In Situ X-ray Absorption Spectroscopy Studies of Nanoscale Electrocatalysts
Corresponding Author: Zhenxing Feng
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 47
Abstract
Nanoscale electrocatalysts have exhibited promising activity and stability, improving the kinetics of numerous electrochemical reactions in renewable energy systems such as electrolyzers, fuel cells, and metal-air batteries. Due to the size effect, nano particles with extreme small size have high surface areas, complicated morphology, and various surface terminations, which make them different from their bulk phases and often undergo restructuring during the reactions. These restructured materials are hard to probe by conventional ex-situ characterizations, thus leaving the true reaction centers and/or active sites difficult to determine. Nowadays, in situ techniques, particularly X-ray absorption spectroscopy (XAS), have become an important tool to obtain oxidation states, electronic structure, and local bonding environments, which are critical to investigate the electrocatalysts under real reaction conditions. In this review, we go over the basic principles of XAS and highlight recent applications of in situ XAS in studies of nanoscale electrocatalysts.
Highlights:
1 This is the first review paper on the studies of electrocatalysts using advanced in situ X-ray absorption spectroscopy (XAS).
2 This paper reviews the literatures to-date on new applications of in situ XAS (e.g., single-atom catalysts, surface reactions, nanoparticle size, and site occupation) that traditional XAS has not touched.
3 This review focuses mostly on recent publications after 2010.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Nie, L. Li, Z.D. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015). https://doi.org/10.1039/c4cs00484a
- W. Xia, A. Mahmood, Z.B. Liang, R.Q. Zou, S.J. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55(8), 2650–2676 (2016). https://doi.org/10.1002/anie.201504830
- C. Wei, Z.X. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn, Z.C.J. Xu, Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). https://doi.org/10.1002/adma.201606800
- Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22), 7746–7786 (2014). https://doi.org/10.1039/c3cs60248f
- C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
- Y. Wang, J. Li, Z.D. Wei, Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 8194–8209 (2018). https://doi.org/10.1039/c8ta01321g
- N. Kornienko, Y.B. Zhao, C.S. Kiley, C.H. Zhu, D. Kim et al., Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137(44), 14129–14135 (2015). https://doi.org/10.1021/jacs.5b08212
- Z. Weng, X. Zhang, Y.S. Wu, S.J. Huo, J.B. Jiang et al., Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem. Int. Ed. 56(42), 13135–13139 (2017). https://doi.org/10.1002/anie.201707478
- Y.S. Wu, J.B. Jiang, Z. Weng, M.Y. Wang, D.L.J. Broere et al., Electroreduction of CO2 catalyzed by a heterogenized zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 3(8), 847–852 (2017). https://doi.org/10.1021/acscentsci.7b00160
- X. Zhang, Z.S. Wu, X. Zhang, L.W. Li, Y.Y. Li et al., Highly selective and active CO2 reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
- S. Sen, F. Sen, G. Gokagac, Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys. 13(15), 6784–6792 (2011). https://doi.org/10.1039/c1cp20064j
- Z.H. Wen, S.Q. Ci, F. Zhang, X.L. Feng, S.M. Cui et al., Nitrogen-enriched core-shell structured Fe/Fe3C–C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(11), 1399–1404 (2012). https://doi.org/10.1002/adma.201104392
- M.B. Gawande, A. Goswami, T. Asefa, H.Z. Guo, A.V. Biradar et al., Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44(21), 7540–7590 (2015). https://doi.org/10.1039/c5cs00343a
- F. Li, D.R. MacFarlane, J. Zhang, Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10(14), 6235–6260 (2018). https://doi.org/10.1039/C7NR09620H
- D. Zhou, L.P. Yang, L.H. Yu, J.H. Kong, X.Y. Yao et al., Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale 7(4), 1501–1509 (2015). https://doi.org/10.1039/c4nr06366j
- S. Gupta, L. Qiao, S. Zhao, H. Xu, Y. Lin et al., Highly active and stable graphene tubes decorated with feconi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv. Energy Mater. 6(22), 1601198 (2016). https://doi.org/10.1002/aenm.201601198
- Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
- C. Costentin, S. Drouet, M. Robert, J.M. Saveant, A local proton source enhances CO2 electroreduction to Co by a molecular Fe catalyst. Science 338(6103), 90–94 (2012). https://doi.org/10.1126/science.1224581
- Y.M. Li, J.H.C. Liu, C.A. Witham, W.Y. Huang, M.A. Marcus et al., A pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J. Am. Chem. Soc. 133(34), 13527–13533 (2011). https://doi.org/10.1021/ja204191t
- C.M. Gunathunge, X. Li, J.Y. Li, R.P. Hicks, V.J. Ovalle, M.M. Waegele, Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121(22), 12337–12344 (2017). https://doi.org/10.1021/acs.jpcc.7b03910
- Z. Weng, Y.S. Wu, M.Y. Wang, J.B. Jiang, K. Yang et al., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018). https://doi.org/10.1038/s41467-018-02819-7
- G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, 2010)
- S. Calvin, XAFS for Everyone (CRC Press, Boca Raton, 2018)
- C.S. Schnohr, M.C. Ridgway, X-ray Absorption Spectroscopy of Semiconductors, Springer Series in Optical Sciences (Springer, Berlin, 2015)
- D.C. Koningsberger, R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988)
- J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72(3), 621–654 (2000). https://doi.org/10.1103/RevModPhys.72.621
- J.J. Rehr, A.L. Ankudinov, Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 249(1–2), 131–140 (2005). https://doi.org/10.1016/j.ccr.2004.02.014
- F. Boscherini, X-ray absorption fine structure in the study of semiconductor heterostructures and nanostructures. Charact. Semicond. Heterostruct. Nanostruct. (2008). https://doi.org/10.1016/B978-0-444-53099-8.00009-9
- J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2011). https://doi.org/10.1002/9781119998365
- J.J. Rehr, J.J. Kas, F.D. Vila, M.P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12(21), 5503–5513 (2010). https://doi.org/10.1039/b926434e
- G.T. Seidler, D.R. Mortensen, A.J. Remesnik, J.I. Pacold, N.A. Ball, N. Barry, M. Styczinski, O.R. Hoidn, A laboratory-based hard x-ray monochromator for high-resolution X-ray emission spectroscopy and X-ray absorption near edge structure measurements. Rev. Sci. Instrum. 85, 113906 (2014). https://doi.org/10.1063/1.4901599
- A. Williams, Laboratory X-ray spectrometer for EXAFS and XANES measurements. Rev. Sci. Instrum. 54(2), 193–197 (1983). https://doi.org/10.1063/1.1137344
- D.N. Wang, J.G. Zhou, Y.F. Hu, J.L. Yang, N. Han, Y.G. Li, T.K. Sham, In situ X-ray absorption near-edge structure study of advanced NiFe(OH)(x) electrocatalyst on carbon paper for water oxidation. J. Phys. Chem. C 119(34), 19573–19583 (2015). https://doi.org/10.1021/acs.jpcc.5b02685
- K. Fottinger, J.A. van Bokhoven, M. Nachtegaal, G. Rupprechter, Dynamic structure of a working methanol steam reforming catalyst: in situ quick-EXAFS on Pd/ZnO nanoparticles. J. Phys. Chem. Lett. 2(5), 428–433 (2011). https://doi.org/10.1021/jz101751s
- K. Sasaki, N. Marinkovic, H.S. Isaacs, R.R. Adzic, Synchrotron-based in situ characterization of carbon-supported platinum and platinum mono layer electrocatalysts. ACS Catal. 6(1), 69–76 (2016). https://doi.org/10.1021/acscatal.5b01862
- Z. Cai, D.J. Zhou, M.Y. Wang, S.M. Bak, Y.S. Wu et al., Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 57, 9392–9396 (2018). https://doi.org/10.1002/anie.201804881
- C. Wei, Z.X. Feng, M. Baisariyev, L.H. Yu, L. Zeng et al., Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X = Mn Co, Ni, Fe). Chem. Mater. 28(12), 4129–4133 (2016). https://doi.org/10.1021/acs.chemmater.6b00713
- T. Kaito, H. Tanaka, H. Mitsumoto, S. Sugawara, K. Shinohara et al., In situ X-ray absorption fine structure analysis of PtCo, PtCu, and PtNi alloy electrocatalysts: the correlation of enhanced oxygen reduction reaction activity and structure. J. Phys. Chem. C 120(21), 11519–11527 (2016). https://doi.org/10.1021/acs.jpcc.6b01736
- T. Kaito, H. Mitsumoto, S. Sugawara, K. Shinohara, H. Uehara et al., K-edge X-ray absorption fine structure analysis of Pt/Au core–shell electrocatalyst: evidence for short Pt–Pt distance. J. Phys. Chem. C 118(16), 8481–8490 (2014). https://doi.org/10.1021/jp501607f
- K. Strickland, M.W. Elise, Q.Y. Jia, U. Tylus, N. Ramaswamy et al., Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 6, 7343 (2015). https://doi.org/10.1038/ncomms8343
- F.L. Yang, Y.T. Chen, G.Z. Cheng, S.L. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7(6), 3824–3831 (2017). https://doi.org/10.1021/acscatal.7b00587
- D.H. Ha, B.H. Han, M. Risch, L. Giordano, K.P.C. Yao, P. Karayaylali, Y. Shao-Horn, Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy 29, 37–45 (2016). https://doi.org/10.1016/j.nanoen.2016.04.034
- B.J. Kim, D.F. Abbott, X. Cheng, E. Fabbri, M. Nachtegaal et al., Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 7(5), 3245–3256 (2017). https://doi.org/10.1021/acscatal.6b03171
- W. Sun, Y. Song, X.Q. Gong, L.M. Cao, J. Yang, Hollandite structure Kx≈0.25IrO2 catalyst with highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 8(1), 820–826 (2016). https://doi.org/10.1021/acsami.5b10159
- R.Q. Zhang, H. Li, J.S. McEwen, Chemical sensitivity of valence-to-core X-ray emission spectroscopy due to the ligand and the oxidation state: a computational study on Cu-SSZ-13 with multiple H2O and NH3 adsorption. J. Phys. Chem. C 121(46), 25759–25767 (2017). https://doi.org/10.1021/acs.jpcc.7b04309
- R.Q. Zhang, J.S. McEwen, Local environment sensitivity of the Cu k-edge XANES features in Cu-SSZ-13: analysis from first-principles. J. Phys. Chem. Lett. 9(11), 3035–3042 (2018). https://doi.org/10.1021/acs.jpclett.8b00675
- D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137(3), 1305–1313 (2015). https://doi.org/10.1021/ja511559d
- M.A. Soldatov, A. Martini, A.L. Bugaev, I. Pankin, P.V. Medvedev et al., The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of metal-organic frameworks. Polyhedron 155, 232–253 (2018). https://doi.org/10.1016/j.poly.2018.08.004
- J.J. Willis, A. Gallo, D. Sokaras, H. Aljama, S.H. Nowak et al., Systematic structure property relationship studies in palladium catalyzed methane complete combustion. ACS Catal. 7(11), 7810–7821 (2017). https://doi.org/10.1021/acscatal.7b02414
- Y. Zhou, D.E. Doronkin, M.L. Chen, S.Q. Wei, J.D. Grunwaldt, Interplay of Pt and crystal facets of TiO2: Co oxidation activity and operando XAS/drifts studies. ACS Catal. 6(11), 7799–7809 (2016). https://doi.org/10.1021/acscatal.6b01509
- S.R. Bare, S.D. Kelly, F.D. Vila, E. Boldingh, E. Karapetrova et al., Experimental (XAS, STEM, TPR, and XPS) and theoretical (DFT) characterization of supported rhenium catalysts. J. Phys. Chem. C 115(13), 5740–5755 (2011). https://doi.org/10.1021/jp1105218
- J.J. Rehr, J.J. Kas, M.P. Prange, A.P. Sorini, Y. Takimoto, F. Vila, Ab initio theory and calculations of X-ray spectra. C. R. Phys. 10(6), 548–559 (2009). https://doi.org/10.1016/j.crhy.2008.08.004
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condes. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- C. Gougoussis, M. Calandra, A.P. Seitsonen, F. Mauri, First-principles calculations of X-ray absorption in a scheme based on ultrasoft pseudopotentials: from alpha-quartz to high-Tc compounds. Phys. Rev. B 80(7), 075102 (2009). https://doi.org/10.1103/PhysRevB.80.075102
- M. Taillefumier, D. Cabaret, A.M. Flank, F. Mauri, X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K-edge in diamond and alpha-quartz. Phys. Rev. B 66(19), 195107 (2002). https://doi.org/10.1103/PhysRevB.66.195107
- S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using castep. Z. Kristall. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
- A. Baby, H. Lin, A. Ravikumar, C. Bittencourt, H.A. Wegner, L. Floreano, A. Goldoni, G. Fratesi, Lattice mismatch drives spatial modulation of corannulene tilt on Ag(111). J. Phys. Chem. C 122(19), 10365–10376 (2018). https://doi.org/10.1021/acs.jpcc.7b11581
- B.P. Klein, N.J. van der Heijden, S.R. Kachel, M. Franke, C.K. Krug et al., Molecular topology and the surface chemical bond: alternant versus nonalternant aromatic systems as functional structural elements. Phys. Rev. X 9(1), 011030 (2019). https://doi.org/10.1103/PhysRevX.9.011030
- A. Ugolotti, S.S. Harivyasi, A. Baby, M. Dominguez, A.L. Pinardi et al., Chemisorption of pentacene on Pt(111) with a little molecular distortion. J. Phys. Chem. C 121(41), 22797–22805 (2017). https://doi.org/10.1021/acs.jpcc.7b06555
- L. Triguero, L.G.M. Pettersson, H. Agren, Calculations of near-edge X-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 58(12), 8097–8110 (1998). https://doi.org/10.1103/PhysRevB.58.8097
- K. Diller, R.J. Maurer, M. Muller, K. Reuter, Interpretation of X-ray absorption spectroscopy in the presence of surface hybridization. J. Chem. Phys. 146(21), 214701 (2017). https://doi.org/10.1063/1.4984072
- V.A. Saveleva, L. Wang, D. Teschner, T. Jones, A.S. Gago et al., Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. J. Phys. Chem. Lett. 9(11), 3154–3160 (2018). https://doi.org/10.1021/acs.jpclett.8b00810
- H.Y. Wang, S.F. Hung, H.Y. Chen, T.S. Chan, H.M. Chen, B. Liu, In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138(1), 36–39 (2016). https://doi.org/10.1021/jacs.5b10525
- T. Vitova, J. Hormes, K. Peithmann, T. Woike, X-ray absorption spectroscopy study of valence and site occupation of copper in LiNbO3:Cu. Phys. Rev. B 77(14), 144103 (2008). https://doi.org/10.1103/PhysRevB.77.144103
- H.Y. Wang, S.F. Hung, Y.Y. Hsu, L.L. Zhang, J.W. Miao, T.S. Chan, Q.H. Xiong, B. Liu, In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J. Phys. Chem. Lett. 7(23), 4847–4853 (2016). https://doi.org/10.1021/acs.jpclett.6b02147
- A. Jentys, Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1(17), 4059–4063 (1999). https://doi.org/10.1039/a904654b
- A.I. Frenkel, A. Yevick, C. Cooper, R. Vasic, Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu. Rev. Anal. Chem. 4, 23–39 (2011). https://doi.org/10.1146/annurev-anchem-061010-113906
- A.I. Frenkel, Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J. Synchrotron Radiat. 6, 293–295 (1999). https://doi.org/10.1107/S0909049598017786
- D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra, D.G. Nocera, Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 134(15), 6801–6809 (2012). https://doi.org/10.1021/ja301018q
- M. Yoshida, Y. Mitsutomi, T. Mineo, M. Nagasaka, H. Yuzawa, N. Kosugi, H. Kondoh, Direct observation of active nickel oxide cluster in nickel borate electrocatalyst for water oxidation by in situ O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 119(33), 19279–19286 (2015). https://doi.org/10.1021/acs.jpcc.5b06102
- M.W. Kanan, J. Yano, Y. Surendranath, M. Dinca, V.K. Yachandra, D.G. Nocera, Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132(39), 13692–13701 (2010). https://doi.org/10.1021/ja1023767
- U. Tylus, Q.Y. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 118(17), 8999–9008 (2014). https://doi.org/10.1021/jp500781v
- X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30(11), 1706758 (2018). https://doi.org/10.1002/adma.201706758
- H.G. Zhang, S. Hwang, M.Y. Wang, Z.X. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139(40), 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514
- H. Funke, A.C. Scheinost, M. Chukalina, Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71(9), 094110 (2005). https://doi.org/10.1103/PhysRevB.71.094110
- H. Funke, M. Chukalina, A.C. Scheinost, A new FEFF-based wavelet for EXAFS data analysis. J. Synchrotron Radiat. 14, 426–432 (2007). https://doi.org/10.1107/S0909049507031901
- H.B. Zhang, P.F. An, W. Zhou, B.Y. Guan, P. Zhang, J.C. Dong, X.W. Lou, Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
- L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). https://doi.org/10.1021/nn901850u
- M. Newville, Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014). https://doi.org/10.2138/rmg.2014.78.2
- M.L. Baker, M.W. Mara, J.J. Yan, K.O. Hodgson, B. Hedman, E.I. Solomon, K- and l-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017). https://doi.org/10.1016/j.ccr.2017.02.004
- M. Wang, B. Han, J. Deng, Y. Jiang, M. Zhou et al., Influence of Fe substitution into LaCOO3 electrocatalysts on oxygen-reduction activity. ACS Appl. Mater. Interfaces 11(6), 5682–5686 (2019). https://doi.org/10.1021/acsami.8b20780
- C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, C.U. Segre, In situ Ru K-edge X-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst. J. Phys. Chem. C 117(37), 18904–18912 (2013). https://doi.org/10.1021/jp404342z
- L.R. Merte, F. Behafarid, D.J. Miller, D. Friebel, S. Cho et al., Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy. ACS Catal. 2(11), 2371–2376 (2012). https://doi.org/10.1021/cs300494f
- K. Sasaki, K.A. Kuttiyiel, D. Su, R.R. Adzic, Platinum monolayer on IrFe core-shell nanoparticle electrocatalysts for the oxygen reduction reaction. Electrocatalysis 2(2), 134–140 (2011). https://doi.org/10.1007/s12678-011-0048-z
- D. Friebel, D.J. Miller, C.P. O’Grady, T. Anniyev, J. Bargar et al., In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys. Chem. Chem. Phys. 13(1), 262–266 (2011). https://doi.org/10.1039/c0cp01434f
- J. Suntivich, W.T. Hong, Y.L. Lee, J.M. Rondinelli, W.L. Yang et al., Estimating hybridization of transition metal and oxygen states in perovskites, from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856–1863 (2014). https://doi.org/10.1021/jp410644j
- Y. Wu, H. Fu, A. Roy, P.F. Song, Y.C. Lin, O. Kizilkaya, J. Xu, Facile one-pot synthesis of 3D graphite-SiO2 composite foam for negative resistance devices. RSC Adv. 7(66), 41812–41818 (2017). https://doi.org/10.1039/c7ra07465d
- O. Muller, M. Nachtegaal, J. Just, D. Lutzenkirchen-Hecht, R. Frahm, Quick-EXAFS setup at the superxas beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J. Synchrotron Radiat. 23, 260–266 (2016). https://doi.org/10.1107/S1600577515018007
- X.Q. Yu, Q. Wang, Y.N. Zhou, H. Li, X.Q. Yang et al., High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. Chem. Commun. 48(94), 11537–11539 (2012). https://doi.org/10.1039/c2cc36382h
- M. Goesten, E. Stavitski, E.A. Pidko, C. Gucuyener, B. Boshuizen et al., The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chem. Eur. J. 19(24), 7809–7816 (2013). https://doi.org/10.1002/chem.201204638
- J. Li, F. Che, Y. Pang, C. Zou, J.Y. Howe et al., Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9(1), 4614 (2018). https://doi.org/10.1038/s41467-018-07032-0
- S. Ozawa, H. Matsui, N. Ishiguro, Y. Tan, N. Maejima et al., Operando time-resolved X-ray absorption fine structure study for Pt oxidation kinetics on Pt/C and Pt3CO/C cathode catalysts by polymer electrolyte fuel cell voltage operation synchronized with rapid O2 exposure. J. Phys. Chem. C 122(26), 14511–14517 (2018). https://doi.org/10.1021/acs.jpcc.8b02541
- Y.J. Yan, W.M. Zhang, J.W. Che, Time-frequency theory of pump-probe absorption spectroscopy. J. Chem. Phys. 106(6), 2212–2224 (1997). https://doi.org/10.1063/1.473146
- G. Khitrova, P.R. Berman, M. Sargent, Theory of pump probe spectroscopy. J. Opt. Soc. Am. B 5(1), 160–170 (1988). https://doi.org/10.1364/Josab.5.000160
- E. Goulielmakis, Z.H. Loh, A. Wirth, R. Santra, N. Rohringer et al., Real-time observation of valence electron motion. Nature 466(7307), 739–743 (2010). https://doi.org/10.1038/nature09212
- C.J. Milne, R.M. Van der Veen, V.T. Pham, F.A. Lima, H. Rittmann-Frank et al., Ultrafast X-ray absorption studies of the structural dynamics of molecular and biological systems in solution. Chimia 65(5), 303–307 (2011). https://doi.org/10.2533/chimia.2011.303
References
Y. Nie, L. Li, Z.D. Wei, Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 44(8), 2168–2201 (2015). https://doi.org/10.1039/c4cs00484a
W. Xia, A. Mahmood, Z.B. Liang, R.Q. Zou, S.J. Guo, Earth-abundant nanomaterials for oxygen reduction. Angew. Chem. Int. Ed. 55(8), 2650–2676 (2016). https://doi.org/10.1002/anie.201504830
C. Wei, Z.X. Feng, G.G. Scherer, J. Barber, Y. Shao-Horn, Z.C.J. Xu, Cations in octahedral sites: a descriptor for oxygen electrocatalysis on transition-metal spinels. Adv. Mater. 29(23), 1606800 (2017). https://doi.org/10.1002/adma.201606800
Z.L. Wang, D. Xu, J.J. Xu, X.B. Zhang, Oxygen electrocatalysts in metal-air batteries: from aqueous to nonaqueous electrolytes. Chem. Soc. Rev. 43(22), 7746–7786 (2014). https://doi.org/10.1039/c3cs60248f
C.Z. Yuan, H.B. Wu, Y. Xie, X.W. Lou, Mixed transition-metal oxides: design, synthesis, and energy-related applications. Angew. Chem. Int. Ed. 53(6), 1488–1504 (2014). https://doi.org/10.1002/anie.201303971
Y. Wang, J. Li, Z.D. Wei, Transition-metal-oxide-based catalysts for the oxygen reduction reaction. J. Mater. Chem. A 6, 8194–8209 (2018). https://doi.org/10.1039/c8ta01321g
N. Kornienko, Y.B. Zhao, C.S. Kiley, C.H. Zhu, D. Kim et al., Metal-organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137(44), 14129–14135 (2015). https://doi.org/10.1021/jacs.5b08212
Z. Weng, X. Zhang, Y.S. Wu, S.J. Huo, J.B. Jiang et al., Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem. Int. Ed. 56(42), 13135–13139 (2017). https://doi.org/10.1002/anie.201707478
Y.S. Wu, J.B. Jiang, Z. Weng, M.Y. Wang, D.L.J. Broere et al., Electroreduction of CO2 catalyzed by a heterogenized zn-porphyrin complex with a redox-innocent metal center. ACS Cent. Sci. 3(8), 847–852 (2017). https://doi.org/10.1021/acscentsci.7b00160
X. Zhang, Z.S. Wu, X. Zhang, L.W. Li, Y.Y. Li et al., Highly selective and active CO2 reduction electro-catalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017). https://doi.org/10.1038/ncomms14675
S. Sen, F. Sen, G. Gokagac, Preparation and characterization of nano-sized Pt-Ru/C catalysts and their superior catalytic activities for methanol and ethanol oxidation. Phys. Chem. Chem. Phys. 13(15), 6784–6792 (2011). https://doi.org/10.1039/c1cp20064j
Z.H. Wen, S.Q. Ci, F. Zhang, X.L. Feng, S.M. Cui et al., Nitrogen-enriched core-shell structured Fe/Fe3C–C nanorods as advanced electrocatalysts for oxygen reduction reaction. Adv. Mater. 24(11), 1399–1404 (2012). https://doi.org/10.1002/adma.201104392
M.B. Gawande, A. Goswami, T. Asefa, H.Z. Guo, A.V. Biradar et al., Core–shell nanoparticles: synthesis and applications in catalysis and electrocatalysis. Chem. Soc. Rev. 44(21), 7540–7590 (2015). https://doi.org/10.1039/c5cs00343a
F. Li, D.R. MacFarlane, J. Zhang, Recent advances in the nanoengineering of electrocatalysts for CO2 reduction. Nanoscale 10(14), 6235–6260 (2018). https://doi.org/10.1039/C7NR09620H
D. Zhou, L.P. Yang, L.H. Yu, J.H. Kong, X.Y. Yao et al., Fe/N/C hollow nanospheres by Fe(iii)-dopamine complexation-assisted one-pot doping as nonprecious-metal electrocatalysts for oxygen reduction. Nanoscale 7(4), 1501–1509 (2015). https://doi.org/10.1039/c4nr06366j
S. Gupta, L. Qiao, S. Zhao, H. Xu, Y. Lin et al., Highly active and stable graphene tubes decorated with feconi alloy nanoparticles via a template-free graphitization for bifunctional oxygen reduction and evolution. Adv. Energy Mater. 6(22), 1601198 (2016). https://doi.org/10.1002/aenm.201601198
Y.G. Li, H.L. Wang, L.M. Xie, Y.Y. Liang, G.S. Hong, H.J. Dai, MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133(19), 7296–7299 (2011). https://doi.org/10.1021/ja201269b
C. Costentin, S. Drouet, M. Robert, J.M. Saveant, A local proton source enhances CO2 electroreduction to Co by a molecular Fe catalyst. Science 338(6103), 90–94 (2012). https://doi.org/10.1126/science.1224581
Y.M. Li, J.H.C. Liu, C.A. Witham, W.Y. Huang, M.A. Marcus et al., A pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: X-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J. Am. Chem. Soc. 133(34), 13527–13533 (2011). https://doi.org/10.1021/ja204191t
C.M. Gunathunge, X. Li, J.Y. Li, R.P. Hicks, V.J. Ovalle, M.M. Waegele, Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C 121(22), 12337–12344 (2017). https://doi.org/10.1021/acs.jpcc.7b03910
Z. Weng, Y.S. Wu, M.Y. Wang, J.B. Jiang, K. Yang et al., Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction. Nat. Commun. 9, 415 (2018). https://doi.org/10.1038/s41467-018-02819-7
G. Bunker, Introduction to XAFS: A Practical Guide to X-ray Absorption Fine Structure Spectroscopy (Cambridge University Press, Cambridge, 2010)
S. Calvin, XAFS for Everyone (CRC Press, Boca Raton, 2018)
C.S. Schnohr, M.C. Ridgway, X-ray Absorption Spectroscopy of Semiconductors, Springer Series in Optical Sciences (Springer, Berlin, 2015)
D.C. Koningsberger, R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES (Wiley, New York, 1988)
J.J. Rehr, R.C. Albers, Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72(3), 621–654 (2000). https://doi.org/10.1103/RevModPhys.72.621
J.J. Rehr, A.L. Ankudinov, Progress in the theory and interpretation of XANES. Coord. Chem. Rev. 249(1–2), 131–140 (2005). https://doi.org/10.1016/j.ccr.2004.02.014
F. Boscherini, X-ray absorption fine structure in the study of semiconductor heterostructures and nanostructures. Charact. Semicond. Heterostruct. Nanostruct. (2008). https://doi.org/10.1016/B978-0-444-53099-8.00009-9
J. Als-Nielsen, D. McMorrow, Elements of Modern X-ray Physics (Wiley, New York, 2011). https://doi.org/10.1002/9781119998365
J.J. Rehr, J.J. Kas, F.D. Vila, M.P. Prange, K. Jorissen, Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12(21), 5503–5513 (2010). https://doi.org/10.1039/b926434e
G.T. Seidler, D.R. Mortensen, A.J. Remesnik, J.I. Pacold, N.A. Ball, N. Barry, M. Styczinski, O.R. Hoidn, A laboratory-based hard x-ray monochromator for high-resolution X-ray emission spectroscopy and X-ray absorption near edge structure measurements. Rev. Sci. Instrum. 85, 113906 (2014). https://doi.org/10.1063/1.4901599
A. Williams, Laboratory X-ray spectrometer for EXAFS and XANES measurements. Rev. Sci. Instrum. 54(2), 193–197 (1983). https://doi.org/10.1063/1.1137344
D.N. Wang, J.G. Zhou, Y.F. Hu, J.L. Yang, N. Han, Y.G. Li, T.K. Sham, In situ X-ray absorption near-edge structure study of advanced NiFe(OH)(x) electrocatalyst on carbon paper for water oxidation. J. Phys. Chem. C 119(34), 19573–19583 (2015). https://doi.org/10.1021/acs.jpcc.5b02685
K. Fottinger, J.A. van Bokhoven, M. Nachtegaal, G. Rupprechter, Dynamic structure of a working methanol steam reforming catalyst: in situ quick-EXAFS on Pd/ZnO nanoparticles. J. Phys. Chem. Lett. 2(5), 428–433 (2011). https://doi.org/10.1021/jz101751s
K. Sasaki, N. Marinkovic, H.S. Isaacs, R.R. Adzic, Synchrotron-based in situ characterization of carbon-supported platinum and platinum mono layer electrocatalysts. ACS Catal. 6(1), 69–76 (2016). https://doi.org/10.1021/acscatal.5b01862
Z. Cai, D.J. Zhou, M.Y. Wang, S.M. Bak, Y.S. Wu et al., Introducing Fe2+ into nickel-iron layered double hydroxide: local structure modulated water oxidation activity. Angew. Chem. Int. Ed. 57, 9392–9396 (2018). https://doi.org/10.1002/anie.201804881
C. Wei, Z.X. Feng, M. Baisariyev, L.H. Yu, L. Zeng et al., Valence change ability and geometrical occupation of substitution cations determine the pseudocapacitance of spinel ferrite XFe2O4 (X = Mn Co, Ni, Fe). Chem. Mater. 28(12), 4129–4133 (2016). https://doi.org/10.1021/acs.chemmater.6b00713
T. Kaito, H. Tanaka, H. Mitsumoto, S. Sugawara, K. Shinohara et al., In situ X-ray absorption fine structure analysis of PtCo, PtCu, and PtNi alloy electrocatalysts: the correlation of enhanced oxygen reduction reaction activity and structure. J. Phys. Chem. C 120(21), 11519–11527 (2016). https://doi.org/10.1021/acs.jpcc.6b01736
T. Kaito, H. Mitsumoto, S. Sugawara, K. Shinohara, H. Uehara et al., K-edge X-ray absorption fine structure analysis of Pt/Au core–shell electrocatalyst: evidence for short Pt–Pt distance. J. Phys. Chem. C 118(16), 8481–8490 (2014). https://doi.org/10.1021/jp501607f
K. Strickland, M.W. Elise, Q.Y. Jia, U. Tylus, N. Ramaswamy et al., Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 6, 7343 (2015). https://doi.org/10.1038/ncomms8343
F.L. Yang, Y.T. Chen, G.Z. Cheng, S.L. Chen, W. Luo, Ultrathin nitrogen-doped carbon coated with CoP for efficient hydrogen evolution. ACS Catal. 7(6), 3824–3831 (2017). https://doi.org/10.1021/acscatal.7b00587
D.H. Ha, B.H. Han, M. Risch, L. Giordano, K.P.C. Yao, P. Karayaylali, Y. Shao-Horn, Activity and stability of cobalt phosphides for hydrogen evolution upon water splitting. Nano Energy 29, 37–45 (2016). https://doi.org/10.1016/j.nanoen.2016.04.034
B.J. Kim, D.F. Abbott, X. Cheng, E. Fabbri, M. Nachtegaal et al., Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catal. 7(5), 3245–3256 (2017). https://doi.org/10.1021/acscatal.6b03171
W. Sun, Y. Song, X.Q. Gong, L.M. Cao, J. Yang, Hollandite structure Kx≈0.25IrO2 catalyst with highly efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 8(1), 820–826 (2016). https://doi.org/10.1021/acsami.5b10159
R.Q. Zhang, H. Li, J.S. McEwen, Chemical sensitivity of valence-to-core X-ray emission spectroscopy due to the ligand and the oxidation state: a computational study on Cu-SSZ-13 with multiple H2O and NH3 adsorption. J. Phys. Chem. C 121(46), 25759–25767 (2017). https://doi.org/10.1021/acs.jpcc.7b04309
R.Q. Zhang, J.S. McEwen, Local environment sensitivity of the Cu k-edge XANES features in Cu-SSZ-13: analysis from first-principles. J. Phys. Chem. Lett. 9(11), 3035–3042 (2018). https://doi.org/10.1021/acs.jpclett.8b00675
D. Friebel, M.W. Louie, M. Bajdich, K.E. Sanwald, Y. Cai et al., Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137(3), 1305–1313 (2015). https://doi.org/10.1021/ja511559d
M.A. Soldatov, A. Martini, A.L. Bugaev, I. Pankin, P.V. Medvedev et al., The insights from X-ray absorption spectroscopy into the local atomic structure and chemical bonding of metal-organic frameworks. Polyhedron 155, 232–253 (2018). https://doi.org/10.1016/j.poly.2018.08.004
J.J. Willis, A. Gallo, D. Sokaras, H. Aljama, S.H. Nowak et al., Systematic structure property relationship studies in palladium catalyzed methane complete combustion. ACS Catal. 7(11), 7810–7821 (2017). https://doi.org/10.1021/acscatal.7b02414
Y. Zhou, D.E. Doronkin, M.L. Chen, S.Q. Wei, J.D. Grunwaldt, Interplay of Pt and crystal facets of TiO2: Co oxidation activity and operando XAS/drifts studies. ACS Catal. 6(11), 7799–7809 (2016). https://doi.org/10.1021/acscatal.6b01509
S.R. Bare, S.D. Kelly, F.D. Vila, E. Boldingh, E. Karapetrova et al., Experimental (XAS, STEM, TPR, and XPS) and theoretical (DFT) characterization of supported rhenium catalysts. J. Phys. Chem. C 115(13), 5740–5755 (2011). https://doi.org/10.1021/jp1105218
J.J. Rehr, J.J. Kas, M.P. Prange, A.P. Sorini, Y. Takimoto, F. Vila, Ab initio theory and calculations of X-ray spectra. C. R. Phys. 10(6), 548–559 (2009). https://doi.org/10.1016/j.crhy.2008.08.004
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car et al., Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condes. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
C. Gougoussis, M. Calandra, A.P. Seitsonen, F. Mauri, First-principles calculations of X-ray absorption in a scheme based on ultrasoft pseudopotentials: from alpha-quartz to high-Tc compounds. Phys. Rev. B 80(7), 075102 (2009). https://doi.org/10.1103/PhysRevB.80.075102
M. Taillefumier, D. Cabaret, A.M. Flank, F. Mauri, X-ray absorption near-edge structure calculations with the pseudopotentials: application to the K-edge in diamond and alpha-quartz. Phys. Rev. B 66(19), 195107 (2002). https://doi.org/10.1103/PhysRevB.66.195107
S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, M.C. Payne, First principles methods using castep. Z. Kristall. 220(5–6), 567–570 (2005). https://doi.org/10.1524/zkri.220.5.567.65075
A. Baby, H. Lin, A. Ravikumar, C. Bittencourt, H.A. Wegner, L. Floreano, A. Goldoni, G. Fratesi, Lattice mismatch drives spatial modulation of corannulene tilt on Ag(111). J. Phys. Chem. C 122(19), 10365–10376 (2018). https://doi.org/10.1021/acs.jpcc.7b11581
B.P. Klein, N.J. van der Heijden, S.R. Kachel, M. Franke, C.K. Krug et al., Molecular topology and the surface chemical bond: alternant versus nonalternant aromatic systems as functional structural elements. Phys. Rev. X 9(1), 011030 (2019). https://doi.org/10.1103/PhysRevX.9.011030
A. Ugolotti, S.S. Harivyasi, A. Baby, M. Dominguez, A.L. Pinardi et al., Chemisorption of pentacene on Pt(111) with a little molecular distortion. J. Phys. Chem. C 121(41), 22797–22805 (2017). https://doi.org/10.1021/acs.jpcc.7b06555
L. Triguero, L.G.M. Pettersson, H. Agren, Calculations of near-edge X-ray-absorption spectra of gas-phase and chemisorbed molecules by means of density-functional and transition-potential theory. Phys. Rev. B 58(12), 8097–8110 (1998). https://doi.org/10.1103/PhysRevB.58.8097
K. Diller, R.J. Maurer, M. Muller, K. Reuter, Interpretation of X-ray absorption spectroscopy in the presence of surface hybridization. J. Chem. Phys. 146(21), 214701 (2017). https://doi.org/10.1063/1.4984072
V.A. Saveleva, L. Wang, D. Teschner, T. Jones, A.S. Gago et al., Operando evidence for a universal oxygen evolution mechanism on thermal and electrochemical iridium oxides. J. Phys. Chem. Lett. 9(11), 3154–3160 (2018). https://doi.org/10.1021/acs.jpclett.8b00810
H.Y. Wang, S.F. Hung, H.Y. Chen, T.S. Chan, H.M. Chen, B. Liu, In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4. J. Am. Chem. Soc. 138(1), 36–39 (2016). https://doi.org/10.1021/jacs.5b10525
T. Vitova, J. Hormes, K. Peithmann, T. Woike, X-ray absorption spectroscopy study of valence and site occupation of copper in LiNbO3:Cu. Phys. Rev. B 77(14), 144103 (2008). https://doi.org/10.1103/PhysRevB.77.144103
H.Y. Wang, S.F. Hung, Y.Y. Hsu, L.L. Zhang, J.W. Miao, T.S. Chan, Q.H. Xiong, B. Liu, In situ spectroscopic identification of μ-OO bridging on spinel Co3O4 water oxidation electrocatalyst. J. Phys. Chem. Lett. 7(23), 4847–4853 (2016). https://doi.org/10.1021/acs.jpclett.6b02147
A. Jentys, Estimation of mean size and shape of small metal particles by EXAFS. Phys. Chem. Chem. Phys. 1(17), 4059–4063 (1999). https://doi.org/10.1039/a904654b
A.I. Frenkel, A. Yevick, C. Cooper, R. Vasic, Modeling the structure and composition of nanoparticles by extended X-ray absorption fine-structure spectroscopy. Annu. Rev. Anal. Chem. 4, 23–39 (2011). https://doi.org/10.1146/annurev-anchem-061010-113906
A.I. Frenkel, Solving the structure of nanoparticles by multiple-scattering EXAFS analysis. J. Synchrotron Radiat. 6, 293–295 (1999). https://doi.org/10.1107/S0909049598017786
D.K. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V.K. Yachandra, D.G. Nocera, Structure-activity correlations in a nickel-borate oxygen evolution catalyst. J. Am. Chem. Soc. 134(15), 6801–6809 (2012). https://doi.org/10.1021/ja301018q
M. Yoshida, Y. Mitsutomi, T. Mineo, M. Nagasaka, H. Yuzawa, N. Kosugi, H. Kondoh, Direct observation of active nickel oxide cluster in nickel borate electrocatalyst for water oxidation by in situ O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 119(33), 19279–19286 (2015). https://doi.org/10.1021/acs.jpcc.5b06102
M.W. Kanan, J. Yano, Y. Surendranath, M. Dinca, V.K. Yachandra, D.G. Nocera, Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132(39), 13692–13701 (2010). https://doi.org/10.1021/ja1023767
U. Tylus, Q.Y. Jia, K. Strickland, N. Ramaswamy, A. Serov, P. Atanassov, S. Mukerjee, Elucidating oxygen reduction active sites in pyrolyzed metal-nitrogen coordinated non-precious-metal electrocatalyst systems. J. Phys. Chem. C 118(17), 8999–9008 (2014). https://doi.org/10.1021/jp500781v
X.X. Wang, D.A. Cullen, Y.T. Pan, S. Hwang, M.Y. Wang et al., Nitrogen-coordinated single cobalt atom catalysts for oxygen reduction in proton exchange membrane fuel cells. Adv. Mater. 30(11), 1706758 (2018). https://doi.org/10.1002/adma.201706758
H.G. Zhang, S. Hwang, M.Y. Wang, Z.X. Feng, S. Karakalos et al., Single atomic iron catalysts for oxygen reduction in acidic media: particle size control and thermal activation. J. Am. Chem. Soc. 139(40), 14143–14149 (2017). https://doi.org/10.1021/jacs.7b06514
H. Funke, A.C. Scheinost, M. Chukalina, Wavelet analysis of extended X-ray absorption fine structure data. Phys. Rev. B 71(9), 094110 (2005). https://doi.org/10.1103/PhysRevB.71.094110
H. Funke, M. Chukalina, A.C. Scheinost, A new FEFF-based wavelet for EXAFS data analysis. J. Synchrotron Radiat. 14, 426–432 (2007). https://doi.org/10.1107/S0909049507031901
H.B. Zhang, P.F. An, W. Zhou, B.Y. Guan, P. Zhang, J.C. Dong, X.W. Lou, Dynamic traction of lattice-confined platinum atoms into mesoporous carbon matrix for hydrogen evolution reaction. Sci. Adv. 4(1), eaao6657 (2018). https://doi.org/10.1126/sciadv.aao6657
L.T. Qu, Y. Liu, J.B. Baek, L.M. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4(3), 1321–1326 (2010). https://doi.org/10.1021/nn901850u
M. Newville, Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014). https://doi.org/10.2138/rmg.2014.78.2
M.L. Baker, M.W. Mara, J.J. Yan, K.O. Hodgson, B. Hedman, E.I. Solomon, K- and l-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 345, 182–208 (2017). https://doi.org/10.1016/j.ccr.2017.02.004
M. Wang, B. Han, J. Deng, Y. Jiang, M. Zhou et al., Influence of Fe substitution into LaCOO3 electrocatalysts on oxygen-reduction activity. ACS Appl. Mater. Interfaces 11(6), 5682–5686 (2019). https://doi.org/10.1021/acsami.8b20780
C.J. Pelliccione, E.V. Timofeeva, J.P. Katsoudas, C.U. Segre, In situ Ru K-edge X-ray absorption spectroscopy study of methanol oxidation mechanisms on model submonolayer Ru on Pt nanoparticle electrocatalyst. J. Phys. Chem. C 117(37), 18904–18912 (2013). https://doi.org/10.1021/jp404342z
L.R. Merte, F. Behafarid, D.J. Miller, D. Friebel, S. Cho et al., Electrochemical oxidation of size-selected Pt nanoparticles studied using in situ high-energy-resolution X-ray absorption spectroscopy. ACS Catal. 2(11), 2371–2376 (2012). https://doi.org/10.1021/cs300494f
K. Sasaki, K.A. Kuttiyiel, D. Su, R.R. Adzic, Platinum monolayer on IrFe core-shell nanoparticle electrocatalysts for the oxygen reduction reaction. Electrocatalysis 2(2), 134–140 (2011). https://doi.org/10.1007/s12678-011-0048-z
D. Friebel, D.J. Miller, C.P. O’Grady, T. Anniyev, J. Bargar et al., In situ X-ray probing reveals fingerprints of surface platinum oxide. Phys. Chem. Chem. Phys. 13(1), 262–266 (2011). https://doi.org/10.1039/c0cp01434f
J. Suntivich, W.T. Hong, Y.L. Lee, J.M. Rondinelli, W.L. Yang et al., Estimating hybridization of transition metal and oxygen states in perovskites, from O K-edge X-ray absorption spectroscopy. J. Phys. Chem. C 118, 1856–1863 (2014). https://doi.org/10.1021/jp410644j
Y. Wu, H. Fu, A. Roy, P.F. Song, Y.C. Lin, O. Kizilkaya, J. Xu, Facile one-pot synthesis of 3D graphite-SiO2 composite foam for negative resistance devices. RSC Adv. 7(66), 41812–41818 (2017). https://doi.org/10.1039/c7ra07465d
O. Muller, M. Nachtegaal, J. Just, D. Lutzenkirchen-Hecht, R. Frahm, Quick-EXAFS setup at the superxas beamline for in situ X-ray absorption spectroscopy with 10 ms time resolution. J. Synchrotron Radiat. 23, 260–266 (2016). https://doi.org/10.1107/S1600577515018007
X.Q. Yu, Q. Wang, Y.N. Zhou, H. Li, X.Q. Yang et al., High rate delithiation behaviour of LiFePO4 studied by quick X-ray absorption spectroscopy. Chem. Commun. 48(94), 11537–11539 (2012). https://doi.org/10.1039/c2cc36382h
M. Goesten, E. Stavitski, E.A. Pidko, C. Gucuyener, B. Boshuizen et al., The molecular pathway to ZIF-7 microrods revealed by in situ time-resolved small- and wide-angle X-ray scattering, quick-scanning extended X-ray absorption spectroscopy, and DFT calculations. Chem. Eur. J. 19(24), 7809–7816 (2013). https://doi.org/10.1002/chem.201204638
J. Li, F. Che, Y. Pang, C. Zou, J.Y. Howe et al., Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9(1), 4614 (2018). https://doi.org/10.1038/s41467-018-07032-0
S. Ozawa, H. Matsui, N. Ishiguro, Y. Tan, N. Maejima et al., Operando time-resolved X-ray absorption fine structure study for Pt oxidation kinetics on Pt/C and Pt3CO/C cathode catalysts by polymer electrolyte fuel cell voltage operation synchronized with rapid O2 exposure. J. Phys. Chem. C 122(26), 14511–14517 (2018). https://doi.org/10.1021/acs.jpcc.8b02541
Y.J. Yan, W.M. Zhang, J.W. Che, Time-frequency theory of pump-probe absorption spectroscopy. J. Chem. Phys. 106(6), 2212–2224 (1997). https://doi.org/10.1063/1.473146
G. Khitrova, P.R. Berman, M. Sargent, Theory of pump probe spectroscopy. J. Opt. Soc. Am. B 5(1), 160–170 (1988). https://doi.org/10.1364/Josab.5.000160
E. Goulielmakis, Z.H. Loh, A. Wirth, R. Santra, N. Rohringer et al., Real-time observation of valence electron motion. Nature 466(7307), 739–743 (2010). https://doi.org/10.1038/nature09212
C.J. Milne, R.M. Van der Veen, V.T. Pham, F.A. Lima, H. Rittmann-Frank et al., Ultrafast X-ray absorption studies of the structural dynamics of molecular and biological systems in solution. Chimia 65(5), 303–307 (2011). https://doi.org/10.2533/chimia.2011.303