151
T. Oshikiri, K. Ueno, H. Misawa, Plasmon-induced ammonia synthesis through nitrogen photofixation with visible light irradiation. Angew. Chem. Int. Ed. 53, 9802–9805 (2014). https://doi.org/10.1002/anie.201404748
T. Oshikiri, K. Ueno, H. Misawa, Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation. Angew. Chem. Int. Ed. 55, 3942–3946 (2016). https://doi.org/10.1002/anie.201511189
Y. Hao, X. Dong, S. Zhai, H. Ma, X. Wang et al., Hydrogenated bismuth molybdate nanoframe for efficient sunlight-driven nitrogen fixation from air. Chemistry 22, 18722–18728 (2016). https://doi.org/10.1002/chem.201604510
C. Li, T. Wang, Z.-J. Zhao, W. Yang, J.-F. Li et al., Promoted fixation of molecular nitrogen with surface oxygen vacancies on plasmon-enhanced TiO2 photoelectrodes. Angew. Chem. Int. Ed. 57, 5278–5282 (2018). https://doi.org/10.1002/anie.201713229
H. Zeng, S. Terazono, T. Tanuma, A novel catalyst for ammonia synthesis at ambient temperature and pressure: Visible light responsive photocatalyst using localized surface plasmon resonance. Catal. Commun. 59, 40–44 (2015). https://doi.org/10.1016/j.catcom.2014.09.034
M. Ali, F. Zhou, K. Chen, C. Kotzur, C. Xiao et al., Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016). https://doi.org/10.1038/ncomms11335
J. Zheng, Y. Lyu, M. Qiao, R. Wang, Y. Zhou et al., Photoelectrochemical synthesis of ammonia on the aerophilic-hydrophilic heterostructure with 37.8% efficiency. Chem 5, 617–633 (2019). https://doi.org/10.1016/j.chempr.2018.12.003
J. Li, H. Li, G. Zhan, L. Zhang, Solar water splitting and nitrogen fixation with layered bismuth oxyhalides. Acc. Chem. Res. 50, 112–121 (2017). https://doi.org/10.1021/acs.accounts.6b00523
Y. Mi, M. Zhou, L. Wen, H. Zhao, Y. Lei, A highly efficient visible-light driven photocatalyst: two dimensional square-like bismuth oxyiodine nanosheets. Dalton Trans. 43, 9549–9556 (2014). https://doi.org/10.1039/c4dt00798k
D.S. Bhachu, S.J.A. Moniz, S. Sathasivam, D.O. Scanlon, A. Walsh et al., Bismuth oxyhalides: synthesis, structure and photoelectrochemical activity. Chem. Sci. 7, 4832–4841 (2016). https://doi.org/10.1039/c6sc00389c
A. Henríquez, H.D. Mansilla, A.M. Martínez-de la Cruz, J. Freer, D. Contreras, Selective oxofunctionalization of cyclohexane over titanium dioxide–based and bismuth oxyhalide (BiOX, X=Cl-, Br-, I-) photocatalysts by visible light irradiation. Appl. Catal. B Environ. 206, 252–262 (2017). https://doi.org/10.1016/j.apcatb.2017.01.022
H. Cheng, B. Huang, Y. Dai, Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 6, 2009–2026 (2014). https://doi.org/10.1039/C3NR05529A
W. Dai, S. Zhang, H. Shang, S. Xiao, Z. Tian et al., Breaking the selectivity barrier: reactive oxygen species control in photocatalytic nitric oxide conversion. Adv. Funct. Mater. 34, 2309426 (2024). https://doi.org/10.1002/adfm.202309426
M. Cheng, H. Li, Z. Wu, Z. Yu, X. Tao et al., Synergistic effects of CQDs and oxygen vacancies on CeO2 photocatalyst for efficient photocatalytic nitrogen fixation. Sep. Purif. Technol. 354, 129299 (2025). https://doi.org/10.1016/j.seppur.2024.129299
J. Wu, N. Li, H.-B. Fang, X. Li, Y.-Z. Zheng et al., Nitrogen vacancies modified graphitic carbon nitride: scalable and one-step fabrication with efficient visible-light-driven hydrogen evolution. Chem. Eng. J. 358, 20–29 (2019). https://doi.org/10.1016/j.cej.2018.09.208
H. Wang, M. Li, H. Li, Q. Lu, Y. Zhang et al., Porous graphitic carbon nitride with controllable nitrogen vacancies: as promising catalyst for enhanced degradation of pollutant under visible light. Mater. Des. 162, 210–218 (2019). https://doi.org/10.1016/j.matdes.2018.11.049
L.J. Fang, X.L. Wang, J.J. Zhao, Y.H. Li, Y.L. Wang et al., One-step fabrication of porous oxygen-doped g-C3N4 with feeble nitrogen vacancies for enhanced photocatalytic performance. Chem. Commun. 52, 14408–14411 (2016). https://doi.org/10.1039/C6CC08187H
G. Wu, Y. Gao, B. Zheng, Template-free method for synthesizing sponge-like graphitic carbon nitride with a large surface area and outstanding nitrogen photofixation ability induced by nitrogen vacancies. Ceram. Int. 42, 6985–6992 (2016). https://doi.org/10.1016/j.ceramint.2016.01.086
X. Bao, X. Lv, Z. Wang, M. Wang, M. Liu et al., Nitrogen vacancy enhanced photocatalytic selective oxidation of benzyl alcohol in g-C3N4. Int. J. Hydrog. Energy 46, 37782–37791 (2021). https://doi.org/10.1016/j.ijhydene.2021.09.052
G. Zhang, C.D. Sewell, P. Zhang, H. Mi, Z. Lin, Nanostructured photocatalysts for nitrogen fixation. Nano Energy 71, 104645 (2020). https://doi.org/10.1016/j.nanoen.2020.104645
X. Wang, J. You, Y. Xue, J. Ren, K. Zhang et al., Structural regulation of three-dimensional bismuth vanadate nanochannels for excellent visible light photocatalytic nitrogen fixation. Appl. Catal. B Environ. Energy 363, 124817 (2025). https://doi.org/10.1016/j.apcatb.2024.124817
S.R. Ede, S. Anantharaj, K. Sakthikumar, K. Karthick, S. Kundu, Investigation of various synthetic protocols for self-assembled nanomaterials and their role in catalysis: progress and perspectives. Mater. Today Chem. 10, 31–78 (2018). https://doi.org/10.1016/j.mtchem.2018.07.003
X. Han, W.-W. He, T. Zhou, S. Ma, Prussian blue analogue-derived materials for photocatalysis. Inorg. Chem. Front. 11, 3707–3730 (2024). https://doi.org/10.1039/d4qi00612g
Z. Ye, P. Lu, Y. Chen, Z. Xu, H. Huang et al., Synthesis and photocatalytic property of Au-TiO2 nanocomposites with controlled morphologies in microfluidic chips. Lab Chip 24, 2253–2261 (2024). https://doi.org/10.1039/d3lc01053h
S. Wang, G. Liu, L. Wang, Crystal facet engineering of photoelectrodes for photoelectrochemical water splitting. Chem. Rev. 119, 5192–5247 (2019). https://doi.org/10.1021/acs.chemrev.8b00584
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
L. Jiang, K. Liu, S.F. Hung, L. Zhou, R. Qin et al., Facet engineering accelerates spillover hydrogenation on highly diluted metal nanocatalysts. Nat. Nanotechnol. 15, 848–853 (2020). https://doi.org/10.1038/s41565-020-0746-x
M.G. Lee, J.W. Yang, H. Park, C.W. Moon, D.M. Andoshe et al., Crystal facet engineering of TiO2 nanostructures for enhancing photoelectrochemical water splitting with BiVO4 nanodots. Nano-Micro Lett. 14, 48 (2022). https://doi.org/10.1007/s40820-022-00795-8
J. Jiang, K. Zhao, X. Xiao, L. Zhang, Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets. J. Am. Chem. Soc. 134, 4473–4476 (2012). https://doi.org/10.1021/ja210484t
L. Xiong, Y. Hu, Y. Yang, Q. Deng, Z. Tang et al., Electron pump strengthened facet engineering: organic half-metallic C(CN)3 enclosed (100) facet exposed WO3 for efficient and selective photocatalytic nitrogen fixation. Appl. Catal. B Environ. 317, 121660 (2022). https://doi.org/10.1016/j.apcatb.2022.121660
R. Wu, S. Gao, C. Jones, M. Sun, M. Guo et al., Bi/BSO heterojunctions via vacancy engineering for efficient photocatalytic nitrogen fixation. Adv. Funct. Mater. 34, 2314051 (2024). https://doi.org/10.1002/adfm.202314051
F. Guo, J.-H. Guo, P. Wang, Y.-S. Kang, Y. Liu et al., Facet-dependent photocatalytic hydrogen production of metal-organic framework NH2-MIL-125(Ti). Chem. Sci. 10, 4834–4838 (2019). https://doi.org/10.1039/c8sc05060k
C.-H. Kuo, I.M. Mosa, S. Thanneeru, V. Sharma, L. Zhang et al., Facet-dependent catalytic activity of MnO electrocatalysts for oxygen reduction and oxygen evolution reactions. Chem. Commun. 51, 5951–5954 (2015). https://doi.org/10.1039/C5CC01152C
S. Rej, C.-F. Hsia, T.-Y. Chen, F.-C. Lin, J.-S. Huang et al., Facet-dependent and light-assisted efficient hydrogen evolution from ammonia borane using gold-palladium core-shell nanocatalysts. Angew. Chem. Int. Ed. 55, 7222–7226 (2016). https://doi.org/10.1002/anie.201603021
C. Ran, W. Gao, N. Li, Y. Xia, Q. Li et al., Facet-dependent control of PbI2 colloids for over 20% efficient perovskite solar cells. ACS Energy Lett. 4, 358–367 (2019). https://doi.org/10.1021/acsenergylett.8b02262
H. Tong, Y. Zhou, G. Chang, P. Li, R. Zhu et al., Anatase TiO2 single crystals with dominant{0 0 1}facets: synthesis, shape-control mechanism and photocatalytic activity. Appl. Surf. Sci. 444, 267–275 (2018). https://doi.org/10.1016/j.apsusc.2018.03.069
S. Wu, Z. Chen, W. Yue, S. Mine, T. Toyao et al., Single-atom high-valent Fe(IV) for promoted photocatalytic nitrogen hydrogenation on porous TiO2-SiO2. ACS Catal. 11, 4362–4371 (2021). https://doi.org/10.1021/acscatal.1c00072
O. Samuel, M.H.D. Othman, R. Kamaludin, O. Sinsamphanh, H. Abdullah et al., WO3–based photocatalysts: a review on synthesis, performance enhancement and photocatalytic memory for environmental applications. Ceram. Int. 48, 5845–5875 (2022). https://doi.org/10.1016/j.ceramint.2021.11.158
A. Chawla, A. Sudhaik, P. Sonu, T.A. Raizada et al., Bi-rich BixOyBrz-based photocatalysts for energy conversion and environmental remediation: a review. Coord. Chem. Rev. 491, 215246 (2023). https://doi.org/10.1016/j.ccr.2023.215246
R.-T. Guo, X. Hu, X. Chen, Z.-X. Bi, J. Wang et al., Recent progress of three-dimensionally ordered macroporous (3DOM) materials in photocatalytic applications: a review. Small 19, e2207767 (2023). https://doi.org/10.1002/smll.202207767
Z.-F. Huang, J. Song, L. Pan, X. Zhang, L. Wang et al., Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Adv. Mater. 27, 5309–5327 (2015). https://doi.org/10.1002/adma.201501217
S.-R. Fan, Y.-H. Chen, L.-M. Xu, J.-Q. Shen, X.-L. Chen et al., Amophous-crystalline interface coupling p-n junction over Co3O4@MoS2 to synergical trigger nitrogen reduction to ammonia. Surf. Interfaces 46, 103967 (2024). https://doi.org/10.1016/j.surfin.2024.103967
K. Li, S. Zhang, Q. Tan, X. Wu, Y. Li et al., Insulator in photocatalysis: essential roles and activation strategies. Chem. Eng. J. 426, 130772 (2021). https://doi.org/10.1016/j.cej.2021.130772
S. Liu, C.-W. Pao, J.-L. Chen, S. Li, K. Chen et al., A general flame aerosol route to high-entropy nanoceramics. Matter 7, 3994–4013 (2024). https://doi.org/10.1016/j.matt.2024.07.019
R. Koirala, S.E. Pratsinis, A. Baiker, Synthesis of catalytic materials in flames: opportunities and challenges. Chem. Soc. Rev. 45, 3053–3068 (2016). https://doi.org/10.1039/C5CS00011D
S. Liu, M.M. Mohammadi, M.T. Swihart, Fundamentals and recent applications of catalyst synthesis using flame aerosol technology. Chem. Eng. J. 405, 126958 (2021). https://doi.org/10.1016/j.cej.2020.126958
A. Samriti, R. Upadhyay, O. Gupta, J.P. Ruzimuradov, Recent progress on doped ZnO nanostructures and its photocatalytic applications (Springer, Cham, 2022), pp.1–30. https://doi.org/10.1007/978-3-030-69023-6_59-1
W. Jin, C.-Y. Yang, R. Pau, Q. Wang, E.K. Tekelenburg et al., Photocatalytic doping of organic semiconductors. Nature 630, 96–101 (2024). https://doi.org/10.1038/s41586-024-07400-5
J.A. Oke, T.-C. Jen, Atomic layer deposition and other thin film deposition techniques: from principles to film properties. J. Mater. Res. Technol. 21, 2481–2514 (2022). https://doi.org/10.1016/j.jmrt.2022.10.064
M. Seifollahi Bazarjani, M. Hojamberdiev, K. Morita, G. Zhu, G. Cherkashinin et al., Visible light photocatalysis with c-WO(3–x)/WO3 × H2O nanoheterostructures in situ formed in mesoporous polycarbosilane-siloxane polymer. J. Am. Chem. Soc. 135, 4467–4475 (2013). https://doi.org/10.1021/ja3126678
A.A. Wood, D.J. McCloskey, N. Dontschuk, A. Lozovoi, R.M. Goldblatt et al., 3D-mapping and manipulation of photocurrent in an optoelectronic diamond device. Adv. Mater. 36, e2405338 (2024). https://doi.org/10.1002/adma.202405338
C. He, H. Wu, K. Zhang, Y. Liu, Q. Wang et al., Efficient deep ultraviolet emission from self-organized AlGaN quantum wire array grown on ultrathin step-bunched AlN templates. Cryst. Growth Des. 24, 1551–1559 (2024). https://doi.org/10.1021/acs.cgd.3c00990
B.T. Tran, H. Hirayama, Growth and fabrication of high external quantum efficiency AlGaN-based deep ultraviolet light-emitting diode grown on pattern Si substrate. Sci. Rep. 7, 12176 (2017). https://doi.org/10.1038/s41598-017-11757-1
M.S. Iqbal, Z.-B. Yao, Y.-K. Ruan, R. Iftikhar, L.-D. Hao et al., Single-atom catalysts for electrochemical N2 reduction to NH3. Rare Met. 42, 1075–1097 (2023). https://doi.org/10.1007/s12598-022-02215-7
X.-F. Li, Q.-K. Li, J. Cheng, L. Liu, Q. Yan et al., Conversion of dinitrogen to ammonia by FeN3-embedded graphene. J. Am. Chem. Soc. 138, 8706–8709 (2016). https://doi.org/10.1021/jacs.6b04778
C. Ling, X. Niu, Q. Li, A. Du, J. Wang, Metal-free single atom catalyst for N2 fixation driven by visible light. J. Am. Chem. Soc. 140, 14161–14168 (2018). https://doi.org/10.1021/jacs.8b07472
B. Fan, M. Jiang, G. Wang, Y. Zhao, B. Mei et al., Elucidation of hemilabile-coordination-induced tunable regioselectivity in single-site Rh-catalyzed heterogeneous hydroformylation. Nat. Commun. 15, 6967 (2024). https://doi.org/10.1038/s41467-024-51281-1
L. Zeng, K. Cheng, F. Sun, Q. Fan, L. Li et al., Stable anchoring of single rhodium atoms by indium in zeolite alkane dehydrogenation catalysts. Science 383, 998–1004 (2024). https://doi.org/10.1126/science.adk5195
G.-F. Han, F. Li, A.I. Rykov, Y.-K. Im, S.-Y. Yu et al., Abrading bulk metal into single atoms. Nat. Nanotechnol. 17, 403–407 (2022). https://doi.org/10.1038/s41565-022-01075-7
K. Hoshino, M. Inui, T. Kitamura, H. Kokado, Fixation of dinitrogen to a mesoscale solid salt using a titanium oxide/conducting polymer system. Angew. Chem. Int. Ed. 39, 2509–2512 (2000). https://doi.org/10.1002/1521-3773(20000717)39:14%3c2509::AID-ANIE2509%3e3.0.CO;2-I
K. Hoshino, New avenues in dinitrogen fixation research. Chemistry 7, 2727–2731 (2001). https://doi.org/10.1002/1521-3765(20010702)7:13%3c2727::aid-chem2727%3e3.0.co;2-4
C. Liu, J.J. Gallagher, K.K. Sakimoto, E.M. Nichols, C.J. Chang et al., Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett. 15, 3634–3639 (2015). https://doi.org/10.1021/acs.nanolett.5b01254
K.K. Sakimoto, A.B. Wong, P. Yang, Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351, 74–77 (2016). https://doi.org/10.1126/science.aad3317
C. Liu, B.C. Colón, M. Ziesack, P.A. Silver, D.G. Nocera, Water splitting-biosynthetic system with CO2 reduction efficiencies exceeding photosynthesis. Science 352, 1210–1213 (2016). https://doi.org/10.1126/science.aaf5039
N. Kornienko, J.Z. Zhang, K.K. Sakimoto, P. Yang, E. Reisner, Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018). https://doi.org/10.1038/s41565-018-0251-7
Q. Zhang, S. Hu, Z. Fan, D. Liu, Y. Zhao et al., Preparation of g-C3N4/ZnMoCdS hybrid heterojunction catalyst with outstanding nitrogen photofixation performance under visible light via hydrothermal post-treatment. Dalton Trans. 45, 3497–3505 (2016). https://doi.org/10.1039/C5DT04901F
H.-S. Choi, M. Suh, Highly selective CO2 capture in flexible 3D coordination polymer networks. Angew. Chem. Int. Ed. 48, 6865–6869 (2009). https://doi.org/10.1002/anie.200902836
M. Zhang, J. Cheng, X. Xuan, J. Zhou, K. Cen, Pt/graphene aerogel deposited in Cu foam as a 3D binder-free cathode for CO2 reduction into liquid chemicals in a TiO2 photoanode-driven photoelectrochemical cell. Chem. Eng. J. 322, 22–32 (2017). https://doi.org/10.1016/j.cej.2017.03.126
J. Jiao, Y. Wei, Z. Zhao, W. Zhong, J. Liu et al., Synthesis of 3D ordered macroporous TiO2-supported Au nanop photocatalysts and their photocatalytic performances for the reduction of CO2 to methane. Catal. Today 258, 319–326 (2015). https://doi.org/10.1016/j.cattod.2015.01.030
H. Jung, K.M. Cho, K.H. Kim, H.-W. Yoo, A. Al-Saggaf et al., Highly efficient and stable CO2 reduction photocatalyst with a hierarchical structure of mesoporous TiO2 on 3D graphene with few-layered MoS2. ACS Sustain. Chem. Eng. 6, 5718–5724 (2018). https://doi.org/10.1021/acssuschemeng.8b00002
Y. Wang, Q. Xia, X. Bai, Z. Ge, Q. Yang et al., Carbothermal activation synthesis of 3D porous g-C3N4/carbon nanosheets composite with superior performance for CO2 photoreduction. Appl. Catal. B Environ. 239, 196–203 (2018). https://doi.org/10.1016/j.apcatb.2018.08.018
L. Chen, X. Tang, P. Xie, J. Xu, Z. Chen et al., 3D printing of artificial leaf with tunable hierarchical porosity for CO2 photoreduction. Chem. Mater. 30, 799–806 (2018). https://doi.org/10.1021/acs.chemmater.7b04313
T. Ma, R. Li, Y.-C. Huang, Y. Lu, L. Guo et al., Interfacial chemical-bonded MoS2/In–Bi2MoO6 heterostructure for enhanced photocatalytic nitrogen-to-ammonia conversion. ACS Catal. 14, 6292–6304 (2024). https://doi.org/10.1021/acscatal.3c05416
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0
S.Z. Andersen, V. Čolić, S. Yang, J.A. Schwalbe, A.C. Nielander et al., A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature 570, 504–508 (2019). https://doi.org/10.1038/s41586-019-1260-x
Y. Zhao, R. Shi, X. Bian, C. Zhou, Y. Zhao et al., Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH3 production rates? Adv. Sci. 6, 1802109 (2019). https://doi.org/10.1002/advs.201802109
Y. Ren, C. Yu, X. Tan, X. Han, H. Huang et al., Is it appropriate to use the nafion membrane in electrocatalytic N2 reduction? Small Meth. 3, 1900474 (2019). https://doi.org/10.1002/smtd.201900474
S. Joseph Sekhar, A.S.A. Al-Shahri, G. Glivin, T. Le, T. imani, A critical review of the state-of-the-art green ammonia production technologies- mechanism, advancement, challenges, and future potential. Fuel 358, 130307 (2024). https://doi.org/10.1016/j.fuel.2023.130307
H. Iriawan, S.Z. Andersen, X. Zhang, B.M. Comer, J. Barrio et al., Methods for nitrogen activation by reduction and oxidation. Nat. Rev. Meth. Primers 1, 56 (2021). https://doi.org/10.1038/s43586-021-00053-y
C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders et al., Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 349, 1321–1326 (2015). https://doi.org/10.1126/science.aab3987
L. Zhu, C. Cadigan, C. Duan, J. Huang, L. Bian et al., Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Commun. Chem. 4, 121 (2021). https://doi.org/10.1038/s42004-021-00559-2
X. Zhang, C. Pei, Z.-J. Zhao, J. Gong, Towards green and efficient chemical looping ammonia synthesis: design principles and advanced redox catalysts. Energy Environ. Sci. 17, 2381–2405 (2024). https://doi.org/10.1039/d4ee00037d
Y. Shi, H. Li, X. Liu, X. Zhang, G. Zhan et al., Green energy-driven ammonia production for sustainable development goals. Chem 10, 2636–2650 (2024). https://doi.org/10.1016/j.chempr.2024.06.014