Lignocellulose-Mediated Gel Polymer Electrolytes Toward Next-Generation Energy Storage
Corresponding Author: Chuanling Si
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 84
Abstract
The pursuit of high energy density and sustainable energy storage devices has been the target of many researchers. However, safety issues such as the susceptibility of conventional liquid electrolytes to leakage and flammability, as well as performance degradation due to uncontrollable dendrite growth in liquid electrolytes, have been limiting the further development of energy storage devices. In this regard, gel polymer electrolytes (GPEs) based on lignocellulosic (cellulose, hemicellulose, lignin) have attracted great interest due to their high thermal stability, excellent electrolyte wettability, and natural abundance. Therefore, in this critical review, a comprehensive overview of the current challenges faced by GPEs is presented, followed by a detailed description of the opportunities and advantages of lignocellulosic materials for the fabrication of GPEs for energy storage devices. Notably, the key properties and corresponding construction strategies of GPEs for energy storage are analyzed and discussed from the perspective of lignocellulose for the first time. Moreover, the future challenges and prospects of lignocellulose-mediated GPEs in energy storage applications are also critically reviewed and discussed. We sincerely hope this review will stimulate further research on lignocellulose-mediated GPEs in energy storage and provide meaningful directions for the strategy of designing advanced GPEs.
Highlights:
1 The latest strategies for the construction of lignocellulose-mediated gel polymer electrolytes are summarized.
2 The great potential of macroscopic preparation processes and microstructural design of lignocellulose-mediated gel polymer electrolytes are summarized.
3 The excellent suitability of the physicochemical structure of lignocellulosic gel electrolytes and energy storage applications is summarized.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Li, Y. Xu, G. Wang, T. Xu, C. Si, Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Adv. Energy Mater. 14(46), 2403593 (2024). https://doi.org/10.1002/aenm.202403593
- W. Li, T. Li, B. Deng, T. Xu, G. Wang et al., Fabrication of a facile self-floating lignin-based carbon Janus evaporators for efficient and stable solar desalination. Adv. Compos. Hybrid Mater. 7(2), 52 (2024). https://doi.org/10.1007/s42114-024-00849-y
- L. Zhu, Y. Cao, T. Xu, H. Yang, L. Wang et al., Covalent organic framework membranes for energy storage and conversion. Energy Environ. Sci. 18(12), 5675–5739 (2025). https://doi.org/10.1039/D5EE00494B
- Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang et al., Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 14(4), 1854–1896 (2021). https://doi.org/10.1039/D0EE03167D
- Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu et al., A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9(36), 1901081 (2019). https://doi.org/10.1002/aenm.201901081
- H. Ji, J. Wang, J. Ma, H.-M. Cheng, G. Zhou, Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. 52(23), 8194–8244 (2023). https://doi.org/10.1039/D3CS00254C
- F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/C7CS00863E
- X. Chen, W. Li, D. Reed, X. Li, X. Liu, On energy storage chemistry of aqueous Zn-ion batteries: from cathode to anode. Electrochem. Energy Rev. 6(1), 33 (2023). https://doi.org/10.1007/s41918-023-00194-6
- S.W.D. Gourley, R. Brown, B.D. Adams, D. Higgins, Zinc-ion batteries for stationary energy storage. Joule 7(7), 1415–1436 (2023). https://doi.org/10.1016/j.joule.2023.06.007
- H.S. Hirsh, Y. Li, D.H.S. Tan, M. Zhang, E. Zhao et al., Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 10(32), 2001274 (2020). https://doi.org/10.1002/aenm.202001274
- S. Zhao, H. Che, S. Chen, H. Tao, J. Liao et al., Research progress on the solid electrolyte of solid-state sodium-ion batteries. Electrochem. Energy Rev. 7(1), 3 (2024). https://doi.org/10.1007/s41918-023-00196-4
- S.-W. Lee, S. Bae, D. Kim, H.-S. Lee, Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32(51), 2002202 (2020). https://doi.org/10.1002/adma.202002202
- Y.-X. Tan, X. Zhang, J. Lin, Y. Wang, A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy Environ. Sci. 16(6), 2432–2447 (2023). https://doi.org/10.1039/d3ee00461a
- G. Xiao, H. Xu, C. Bai, M. Liu, Y.-B. He, Progress and perspectives of in situ polymerization method for lithium-based batteries. Interdiscip. Mater. 2(4), 609–634 (2023). https://doi.org/10.1002/idm2.12109
- X. Gao, Z. Xing, M. Wang, C. Nie, Z. Shang et al., Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries. Energy Storage Mater. 60, 102821 (2023). https://doi.org/10.1016/j.ensm.2023.102821
- Q. Liu, Y. Liu, X. Jiao, Z. Song, M. Sadd et al., Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Storage Mater. 23, 105–111 (2019). https://doi.org/10.1016/j.ensm.2019.05.023
- L. Xiao, E.-W. Li, J.-Y. Yi, W. Meng, B.-H. Deng et al., Enhanced performance of solid-state Li–O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met. 37(6), 527–535 (2018). https://doi.org/10.1007/s12598-018-1033-y
- J. Qian, B. Jin, Y. Li, X. Zhan, Y. Hou et al., Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 56, 420–437 (2021). https://doi.org/10.1016/j.jechem.2020.08.026
- X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
- J. Jeong, M. Kim, H. Shin, H. Lee, Y.-G. Cho et al., Fire-inhibiting nonflammable gel polymer electrolyte for lithium-ion batteries. ACS Energy Lett. 8(11), 4650–4657 (2023). https://doi.org/10.1021/acsenergylett.3c01128
- D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro. Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
- M.B. Durukan, D. Keskin, Y. Tufan, O. Dincer, M.O. Cicek et al., An edible supercapacitor based on zwitterionic soy sauce-based gel electrolyte. Adv. Funct. Mater. 34(6), 2307051 (2024). https://doi.org/10.1002/adfm.202307051
- Q. Rong, W. Lei, J. Huang, M. Liu, Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 8(31), 1801967 (2018). https://doi.org/10.1002/aenm.201801967
- J.I. Kim, Y. Choi, K.Y. Chung, J.H. Park, A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27(34), 1701768 (2017). https://doi.org/10.1002/adfm.201701768
- M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
- W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021). https://doi.org/10.1016/j.nanoen.2020.105510
- Z. Chen, Y. Yao, T. Lv, Y. Yang, Y. Liu et al., Flexible and stretchable enzymatic biofuel cell with high performance enabled by textile electrodes and polymer hydrogel electrolyte. Nano Lett. 22(1), 196–202 (2022). https://doi.org/10.1021/acs.nanolett.1c03621
- W. Zeng, S. Zhang, J. Lan, Y. Lv, G. Zhu et al., Double network gel electrolyte with high ionic conductivity and mechanical strength for zinc-ion batteries. ACS Nano 18(38), 26391–26400 (2024). https://doi.org/10.1021/acsnano.4c09879
- W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan et al., High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11), 15776–15785 (2020). https://doi.org/10.1021/acsnano.0c06834
- Y. Duan, H. Yang, K. Liu, T. Xu, J. Chen et al., Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv. Compos. Hybrid Mater. 6(3), 123 (2023). https://doi.org/10.1007/s42114-023-00700-w
- H. Du, W. Liu, M. Zhang, C. Si, X. Zhang et al., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020
- H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32(26), 2113082 (2022). https://doi.org/10.1002/adfm.202113082
- Q. Zhao, T. Xu, M. Zhang, H. Liu, H. Du et al., Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Ind. Crops Prod. 194, 116343 (2023). https://doi.org/10.1016/j.indcrop.2023.116343
- Y. Duan, K. Liu, J. Qi, C. Li, H. Xie et al., Engineering lignocellulose-based composites for advanced structural materials. Ind. Crops Prod. 205, 117562 (2023). https://doi.org/10.1016/j.indcrop.2023.117562
- M. Zhang, T. Chen, T. Xu, H. Zhang, X. Wang et al., Functionalities and properties of conductive hydrogel with nanocellulose integration. Chem. Eng. J. 506, 159872 (2025). https://doi.org/10.1016/j.cej.2025.159872
- M. Zhang, T. Xu, K. Liu, L. Zhu, C. Miao et al., Modulation and mechanisms of cellulose-based hydrogels for flexible sensors. SusMat 5(1), e255 (2025). https://doi.org/10.1002/sus2.255
- W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
- W. Li, Y. Xu, G. Wang, T. Xu, K. Wang et al., Sustainable carbon-based catalyst materials derived from lignocellulosic biomass for energy storage and conversion: atomic modulation and properties improvement. Carbon Energy 7(5), e708 (2025). https://doi.org/10.1002/cey2.708
- Y. Yang, L. Yan, Y. Zheng, L. Dai, C. Si, Lignin-based vitrimer for high-resolution and full-component rapidly recycled liquid metal printed circuit. Adv. Funct. Mater. 35(30), 2425780 (2025). https://doi.org/10.1002/adfm.202425780
- H. Zhou, L. Yan, D. Tang, T. Xu, L. Dai et al., Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv. Mater. 36(32), e2403876 (2024). https://doi.org/10.1002/adma.202403876
- W. Li, H. Sun, G. Wang, W. Sui, L. Dai et al., Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chem. 25(6), 2241–2261 (2023). https://doi.org/10.1039/D2GC04319J
- W. Li, G. Wang, W. Sui, T. Xu, L. Dai, C. Si, Lignin-derived heteroatom-doped hierarchically porous carbon for high-performance supercapacitors: “Structure-function” relationships between lignin heterogeneity and carbon materials. Ind. Crops Prod. 204, 117276 (2023). https://doi.org/10.1016/j.indcrop.2023.117276
- K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5(2), 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
- H. Liu, T. Xu, Q. Liang, Q. Zhao, D. Zhao et al., Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv. Compos. Hybrid Mater. 5(2), 1168–1179 (2022). https://doi.org/10.1007/s42114-022-00427-0
- C. Li, Z.-B. Wang, Q. Wang, D.-M. Gu, Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 36(5), 365–380 (2017). https://doi.org/10.1007/s12598-017-0900-2
- Y. Zheng, H. Liu, L. Yan, H. Yang, L. Dai et al., Lignin-based encapsulation of liquid metal ps for flexible and high-efficiently recyclable electronics. Adv. Funct. Mater. 34(7), 2310653 (2024). https://doi.org/10.1002/adfm.202310653
- Q.-N. Zhu, Z.-Y. Wang, J.-W. Wang, X.-Y. Liu, D. Yang et al., Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40(2), 309–328 (2021). https://doi.org/10.1007/s12598-020-01588-x
- M.A. Ratner, P. Johansson, D.F. Shriver, Polymer electrolytes: ionic transport mechanisms and relaxation coupling. MRS Bull. 25(3), 31–37 (2000). https://doi.org/10.1557/mrs2000.16
- L. Zhu, H. Yang, T. Xu, F. Shen, C. Si, Precision-engineered construction of proton-conducting metal–organic frameworks. Nano-Micro Lett. 17(1), 87 (2024). https://doi.org/10.1007/s40820-024-01558-3
- E. Sebti, H.A. Evans, H. Chen, P.M. Richardson, K.M. White et al., Stacking faults assist lithium-ion conduction in a halide-based superionic conductor. J. Am. Chem. Soc. 144(13), 5795–5811 (2022). https://doi.org/10.1021/jacs.1c11335
- K.K. Senthilkumar, R. Thiruvengadathan, R.B.T.S. Raghava, Recent advancements in Na super ionic conductor-incorporated composite polymer electrolytes for sodium-ion battery application. Electrochem 6(1), 6 (2025). https://doi.org/10.3390/electrochem6010006
- H. Gao, N.S. Grundish, Y. Zhao, A. Zhou, J.B. Goodenough, Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater. Adv. 2021, 2021/1932952 (2021). https://doi.org/10.34133/2021/1932952
- G. Qin, Y. Liu, W. Zhang, W. He, X. Su et al., Integrated supercapacitor with self-healing, arbitrary deformability and anti-freezing based on gradient interface structure from electrode to electrolyte. J. Colloid Interface Sci. 635, 427–440 (2023). https://doi.org/10.1016/j.jcis.2022.12.164
- H. Wang, H. Du, K. Liu, H. Liu, T. Xu et al., Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym. 266, 118107 (2021). https://doi.org/10.1016/j.carbpol.2021.118107
- Y. Yang, X. Xu, H. He, D. Huo, X. Li et al., The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass. Int. J. Biol. Macromol. 242, 124773 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124773
- X. Wang, T. Xu, H. Zhang, J. Qi, Y. Wang et al., Preparation of carboxylic cellulose nanofibrils via FeCl3-catalyzed maleic acid hydrolysis and application for self-supporting electrode. Chem. Eng. J. 502, 157890 (2024). https://doi.org/10.1016/j.cej.2024.157890
- J. Zhang, Y. Wang, T. Xu, W. Li, Q. Dong et al., Strategies, mechanism, and prospects for wood biomass-based intelligent food packaging materials. Trends Food Sci. Technol. 160, 105022 (2025). https://doi.org/10.1016/j.tifs.2025.105022
- X. Huang, S. Wang, Z. Shi, L. Fang, C. Yin, Challenges and strategies for biogas production in the circular agricultural waste utilization model: a case study in rural China. Energy 241, 122889 (2022). https://doi.org/10.1016/j.energy.2021.122889
- M. Zhang, Y. Wang, K. Liu, Y. Liu, T. Xu et al., Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT: PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr. Polym. 305, 120567 (2023). https://doi.org/10.1016/j.carbpol.2023.120567
- M.F.S. Khan, M. Akbar, Z. Xu, H. Wang, A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover. Biomass Bioenergy 155, 106276 (2021). https://doi.org/10.1016/j.biombioe.2021.106276
- L. Zhao, Z.-F. Sun, C.-C. Zhang, J. Nan, N.-Q. Ren et al., Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresour. Technol. 343, 126123 (2022). https://doi.org/10.1016/j.biortech.2021.126123
- E.O. Ajala, J.O. Ighalo, M.A. Ajala, A.G. Adeniyi, A.M. Ayanshola, Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 8(1), 87 (2021). https://doi.org/10.1186/s40643-021-00440-z
- P. Bhattacharyya, J. Bisen, D. Bhaduri, S. Priyadarsini, S. Munda et al., Turn the wheel from waste to wealth: economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. Sci. Total. Environ. 775, 145896 (2021). https://doi.org/10.1016/j.scitotenv.2021.145896
- F. Zhao, Y. Yi, X.Lü, Essential process and key barriers for converting plant biomass into biofuels. In: Advances in 2nd Generation of Bioethanol Production, pp. 53–70. Elsevier (2021). https://doi.org/10.1016/b978-0-12-818862-0.00009-1
- H. Yang, H. Zheng, Y. Duan, T. Xu, H. Xie et al., Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int. J. Biol. Macromol. 253(Pt 3), 126903 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126903
- Y. Yang, H. Liu, B. Lin, D. Tang, J. Xu et al., From biomass to vitrimers: latest developments in the research of lignocellulose, vegetable oil, and naturally-occurring carboxylic acids. Ind. Crops Prod. 206, 117690 (2023). https://doi.org/10.1016/j.indcrop.2023.117690
- W. Li, W. Zhang, Y. Xu, G. Wang, T. Xu et al., Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128, 109912 (2024). https://doi.org/10.1016/j.nanoen.2024.109912
- H. Yang, L. Zhu, Y. Zhou, T. Xu, C. Zheng et al., Engineering modulation of cellulose-induced metal–organic frameworks assembly behavior for advanced adsorption and separation. Chem. Eng. J. 498, 155333 (2024). https://doi.org/10.1016/j.cej.2024.155333
- Y. Wang, T. Xu, K. Liu, M. Zhang, Q. Zhao et al., Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind. Crops Prod. 204, 117378 (2023). https://doi.org/10.1016/j.indcrop.2023.117378
- H. Yang, L. Bai, Y. Duan, H. Xie, X. Wang et al., Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: application as building blocks for high-performance films. J. Clean. Prod. 390, 136215 (2023). https://doi.org/10.1016/j.jclepro.2023.136215
- T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33(48), 2101368 (2021). https://doi.org/10.1002/adma.202101368
- L. Zhu, H. Yang, T. Xu, L. Wang, J. Lei et al., Engineered nanochannels in MXene heterogeneous proton exchange membranes mediated by cellulose nanofiber/sodium alginate dual crosslinked networks. Adv. Funct. Mater. 35(19), 2570111 (2025). https://doi.org/10.1002/adfm.202570111
- J. Chen, H. Li, C. Fang, Y. Cheng, T. Tan et al., Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups. Carbohydr. Polym. 237, 116040 (2020). https://doi.org/10.1016/j.carbpol.2020.116040
- A. Ojstršek, D. Fakin, S. Hribernik, T. Fakin, M. Bračič et al., Electrospun nanofibrous composites from cellulose acetate/ultra-high silica zeolites and their potential for VOC adsorption from air. Carbohydr. Polym. 236, 116071 (2020). https://doi.org/10.1016/j.carbpol.2020.116071
- Y. Wang, T. Xu, J. Qi, K. Liu, M. Zhang et al., Nano/micro flexible fiber and paper-based advanced functional packaging materials. Food Chem. 458, 140329 (2024). https://doi.org/10.1016/j.foodchem.2024.140329
- W. Liu, H. Du, K. Liu, H. Liu, H. Xie et al., Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr. Polym. 267, 118220 (2021). https://doi.org/10.1016/j.carbpol.2021.118220
- W. Liu, K. Liu, Y. Wang, Q. Lin, J. Liu et al., Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Ind. Crops Prod. 185, 115123 (2022). https://doi.org/10.1016/j.indcrop.2022.115123
- W. Liu, S. Zhang, K. Liu, H. Yang, Q. Lin et al., Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. J. Clean. Prod. 384, 135582 (2023). https://doi.org/10.1016/j.jclepro.2022.135582
- K. Liu, Y. Wang, W. Liu, C. Zheng, T. Xu et al., Bacterial cellulose/chitosan composite materials for biomedical applications. Chem. Eng. J. 494, 153014 (2024). https://doi.org/10.1016/j.cej.2024.153014
- W. Liu, H. Du, M. Zhang, K. Liu, H. Liu et al., Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustainable Chem. Eng. 8(20), 7536–7562 (2020). https://doi.org/10.1021/acssuschemeng.0c00125
- M. Zhang, T. Xu, Q. Zhao, K. Liu, D. Liang et al., Cellulose-based materials for carbon capture and conversion. Carbon Capture Sci. Technol. 10, 100157 (2024). https://doi.org/10.1016/j.ccst.2023.100157
- Y. Wang, J. Qi, M. Zhang, T. Xu, C. Zheng et al., Cellulose-based aerogels, films, and fibers for advanced biomedical applications. Chem. Eng. J. 497, 154434 (2024). https://doi.org/10.1016/j.cej.2024.154434
- H. Wang, M. Zhang, J. Hu, H. Du, T. Xu et al., Sustainable preparation of surface functionalized cellulose nanocrystals and their application for Pickering emulsions. Carbohydr. Polym. 297, 120062 (2022). https://doi.org/10.1016/j.carbpol.2022.120062
- W. Liu, B. Pang, M. Zhang, J. Lv, T. Xu et al., Pickering multiphase materials using plant-based cellulosic micro/nanops. Aggregate 5(2), e486 (2024). https://doi.org/10.1002/agt2.486
- H. Yang, Y. Duan, Z. Wang, D. Lu, T. Xu et al., Eco-friendly production of cellulose nanocrystals from corn straw through combined enzyme pretreatment, mild homogenization, and enzymolysis. Ind. Crops Prod. 224, 120397 (2025). https://doi.org/10.1016/j.indcrop.2024.120397
- L. Ma, R. Liu, H. Niu, F. Wang, L. Liu et al., Freestanding conductive film based on polypyrrole/bacterial cellulose/graphene paper for flexible supercapacitor: large areal mass exhibits excellent areal capacitance. Electrochim. Acta 222, 429–437 (2016). https://doi.org/10.1016/j.electacta.2016.10.195
- M.M. Islam, Lignocellulosic biomass-based materials: a promising resource for viable energy storage. Sustain. Energy Fuels 8(9), 1823–1871 (2024). https://doi.org/10.1039/d4se00038b
- W. Li, C. Li, Y. Xu, G. Wang, T. Xu et al., Heteroatom-doped and graphitization-enhanced lignin-derived hierarchically porous carbon via facile assembly of lignin-Fe coordination for high-voltage symmetric supercapacitors. J. Colloid Interface Sci. 659, 374–384 (2024). https://doi.org/10.1016/j.jcis.2023.12.162
- W. Li, G. Wang, W. Sui, T. Xu, Z. Li et al., Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196, 819–827 (2022). https://doi.org/10.1016/j.carbon.2022.05.053
- J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim et al., Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3(1–2), 29–60 (2004). https://doi.org/10.1023/b:phyt.0000047809.65444.a4
- T. Pang, Z. Xue, G. Wang, J. Li, W. Sui et al., Non-carbonized Pd single-atom catalyst supported on lignin-functionalized phenolic resin for potent catalytic transfer hydrogenation of lignin-derived aldehydes. Angew. Chem. Int. Ed. 64(23), e202503195 (2025). https://doi.org/10.1002/anie.202503195
- L. Yan, H. Liu, Y. Yang, L. Dai, C. Si, Lignin-derived carbon fibers: a green path from biomass to advanced materials. Carbon Energy 7(3), e662 (2025). https://doi.org/10.1002/cey2.662
- T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
- F. Wang, D. Ouyang, Z. Zhou, S.J. Page, D. Liu et al., Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 57, 247–280 (2021). https://doi.org/10.1016/j.jechem.2020.08.060
- W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu et al., Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv. Compos. Hybrid Mater. 6(4), 149 (2023). https://doi.org/10.1007/s42114-023-00725-1
- D.B. Sulis, N. Lavoine, H. Sederoff, X. Jiang, B.M. Marques et al., Advances in lignocellulosic feedstocks for bioenergy and bioproducts. Nat. Commun. 16, 1244 (2025). https://doi.org/10.1038/s41467-025-56472-y
- Y. Yang, Y. Guan, C. Li, T. Xu, L. Dai et al., Application and carbon footprint evaluation of lignin-based composite materials. Adv. Compos. Hybrid Mater. 7(2), 61 (2024). https://doi.org/10.1007/s42114-024-00873-y
- L. Yan, A.J. Huertas-Alonso, H. Liu, L. Dai, C. Si et al., Lignin polymerization: towards high-performance materials. Chem. Soc. Rev. 54(14), 6634–6651 (2025). https://doi.org/10.1039/D4CS01044B
- M. Zhang, Y. Duan, T. Chen, J. Qi, T. Xu et al., Lignocellulosic materials for energy storage devices. Ind. Crops Prod. 203, 117174 (2023). https://doi.org/10.1016/j.indcrop.2023.117174
- Y. Huang, T. Wang, M. Ji, J. Yang, C. Zhu et al., Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater. Lett. 128, 93–96 (2014). https://doi.org/10.1016/j.matlet.2014.04.128
- V. Kuzmenko, O. Naboka, H. Staaf, M. Haque, G. Göransson et al., Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater. Chem. Phys. 160, 59–65 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.006
- Y. Xu, W. Li, T. Xu, G. Wang, W. Huan et al., Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation. Adv. Compos. Hybrid Mater. 6(6), 197 (2023). https://doi.org/10.1007/s42114-023-00779-1
- W. Li, L. Zhu, Y. Xu, G. Wang, T. Xu et al., Lignocellulose-mediated functionalization of liquid metals toward the frontiers of multifunctional materials. Adv. Mater. 37(12), 2570095 (2025). https://doi.org/10.1002/adma.202570095
- F. Qiu, Y. Huang, X. Hu, B. Li, X. Zhang et al., An ecofriendly gel polymer electrolyte based on natural lignocellulose with ultrahigh electrolyte uptake and excellent ionic conductivity for alkaline supercapacitors. ACS Appl. Energy Mater. 2(8), 6031–6042 (2019). https://doi.org/10.1021/acsaem.9b01150
- W. Li, Y. Xu, K. Liu, L. Zhu, T. Xu et al., Engineered biomass-based solar evaporators for diversified and sustainable water management. Adv. Mater. (2025). https://doi.org/10.1002/adma.202503658
- W. Li, G. Wang, T. Li, Z. Zhang, Y. Wang et al., All-in-one self-cleaning lignin-derived spherical solar evaporator for continuous desalination and synergic water purification. Water Res. 282, 123932 (2025). https://doi.org/10.1016/j.watres.2025.123932
- J. Qi, H. Wang, M. Zhang, T. Xu, X. Wang et al., Simultaneous preparation of lignin-containing cellulose nanocrystals and lignin nanops from wood sawdust by mixed organic acid hydrolysis. Ind. Crops Prod. 222, 119658 (2024). https://doi.org/10.1016/j.indcrop.2024.119658
- N. Zhao, F. Wu, Y. Xing, W. Qu, N. Chen et al., Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 11(17), 15537–15542 (2019). https://doi.org/10.1021/acsami.9b00758
- W. Li, W. Zhang, Y. Xu, G. Wang, W. Sui et al., Heteroatom-doped lignin derived carbon materials with improved electrochemical performance for advanced supercapacitors. Chem. Eng. J. 497, 154829 (2024). https://doi.org/10.1016/j.cej.2024.154829
- J. Qi, M. Zhang, T. Xu, K. Liu, Y. Wang et al., Nanocellulose/metal-organic frameworks composites for advanced energy storage of electrodes and separators. Chem. Eng. J. 500, 157318 (2024). https://doi.org/10.1016/j.cej.2024.157318
- Z. Zheng, W. Cheng, G. Jiang, X. Li, J. Sun et al., Ethanol vapor-induced synthesis of robust, high-efficiency zinc ion gel electrolytes for flexible Zn-ion batteries. Small Struct. 5(10), 2400180 (2024). https://doi.org/10.1002/sstr.202400180
- F. Yu, H. Zhang, L. Zhao, Z. Sun, Y. Li et al., A flexible cellulose/methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium ion battery. Carbohydr. Polym. 246, 116622 (2020). https://doi.org/10.1016/j.carbpol.2020.116622
- A. Zhu, J. Huang, H. Xie, W. Yue, S. Qin et al., Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chem. Eng. J. 446, 137032 (2022). https://doi.org/10.1016/j.cej.2022.137032
- X. Liu, J. Gan, Y. Huang, J. Liu, D. Pu et al., Gel polymer electrolyte based on polymer matrix of hydroxyethyl cellulose composite lignocellulose. Bull. Mater. Sci. 46(4), 211 (2023). https://doi.org/10.1007/s12034-023-03050-x
- J.-Y. Han, Y. Huang, Y. Chen, A.-M. Song, X.-H. Deng et al., High-performance gel polymer electrolyte based on chitosan–lignocellulose for lithium-ion batteries. ChemElectroChem 7(5), 1213–1224 (2020). https://doi.org/10.1002/celc.202000007
- R. Zhang, C. Wu, C. Yao, W. Yang, Y. Jing et al., Preparation of PVA based multifunctional hydrogel electrolyte reinforced by phosphoric acid-dissolved-cellulose and its application in quasi-solid supercapacitors. Cellulose 31(2), 1071–1087 (2024). https://doi.org/10.1007/s10570-023-05661-3
- T. Li, X. Cheng, Y. Feng, E. Zhu, Q. Zhang et al., Tough and highly conductive deep eutectic solvent-based gel electrolyte strengthened by high aspect ratio of hemp lignocellulosic nanofiber. Carbohydr. Polym. 345, 122566 (2024). https://doi.org/10.1016/j.carbpol.2024.122566
- W. Huang, Y. Li, H. Gu, J. Wang, Q. Zhong, Gel polymer electrolyte with enhanced performance based on lignocellulose modified by NaOH/urea for lithium-sulfur batteries. ChemistrySelect 5(43), 13461–13468 (2020). https://doi.org/10.1002/slct.202003577
- X. Xu, J. Gan, Y. Huang, J. Liu, L. Zhao et al., Gel polymer electrolyte combined lignocellulose with sodium alginate in lithium-ion battery. Funct. Mater. Lett. 15, 2251010 (2022). https://doi.org/10.1142/s1793604722510109
- A. Song, Y. Huang, B. Liu, H. Cao, X. Zhong et al., Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochim. Acta 247, 505–515 (2017). https://doi.org/10.1016/j.electacta.2017.07.048
- A. Song, Y. Huang, X. Zhong, H. Cao, B. Liu et al., Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim. Acta 245, 981–992 (2017). https://doi.org/10.1016/j.electacta.2017.05.176
- L. Zhao, J. Fu, Z. Du, X. Jia, Y. Qu et al., High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 593, 117428 (2020). https://doi.org/10.1016/j.memsci.2019.117428
- T. Zhang, Y. Wang, Y. Li, Y. Li, X. Li et al., Carboxymethyl cellulose gel electrolyte based on hydrolyzed keratin modified for dendrite-free zinc-ion batteries. Langmuir 40(40), 21032–21040 (2024). https://doi.org/10.1021/acs.langmuir.4c02308
- H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16(1), 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
- Y. Quan, H. Ma, M. Chen, W. Zhou, Q. Tian et al., Salting-out effect realizing high-strength and dendrite-inhibiting cellulose hydrogel electrolyte for durable aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 15(38), 44974–44983 (2023). https://doi.org/10.1021/acsami.3c09127
- J. Wang, C. Wang, W. Wang, W. Li, J. Lou, Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application. Chem. Eng. J. 428, 132604 (2022). https://doi.org/10.1016/j.cej.2021.132604
- C. Gao, X. Li, G. Wei, S. Wang, X. Zhao et al., In-situ construction of cellulose acetate propionate-based hybrid gel polymer electrolyte for high-performance lithium metal batteries. Ind. Crops Prod. 204, 117395 (2023). https://doi.org/10.1016/j.indcrop.2023.117395
- X. Zi, H. Wu, J. Song, G. Guo, J. Guo, Cellulose/PEGDA composite gel electrolyte with adjustable porosity and interfacial compatibility for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 34(21), 1599 (2023). https://doi.org/10.1007/s10854-023-11012-6
- Y. Huang, F. Cheng, C. Cai, Y. Fu, Simultaneously suppressing shuttle effect and dendrite growth in lithium–sulfur batteries via building dual-functional asymmetric-cellulose gel electrolyte. Small 19(28), 2300076 (2023). https://doi.org/10.1002/smll.202300076
- X. Zi, H. Wu, J. Song, J. Wu, J. Guo, Long-cycling cellulose-based gel polymer electrolyte utilizing nanohydrotalcite as a Li(+) transport redistributor. ACS Appl. Mater. Interfaces 16(36), 47416–47428 (2024). https://doi.org/10.1021/acsami.4c07314
- X. Wei, Y. Deng, X. Hu, Z. Yang, G. Han et al., Thermal stability of PVDF-HFP based gel electrolyte for high performance and safe lithium metal batteries. Chem. Eng. J. 502, 157725 (2024). https://doi.org/10.1016/j.cej.2024.157725
- M. Liu, S. Zhang, G. Li, C. Wang, B. Li et al., A cross-linked gel polymer electrolyte employing cellulose acetate matrix and layered boron nitride filler prepared via in situ thermal polymerization. J. Power. Sources 484, 229235 (2021). https://doi.org/10.1016/j.jpowsour.2020.229235
- J. Ji, F. Cheng, C. Cai, Y. Fu, Tailored cellulose gel electrolytes with dual pores, aligned channels, and dendrite mitigation for improved K/Zn dual-ion battery. ACS Sustainable Chem. Eng. 12(36), 13558–13567 (2024). https://doi.org/10.1021/acssuschemeng.4c04180
- L. Yue, Y. Xie, Y. Zheng, W. He, S. Guo et al., Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos. Sci. Technol. 145, 122–131 (2017). https://doi.org/10.1016/j.compscitech.2017.04.002
- K. Liu, M. Zhang, K. Zhou, X. Liu, T. Xu et al., Multifunctional nanocellulose-based electromagnetic interference shielding composites: design, functionality, and future prospects. Ind. Crops Prod. 210, 118148 (2024). https://doi.org/10.1016/j.indcrop.2024.118148
- Z. Wang, P. Heasman, J. Rostami, T. Benselfelt, M. Linares et al., Dynamic networks of cellulose nanofibrils enable highly conductive and strong polymer gel electrolytes for lithium-ion batteries. Adv. Funct. Mater. 33(30), 2212806 (2023). https://doi.org/10.1002/adfm.202212806
- C. Gao, X. Li, C. Song, G. Wei, X. Zhao et al., Electrospun polyimide/cellulose acetate propionate nanofiber membrane-based gel polymer electrolyte with fast lithium-ion transport and high interface stability for lithium metal batteries. Cellulose 30(14), 9113–9126 (2023). https://doi.org/10.1007/s10570-023-05434-y
- M. Das, N. Shukla, B. Boruah, A. Gogoi, L. Saikia et al., Cellulose acetate-based gel electrolytes grafted with surface-functionalized SiO2 nanofiber for green energy storing applications. Colloids Surf A Physicochem Eng Asp 686, 133268 (2024). https://doi.org/10.1016/j.colsurfa.2024.133268
- T. Pang, G. Wang, W. Sui, T. Xu, D. Wang et al., Lignin-based support for metal catalysts: Synthetic strategies, performance boost, and application advances. Coord. Chem. Rev. 528, 216426 (2025). https://doi.org/10.1016/j.ccr.2024.216426
- Y.-X. Yang, K.-K. Ge, S. Rehman, H. Bi, Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 41(12), 3957–3975 (2022). https://doi.org/10.1007/s12598-022-02091-1
- T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang et al., Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 6(3), 108 (2023). https://doi.org/10.1007/s42114-023-00675-8
- T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
- H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
- Y. Wang, T. Xu, J. Qi, A. Wang, K. Liu et al., Wet spun cellulose nanocrystal/MXene hybrid fiber regulated by bridging effect for high electrochemical performance supercapacitor. Adv. Compos. Hybrid Mater. 7(4), 120 (2024). https://doi.org/10.1007/s42114-024-00918-2
- N. Chen, L. Tao, X. Lu, M.M. Hassan, R. Yang et al., An adhesive cellulose nanocrystal-reinforced nanocomposite hydrogel electrolyte for supercapacitor applications. Giant 17, 100230 (2024). https://doi.org/10.1016/j.giant.2023.100230
- Y. Wang, K. Liu, M. Zhang, T. Xu, H. Du et al., Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr. Polym. 313, 120851 (2023). https://doi.org/10.1016/j.carbpol.2023.120851
- X. Li, L. Yuan, R. Liu, H. He, J. Hao et al., Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv. Energy Mater. 11(12), 2003010 (2021). https://doi.org/10.1002/aenm.202003010
- K. Zhang, Y. Pang, C. Chen, M. Wu, Y. Liu et al., Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr. Polym. 293, 119673 (2022). https://doi.org/10.1016/j.carbpol.2022.119673
- J.H. Park, H.H. Rana, J.Y. Lee, H.S. Park, Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J. Mater. Chem. A 7(28), 16962–16968 (2019). https://doi.org/10.1039/C9TA03519B
- D. Li, S. Yang, Z. Zheng, W.-Y. Lai, Constructing lithium-free anode/separator interface via 3D carbon fabric scaffold for ultrasafe lithium metal batteries. Research 6, 0267 (2023). https://doi.org/10.34133/research.0267
- H. Liu, H. Du, T. Zheng, K. Liu, X. Ji et al., Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817 (2021). https://doi.org/10.1016/j.cej.2021.130817
- Q. Long, G. Jiang, J. Zhou, D. Zhao, H. Yu, A cellulose ionogel with rubber-like stretchability for low-grade heat harvesting. Research 7, 0533 (2024). https://doi.org/10.34133/research.0533
- K. Liu, H. Du, W. Liu, H. Liu, M. Zhang et al., Cellulose nanomaterials for oil exploration applications. Polym. Rev. 62(3), 585–625 (2022). https://doi.org/10.1080/15583724.2021.2007121
- Z. Du, Y. Su, Y. Qu, L. Zhao, X. Jia et al., A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 299, 19–26 (2019). https://doi.org/10.1016/j.electacta.2018.12.173
- H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 13(27), 32115–32125 (2021). https://doi.org/10.1021/acsami.1c06647
- W. Wang, Z. Li, H. Huang, W. Li, J. Wang, Facile design of novel nanocellulose-based gel polymer electrolyte for lithium-ion batteries application. Chem. Eng. J. 445, 136568 (2022). https://doi.org/10.1016/j.cej.2022.136568
- C. Ding, X. Fu, H. Li, J. Yang, J.-L. Lan et al., An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries. Adv. Funct. Mater. 29(43), 1904547 (2019). https://doi.org/10.1002/adfm.201904547
- Y. Xu, W. Li, W. Sui, T. Xu, G. Wang et al., Lignin-based photocatalytic materials: Fabrication, applications, and perspectives. Renew. Sustain. Energy Rev. 216, 115695 (2025). https://doi.org/10.1016/j.rser.2025.115695
- Y. Xu, G. Wang, W. Li, Z. Yuan, C. Si, Broad-spectrum responsive lignin-KOH co-modified graphitic carbon nitride for synergetic photocatalytic H2O2 production via carbon-ring embedding and defect engineering. Chem. Eng. J. 503, 158655 (2025). https://doi.org/10.1016/j.cej.2024.158655
- N.S. Shabanov, K.S. Rabadanov, M.M. Gafurov, A.B. Isaev, D.S. Sobola et al., Lignin-based gel polymer electrolyte for cationic conductivity. Polymers 13(14), 2306 (2021). https://doi.org/10.3390/polym13142306
- W.-L. Wong, J. Xu, Y. Zhao, Y. Wang, H. Du et al., Upcycling of degraded Prussian blue into layered materials for sodium-ion battery. Research 8, 0643 (2025). https://doi.org/10.34133/research.0643
- H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydr. Polym. 270, 118372 (2021). https://doi.org/10.1016/j.carbpol.2021.118372
- K. Liu, H. Du, W. Liu, M. Zhang, Y. Wang et al., Strong, flexible, and highly conductive cellulose nanofibril/PEDOT: PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14(40), 14902–14912 (2022). https://doi.org/10.1039/d2nr00468b
- K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang et al., Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259, 117740 (2021). https://doi.org/10.1016/j.carbpol.2021.117740
- N. Mittal, S. Tien, E. Lizundia, M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 18(43), 2107183 (2022). https://doi.org/10.1002/smll.202107183
- S. Zhao, Y. Shen, H. Che, M. Jabeen, C. Lu et al., Cellulose derivative and polyionic liquid crosslinked network gel electrolytes for sodium metal quasi-solid-state batteries. Adv. Funct. Mater. 35(15), 2422162 (2025). https://doi.org/10.1002/adfm.202422162
- D. Liu, G. Du, Y. Qi, Y. Niu, S.-J. Bao et al., Bacterial cellulose network based gel polymer electrolyte for quasi-solid-state sodium-ion battery. J. Mater. Sci. Mater. Electron. 33(19), 15313–15322 (2022). https://doi.org/10.1007/s10854-022-08395-3
- K. Yu, X. Pan, G. Zhang, X. Liao, X. Zhou et al., Nanowires in energy storage devices: structures, synthesis, and applications. Adv. Energy Mater. 8(32), 1802369 (2018). https://doi.org/10.1002/aenm.201802369
- H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
- Q. Zhao, H. Zhang, X. Wang, T. Xu, M. Zhang et al., Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel. Adv. Compos. Hybrid Mater. 7(3), 90 (2024). https://doi.org/10.1007/s42114-024-00900-y
- H. Zhang, M. Zhang, T. Xu, X. Wang, J. Qi et al., Ions and electrons dual transport channels regulated by nanocellulose for mitigating dendrite growth of zinc-ion batteries. Chem. Eng. J. 505, 159476 (2025). https://doi.org/10.1016/j.cej.2025.159476
- M. Xu, D.G. Ivey, W. Qu, Z. Xie, Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J. Power. Sources 274, 1249–1253 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.140
- Q. Zhao, T. Xu, K. Liu, H. Du, M. Zhang et al., Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater. 71, 103605 (2024). https://doi.org/10.1016/j.ensm.2024.103605
- K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang et al., Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. 23(24), 9723–9746 (2021). https://doi.org/10.1039/d1gc02841c
- G.J.H. Lim, J.J. Koh, K.K. Chan, V. Verma, R. Chua et al., Amorphous cellulose electrolyte for long life and mechanically robust aqueous structural batteries. Adv. Funct. Mater. 34(24), 2313531 (2024). https://doi.org/10.1002/adfm.202313531
- H. Zhang, X. Gan, Y. Gao, H. Wu, Z. Song et al., Carboxylic acid-functionalized cellulose hydrogel electrolyte for dual-interface stabilization in aqueous zinc-organic batteries. Adv. Mater. 37(1), 2411997 (2025). https://doi.org/10.1002/adma.202411997
- P. Lin, J. Cong, J. Li, M. Zhang, P. Lai et al., Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte. Energy Storage Mater. 49, 172–180 (2022). https://doi.org/10.1016/j.ensm.2022.04.010
- H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62(13), e202217833 (2023). https://doi.org/10.1002/anie.202217833
- D. Zhong, K. Wang, M. Wei, H. Wang, P. Pei, Enhanced low-temperature performance of flexible Zinc-Air batteries via high-concentration ZnCl2 and lignin modified polyacrylamide hydrogels. Chem. Eng. J. 510, 161596 (2025). https://doi.org/10.1016/j.cej.2025.161596
- Y. Lv, H. Zhang, J. Wang, L. Chen, L. Bian et al., All-in-one deposition to synergistically manipulate perovskite growth for high-performance solar cell. Research 2020, 2763409 (2020). https://doi.org/10.34133/2020/2763409
- W. Li, K. Liu, H. Yang, Y. Xu, M. Zhang et al., Precision-engineered lignin-based food packaging materials. Trends Food Sci. Technol. 163, 105168 (2025). https://doi.org/10.1016/j.tifs.2025.105168
- D. Raja, B. Selvaraj, G. Shanmugam, A. Maruthapillai, D. Sundaramurthy, Improving the efficiency of dye-sensitized solar cells via the impact of triphenylamine-based inventive organic additives on biodegradable cellulose polymer gel electrolytes. Energy Fuels 35(5), 4273–4282 (2021). https://doi.org/10.1021/acs.energyfuels.0c03223
- M.A. Mingsukang, M.H. Buraidah, M.A. Careem, Development of gel polymer electrolytes for application in quantum dot-sensitized solar cells. Ionics 23(2), 347–355 (2017). https://doi.org/10.1007/s11581-016-1895-7
References
W. Li, Y. Xu, G. Wang, T. Xu, C. Si, Design and functionalization of lignocellulose-derived silicon-carbon composites for rechargeable batteries. Adv. Energy Mater. 14(46), 2403593 (2024). https://doi.org/10.1002/aenm.202403593
W. Li, T. Li, B. Deng, T. Xu, G. Wang et al., Fabrication of a facile self-floating lignin-based carbon Janus evaporators for efficient and stable solar desalination. Adv. Compos. Hybrid Mater. 7(2), 52 (2024). https://doi.org/10.1007/s42114-024-00849-y
L. Zhu, Y. Cao, T. Xu, H. Yang, L. Wang et al., Covalent organic framework membranes for energy storage and conversion. Energy Environ. Sci. 18(12), 5675–5739 (2025). https://doi.org/10.1039/D5EE00494B
Y. Zhou, H. Qi, J. Yang, Z. Bo, F. Huang et al., Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy Environ. Sci. 14(4), 1854–1896 (2021). https://doi.org/10.1039/D0EE03167D
Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu et al., A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9(36), 1901081 (2019). https://doi.org/10.1002/aenm.201901081
H. Ji, J. Wang, J. Ma, H.-M. Cheng, G. Zhou, Fundamentals, status and challenges of direct recycling technologies for lithium ion batteries. Chem. Soc. Rev. 52(23), 8194–8244 (2023). https://doi.org/10.1039/D3CS00254C
F. Wu, J. Maier, Y. Yu, Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 49(5), 1569–1614 (2020). https://doi.org/10.1039/C7CS00863E
X. Chen, W. Li, D. Reed, X. Li, X. Liu, On energy storage chemistry of aqueous Zn-ion batteries: from cathode to anode. Electrochem. Energy Rev. 6(1), 33 (2023). https://doi.org/10.1007/s41918-023-00194-6
S.W.D. Gourley, R. Brown, B.D. Adams, D. Higgins, Zinc-ion batteries for stationary energy storage. Joule 7(7), 1415–1436 (2023). https://doi.org/10.1016/j.joule.2023.06.007
H.S. Hirsh, Y. Li, D.H.S. Tan, M. Zhang, E. Zhao et al., Sodium-ion batteries paving the way for grid energy storage. Adv. Energy Mater. 10(32), 2001274 (2020). https://doi.org/10.1002/aenm.202001274
S. Zhao, H. Che, S. Chen, H. Tao, J. Liao et al., Research progress on the solid electrolyte of solid-state sodium-ion batteries. Electrochem. Energy Rev. 7(1), 3 (2024). https://doi.org/10.1007/s41918-023-00196-4
S.-W. Lee, S. Bae, D. Kim, H.-S. Lee, Historical analysis of high-efficiency, large-area solar cells: toward upscaling of perovskite solar cells. Adv. Mater. 32(51), 2002202 (2020). https://doi.org/10.1002/adma.202002202
Y.-X. Tan, X. Zhang, J. Lin, Y. Wang, A perspective on photoelectrochemical storage materials for coupled solar batteries. Energy Environ. Sci. 16(6), 2432–2447 (2023). https://doi.org/10.1039/d3ee00461a
G. Xiao, H. Xu, C. Bai, M. Liu, Y.-B. He, Progress and perspectives of in situ polymerization method for lithium-based batteries. Interdiscip. Mater. 2(4), 609–634 (2023). https://doi.org/10.1002/idm2.12109
X. Gao, Z. Xing, M. Wang, C. Nie, Z. Shang et al., Comprehensive insights into solid-state electrolytes and electrode-electrolyte interfaces in all-solid-state sodium-ion batteries. Energy Storage Mater. 60, 102821 (2023). https://doi.org/10.1016/j.ensm.2023.102821
Q. Liu, Y. Liu, X. Jiao, Z. Song, M. Sadd et al., Enhanced ionic conductivity and interface stability of hybrid solid-state polymer electrolyte for rechargeable lithium metal batteries. Energy Storage Mater. 23, 105–111 (2019). https://doi.org/10.1016/j.ensm.2019.05.023
L. Xiao, E.-W. Li, J.-Y. Yi, W. Meng, B.-H. Deng et al., Enhanced performance of solid-state Li–O2 battery using a novel integrated architecture of gel polymer electrolyte and nanoarray cathode. Rare Met. 37(6), 527–535 (2018). https://doi.org/10.1007/s12598-018-1033-y
J. Qian, B. Jin, Y. Li, X. Zhan, Y. Hou et al., Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 56, 420–437 (2021). https://doi.org/10.1016/j.jechem.2020.08.026
X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage. Adv. Energy Mater. 8(7), 1702184 (2018). https://doi.org/10.1002/aenm.201702184
J. Jeong, M. Kim, H. Shin, H. Lee, Y.-G. Cho et al., Fire-inhibiting nonflammable gel polymer electrolyte for lithium-ion batteries. ACS Energy Lett. 8(11), 4650–4657 (2023). https://doi.org/10.1021/acsenergylett.3c01128
D. Ji, J. Kim, Trend of developing aqueous liquid and gel electrolytes for sustainable, safe, and high-performance Li-ion batteries. Nano-Micro. Lett. 16(1), 2 (2023). https://doi.org/10.1007/s40820-023-01220-4
M.B. Durukan, D. Keskin, Y. Tufan, O. Dincer, M.O. Cicek et al., An edible supercapacitor based on zwitterionic soy sauce-based gel electrolyte. Adv. Funct. Mater. 34(6), 2307051 (2024). https://doi.org/10.1002/adfm.202307051
Q. Rong, W. Lei, J. Huang, M. Liu, Low temperature tolerant organohydrogel electrolytes for flexible solid-state supercapacitors. Adv. Energy Mater. 8(31), 1801967 (2018). https://doi.org/10.1002/aenm.201801967
J.I. Kim, Y. Choi, K.Y. Chung, J.H. Park, A structurable gel-polymer electrolyte for sodium ion batteries. Adv. Funct. Mater. 27(34), 1701768 (2017). https://doi.org/10.1002/adfm.201701768
M. Liu, D. Zhou, Y.-B. He, Y. Fu, X. Qin et al., Novel gel polymer electrolyte for high-performance lithium–sulfur batteries. Nano Energy 22, 278–289 (2016). https://doi.org/10.1016/j.nanoen.2016.02.008
W. Yan, J. Wei, T. Chen, L. Duan, L. Wang et al., Superstretchable, thermostable and ultrahigh-loading lithium–sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 80, 105510 (2021). https://doi.org/10.1016/j.nanoen.2020.105510
Z. Chen, Y. Yao, T. Lv, Y. Yang, Y. Liu et al., Flexible and stretchable enzymatic biofuel cell with high performance enabled by textile electrodes and polymer hydrogel electrolyte. Nano Lett. 22(1), 196–202 (2022). https://doi.org/10.1021/acs.nanolett.1c03621
W. Zeng, S. Zhang, J. Lan, Y. Lv, G. Zhu et al., Double network gel electrolyte with high ionic conductivity and mechanical strength for zinc-ion batteries. ACS Nano 18(38), 26391–26400 (2024). https://doi.org/10.1021/acsnano.4c09879
W. Deng, Z. Zhou, Y. Li, M. Zhang, X. Yuan et al., High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 14(11), 15776–15785 (2020). https://doi.org/10.1021/acsnano.0c06834
Y. Duan, H. Yang, K. Liu, T. Xu, J. Chen et al., Cellulose nanofibril aerogels reinforcing polymethyl methacrylate with high optical transparency. Adv. Compos. Hybrid Mater. 6(3), 123 (2023). https://doi.org/10.1007/s42114-023-00700-w
H. Du, W. Liu, M. Zhang, C. Si, X. Zhang et al., Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications. Carbohydr. Polym. 209, 130–144 (2019). https://doi.org/10.1016/j.carbpol.2019.01.020
H. Liu, T. Xu, C. Cai, K. Liu, W. Liu et al., Multifunctional superelastic, superhydrophilic, and ultralight nanocellulose-based composite carbon aerogels for compressive supercapacitor and strain sensor. Adv. Funct. Mater. 32(26), 2113082 (2022). https://doi.org/10.1002/adfm.202113082
Q. Zhao, T. Xu, M. Zhang, H. Liu, H. Du et al., Zn@cellulose nanofibrils composite three-dimensional carbon framework for long-life Zn anode. Ind. Crops Prod. 194, 116343 (2023). https://doi.org/10.1016/j.indcrop.2023.116343
Y. Duan, K. Liu, J. Qi, C. Li, H. Xie et al., Engineering lignocellulose-based composites for advanced structural materials. Ind. Crops Prod. 205, 117562 (2023). https://doi.org/10.1016/j.indcrop.2023.117562
M. Zhang, T. Chen, T. Xu, H. Zhang, X. Wang et al., Functionalities and properties of conductive hydrogel with nanocellulose integration. Chem. Eng. J. 506, 159872 (2025). https://doi.org/10.1016/j.cej.2025.159872
M. Zhang, T. Xu, K. Liu, L. Zhu, C. Miao et al., Modulation and mechanisms of cellulose-based hydrogels for flexible sensors. SusMat 5(1), e255 (2025). https://doi.org/10.1002/sus2.255
W. Liu, K. Liu, H. Du, T. Zheng, N. Zhang et al., Cellulose nanopaper: fabrication, functionalization, and applications. Nano-Micro Lett. 14(1), 104 (2022). https://doi.org/10.1007/s40820-022-00849-x
W. Li, Y. Xu, G. Wang, T. Xu, K. Wang et al., Sustainable carbon-based catalyst materials derived from lignocellulosic biomass for energy storage and conversion: atomic modulation and properties improvement. Carbon Energy 7(5), e708 (2025). https://doi.org/10.1002/cey2.708
Y. Yang, L. Yan, Y. Zheng, L. Dai, C. Si, Lignin-based vitrimer for high-resolution and full-component rapidly recycled liquid metal printed circuit. Adv. Funct. Mater. 35(30), 2425780 (2025). https://doi.org/10.1002/adfm.202425780
H. Zhou, L. Yan, D. Tang, T. Xu, L. Dai et al., Solar-driven drum-type atmospheric water harvester based on bio-based gels with fast adsorption/desorption kinetics. Adv. Mater. 36(32), e2403876 (2024). https://doi.org/10.1002/adma.202403876
W. Li, H. Sun, G. Wang, W. Sui, L. Dai et al., Lignin as a green and multifunctional alternative to phenol for resin synthesis. Green Chem. 25(6), 2241–2261 (2023). https://doi.org/10.1039/D2GC04319J
W. Li, G. Wang, W. Sui, T. Xu, L. Dai, C. Si, Lignin-derived heteroatom-doped hierarchically porous carbon for high-performance supercapacitors: “Structure-function” relationships between lignin heterogeneity and carbon materials. Ind. Crops Prod. 204, 117276 (2023). https://doi.org/10.1016/j.indcrop.2023.117276
K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5(2), 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
H. Liu, T. Xu, Q. Liang, Q. Zhao, D. Zhao et al., Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv. Compos. Hybrid Mater. 5(2), 1168–1179 (2022). https://doi.org/10.1007/s42114-022-00427-0
C. Li, Z.-B. Wang, Q. Wang, D.-M. Gu, Recent advances in cathode materials for Li–S battery: structure and performance. Rare Met. 36(5), 365–380 (2017). https://doi.org/10.1007/s12598-017-0900-2
Y. Zheng, H. Liu, L. Yan, H. Yang, L. Dai et al., Lignin-based encapsulation of liquid metal ps for flexible and high-efficiently recyclable electronics. Adv. Funct. Mater. 34(7), 2310653 (2024). https://doi.org/10.1002/adfm.202310653
Q.-N. Zhu, Z.-Y. Wang, J.-W. Wang, X.-Y. Liu, D. Yang et al., Challenges and strategies for ultrafast aqueous zinc-ion batteries. Rare Met. 40(2), 309–328 (2021). https://doi.org/10.1007/s12598-020-01588-x
M.A. Ratner, P. Johansson, D.F. Shriver, Polymer electrolytes: ionic transport mechanisms and relaxation coupling. MRS Bull. 25(3), 31–37 (2000). https://doi.org/10.1557/mrs2000.16
L. Zhu, H. Yang, T. Xu, F. Shen, C. Si, Precision-engineered construction of proton-conducting metal–organic frameworks. Nano-Micro Lett. 17(1), 87 (2024). https://doi.org/10.1007/s40820-024-01558-3
E. Sebti, H.A. Evans, H. Chen, P.M. Richardson, K.M. White et al., Stacking faults assist lithium-ion conduction in a halide-based superionic conductor. J. Am. Chem. Soc. 144(13), 5795–5811 (2022). https://doi.org/10.1021/jacs.1c11335
K.K. Senthilkumar, R. Thiruvengadathan, R.B.T.S. Raghava, Recent advancements in Na super ionic conductor-incorporated composite polymer electrolytes for sodium-ion battery application. Electrochem 6(1), 6 (2025). https://doi.org/10.3390/electrochem6010006
H. Gao, N.S. Grundish, Y. Zhao, A. Zhou, J.B. Goodenough, Formation of stable interphase of polymer-in-salt electrolyte in all-solid-state lithium batteries. Energy Mater. Adv. 2021, 2021/1932952 (2021). https://doi.org/10.34133/2021/1932952
G. Qin, Y. Liu, W. Zhang, W. He, X. Su et al., Integrated supercapacitor with self-healing, arbitrary deformability and anti-freezing based on gradient interface structure from electrode to electrolyte. J. Colloid Interface Sci. 635, 427–440 (2023). https://doi.org/10.1016/j.jcis.2022.12.164
H. Wang, H. Du, K. Liu, H. Liu, T. Xu et al., Sustainable preparation of bifunctional cellulose nanocrystals via mixed H2SO4/formic acid hydrolysis. Carbohydr. Polym. 266, 118107 (2021). https://doi.org/10.1016/j.carbpol.2021.118107
Y. Yang, X. Xu, H. He, D. Huo, X. Li et al., The catalytic hydrodeoxygenation of bio-oil for upgradation from lignocellulosic biomass. Int. J. Biol. Macromol. 242, 124773 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124773
X. Wang, T. Xu, H. Zhang, J. Qi, Y. Wang et al., Preparation of carboxylic cellulose nanofibrils via FeCl3-catalyzed maleic acid hydrolysis and application for self-supporting electrode. Chem. Eng. J. 502, 157890 (2024). https://doi.org/10.1016/j.cej.2024.157890
J. Zhang, Y. Wang, T. Xu, W. Li, Q. Dong et al., Strategies, mechanism, and prospects for wood biomass-based intelligent food packaging materials. Trends Food Sci. Technol. 160, 105022 (2025). https://doi.org/10.1016/j.tifs.2025.105022
X. Huang, S. Wang, Z. Shi, L. Fang, C. Yin, Challenges and strategies for biogas production in the circular agricultural waste utilization model: a case study in rural China. Energy 241, 122889 (2022). https://doi.org/10.1016/j.energy.2021.122889
M. Zhang, Y. Wang, K. Liu, Y. Liu, T. Xu et al., Strong, conductive, and freezing-tolerant polyacrylamide/PEDOT: PSS/cellulose nanofibrils hydrogels for wearable strain sensors. Carbohydr. Polym. 305, 120567 (2023). https://doi.org/10.1016/j.carbpol.2023.120567
M.F.S. Khan, M. Akbar, Z. Xu, H. Wang, A review on the role of pretreatment technologies in the hydrolysis of lignocellulosic biomass of corn stover. Biomass Bioenergy 155, 106276 (2021). https://doi.org/10.1016/j.biombioe.2021.106276
L. Zhao, Z.-F. Sun, C.-C. Zhang, J. Nan, N.-Q. Ren et al., Advances in pretreatment of lignocellulosic biomass for bioenergy production: challenges and perspectives. Bioresour. Technol. 343, 126123 (2022). https://doi.org/10.1016/j.biortech.2021.126123
E.O. Ajala, J.O. Ighalo, M.A. Ajala, A.G. Adeniyi, A.M. Ayanshola, Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. Bioresour. Bioprocess. 8(1), 87 (2021). https://doi.org/10.1186/s40643-021-00440-z
P. Bhattacharyya, J. Bisen, D. Bhaduri, S. Priyadarsini, S. Munda et al., Turn the wheel from waste to wealth: economic and environmental gain of sustainable rice straw management practices over field burning in reference to India. Sci. Total. Environ. 775, 145896 (2021). https://doi.org/10.1016/j.scitotenv.2021.145896
F. Zhao, Y. Yi, X.Lü, Essential process and key barriers for converting plant biomass into biofuels. In: Advances in 2nd Generation of Bioethanol Production, pp. 53–70. Elsevier (2021). https://doi.org/10.1016/b978-0-12-818862-0.00009-1
H. Yang, H. Zheng, Y. Duan, T. Xu, H. Xie et al., Nanocellulose-graphene composites: Preparation and applications in flexible electronics. Int. J. Biol. Macromol. 253(Pt 3), 126903 (2023). https://doi.org/10.1016/j.ijbiomac.2023.126903
Y. Yang, H. Liu, B. Lin, D. Tang, J. Xu et al., From biomass to vitrimers: latest developments in the research of lignocellulose, vegetable oil, and naturally-occurring carboxylic acids. Ind. Crops Prod. 206, 117690 (2023). https://doi.org/10.1016/j.indcrop.2023.117690
W. Li, W. Zhang, Y. Xu, G. Wang, T. Xu et al., Lignin-derived materials for triboelectric nanogenerators with emphasis on lignin multifunctionality. Nano Energy 128, 109912 (2024). https://doi.org/10.1016/j.nanoen.2024.109912
H. Yang, L. Zhu, Y. Zhou, T. Xu, C. Zheng et al., Engineering modulation of cellulose-induced metal–organic frameworks assembly behavior for advanced adsorption and separation. Chem. Eng. J. 498, 155333 (2024). https://doi.org/10.1016/j.cej.2024.155333
Y. Wang, T. Xu, K. Liu, M. Zhang, Q. Zhao et al., Nanocellulose-based advanced materials for flexible supercapacitor electrodes. Ind. Crops Prod. 204, 117378 (2023). https://doi.org/10.1016/j.indcrop.2023.117378
H. Yang, L. Bai, Y. Duan, H. Xie, X. Wang et al., Upcycling corn straw into nanocelluloses via enzyme-assisted homogenization: application as building blocks for high-performance films. J. Clean. Prod. 390, 136215 (2023). https://doi.org/10.1016/j.jclepro.2023.136215
T. Xu, H. Du, H. Liu, W. Liu, X. Zhang et al., Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 33(48), 2101368 (2021). https://doi.org/10.1002/adma.202101368
L. Zhu, H. Yang, T. Xu, L. Wang, J. Lei et al., Engineered nanochannels in MXene heterogeneous proton exchange membranes mediated by cellulose nanofiber/sodium alginate dual crosslinked networks. Adv. Funct. Mater. 35(19), 2570111 (2025). https://doi.org/10.1002/adfm.202570111
J. Chen, H. Li, C. Fang, Y. Cheng, T. Tan et al., Synthesis and structure of carboxymethylcellulose with a high degree of substitution derived from waste disposable paper cups. Carbohydr. Polym. 237, 116040 (2020). https://doi.org/10.1016/j.carbpol.2020.116040
A. Ojstršek, D. Fakin, S. Hribernik, T. Fakin, M. Bračič et al., Electrospun nanofibrous composites from cellulose acetate/ultra-high silica zeolites and their potential for VOC adsorption from air. Carbohydr. Polym. 236, 116071 (2020). https://doi.org/10.1016/j.carbpol.2020.116071
Y. Wang, T. Xu, J. Qi, K. Liu, M. Zhang et al., Nano/micro flexible fiber and paper-based advanced functional packaging materials. Food Chem. 458, 140329 (2024). https://doi.org/10.1016/j.foodchem.2024.140329
W. Liu, H. Du, K. Liu, H. Liu, H. Xie et al., Sustainable preparation of cellulose nanofibrils via choline chloride-citric acid deep eutectic solvent pretreatment combined with high-pressure homogenization. Carbohydr. Polym. 267, 118220 (2021). https://doi.org/10.1016/j.carbpol.2021.118220
W. Liu, K. Liu, Y. Wang, Q. Lin, J. Liu et al., Sustainable production of cellulose nanofibrils from Kraft pulp for the stabilization of oil-in-water Pickering emulsions. Ind. Crops Prod. 185, 115123 (2022). https://doi.org/10.1016/j.indcrop.2022.115123
W. Liu, S. Zhang, K. Liu, H. Yang, Q. Lin et al., Sustainable preparation of lignocellulosic nanofibrils and cellulose nanopaper from poplar sawdust. J. Clean. Prod. 384, 135582 (2023). https://doi.org/10.1016/j.jclepro.2022.135582
K. Liu, Y. Wang, W. Liu, C. Zheng, T. Xu et al., Bacterial cellulose/chitosan composite materials for biomedical applications. Chem. Eng. J. 494, 153014 (2024). https://doi.org/10.1016/j.cej.2024.153014
W. Liu, H. Du, M. Zhang, K. Liu, H. Liu et al., Bacterial cellulose-based composite scaffolds for biomedical applications: a review. ACS Sustainable Chem. Eng. 8(20), 7536–7562 (2020). https://doi.org/10.1021/acssuschemeng.0c00125
M. Zhang, T. Xu, Q. Zhao, K. Liu, D. Liang et al., Cellulose-based materials for carbon capture and conversion. Carbon Capture Sci. Technol. 10, 100157 (2024). https://doi.org/10.1016/j.ccst.2023.100157
Y. Wang, J. Qi, M. Zhang, T. Xu, C. Zheng et al., Cellulose-based aerogels, films, and fibers for advanced biomedical applications. Chem. Eng. J. 497, 154434 (2024). https://doi.org/10.1016/j.cej.2024.154434
H. Wang, M. Zhang, J. Hu, H. Du, T. Xu et al., Sustainable preparation of surface functionalized cellulose nanocrystals and their application for Pickering emulsions. Carbohydr. Polym. 297, 120062 (2022). https://doi.org/10.1016/j.carbpol.2022.120062
W. Liu, B. Pang, M. Zhang, J. Lv, T. Xu et al., Pickering multiphase materials using plant-based cellulosic micro/nanops. Aggregate 5(2), e486 (2024). https://doi.org/10.1002/agt2.486
H. Yang, Y. Duan, Z. Wang, D. Lu, T. Xu et al., Eco-friendly production of cellulose nanocrystals from corn straw through combined enzyme pretreatment, mild homogenization, and enzymolysis. Ind. Crops Prod. 224, 120397 (2025). https://doi.org/10.1016/j.indcrop.2024.120397
L. Ma, R. Liu, H. Niu, F. Wang, L. Liu et al., Freestanding conductive film based on polypyrrole/bacterial cellulose/graphene paper for flexible supercapacitor: large areal mass exhibits excellent areal capacitance. Electrochim. Acta 222, 429–437 (2016). https://doi.org/10.1016/j.electacta.2016.10.195
M.M. Islam, Lignocellulosic biomass-based materials: a promising resource for viable energy storage. Sustain. Energy Fuels 8(9), 1823–1871 (2024). https://doi.org/10.1039/d4se00038b
W. Li, C. Li, Y. Xu, G. Wang, T. Xu et al., Heteroatom-doped and graphitization-enhanced lignin-derived hierarchically porous carbon via facile assembly of lignin-Fe coordination for high-voltage symmetric supercapacitors. J. Colloid Interface Sci. 659, 374–384 (2024). https://doi.org/10.1016/j.jcis.2023.12.162
W. Li, G. Wang, W. Sui, T. Xu, Z. Li et al., Facile and scalable preparation of cage-like mesoporous carbon from lignin-based phenolic resin and its application in supercapacitor electrodes. Carbon 196, 819–827 (2022). https://doi.org/10.1016/j.carbon.2022.05.053
J. Ralph, K. Lundquist, G. Brunow, F. Lu, H. Kim et al., Lignins: natural polymers from oxidative coupling of 4-hydroxyphenyl-propanoids. Phytochem. Rev. 3(1–2), 29–60 (2004). https://doi.org/10.1023/b:phyt.0000047809.65444.a4
T. Pang, Z. Xue, G. Wang, J. Li, W. Sui et al., Non-carbonized Pd single-atom catalyst supported on lignin-functionalized phenolic resin for potent catalytic transfer hydrogenation of lignin-derived aldehydes. Angew. Chem. Int. Ed. 64(23), e202503195 (2025). https://doi.org/10.1002/anie.202503195
L. Yan, H. Liu, Y. Yang, L. Dai, C. Si, Lignin-derived carbon fibers: a green path from biomass to advanced materials. Carbon Energy 7(3), e662 (2025). https://doi.org/10.1002/cey2.662
T. Xu, Q. Song, K. Liu, H. Liu, J. Pan et al., Nanocellulose-assisted construction of multifunctional MXene-based aerogels with engineering biomimetic texture for pressure sensor and compressible electrode. Nano-Micro Lett. 15(1), 98 (2023). https://doi.org/10.1007/s40820-023-01073-x
F. Wang, D. Ouyang, Z. Zhou, S.J. Page, D. Liu et al., Lignocellulosic biomass as sustainable feedstock and materials for power generation and energy storage. J. Energy Chem. 57, 247–280 (2021). https://doi.org/10.1016/j.jechem.2020.08.060
W. Liu, Q. Lin, S. Chen, H. Yang, K. Liu et al., Microencapsulated phase change material through cellulose nanofibrils stabilized Pickering emulsion templating. Adv. Compos. Hybrid Mater. 6(4), 149 (2023). https://doi.org/10.1007/s42114-023-00725-1
D.B. Sulis, N. Lavoine, H. Sederoff, X. Jiang, B.M. Marques et al., Advances in lignocellulosic feedstocks for bioenergy and bioproducts. Nat. Commun. 16, 1244 (2025). https://doi.org/10.1038/s41467-025-56472-y
Y. Yang, Y. Guan, C. Li, T. Xu, L. Dai et al., Application and carbon footprint evaluation of lignin-based composite materials. Adv. Compos. Hybrid Mater. 7(2), 61 (2024). https://doi.org/10.1007/s42114-024-00873-y
L. Yan, A.J. Huertas-Alonso, H. Liu, L. Dai, C. Si et al., Lignin polymerization: towards high-performance materials. Chem. Soc. Rev. 54(14), 6634–6651 (2025). https://doi.org/10.1039/D4CS01044B
M. Zhang, Y. Duan, T. Chen, J. Qi, T. Xu et al., Lignocellulosic materials for energy storage devices. Ind. Crops Prod. 203, 117174 (2023). https://doi.org/10.1016/j.indcrop.2023.117174
Y. Huang, T. Wang, M. Ji, J. Yang, C. Zhu et al., Simple preparation of carbonized bacterial cellulose–Pt composite as a high performance electrocatalyst for direct methanol fuel cells (DMFC). Mater. Lett. 128, 93–96 (2014). https://doi.org/10.1016/j.matlet.2014.04.128
V. Kuzmenko, O. Naboka, H. Staaf, M. Haque, G. Göransson et al., Capacitive effects of nitrogen doping on cellulose-derived carbon nanofibers. Mater. Chem. Phys. 160, 59–65 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.006
Y. Xu, W. Li, T. Xu, G. Wang, W. Huan et al., Straightforward fabrication of lignin-derived carbon-bridged graphitic carbon nitride for improved visible photocatalysis of tetracycline hydrochloride assisted by peroxymonosulfate activation. Adv. Compos. Hybrid Mater. 6(6), 197 (2023). https://doi.org/10.1007/s42114-023-00779-1
W. Li, L. Zhu, Y. Xu, G. Wang, T. Xu et al., Lignocellulose-mediated functionalization of liquid metals toward the frontiers of multifunctional materials. Adv. Mater. 37(12), 2570095 (2025). https://doi.org/10.1002/adma.202570095
F. Qiu, Y. Huang, X. Hu, B. Li, X. Zhang et al., An ecofriendly gel polymer electrolyte based on natural lignocellulose with ultrahigh electrolyte uptake and excellent ionic conductivity for alkaline supercapacitors. ACS Appl. Energy Mater. 2(8), 6031–6042 (2019). https://doi.org/10.1021/acsaem.9b01150
W. Li, Y. Xu, K. Liu, L. Zhu, T. Xu et al., Engineered biomass-based solar evaporators for diversified and sustainable water management. Adv. Mater. (2025). https://doi.org/10.1002/adma.202503658
W. Li, G. Wang, T. Li, Z. Zhang, Y. Wang et al., All-in-one self-cleaning lignin-derived spherical solar evaporator for continuous desalination and synergic water purification. Water Res. 282, 123932 (2025). https://doi.org/10.1016/j.watres.2025.123932
J. Qi, H. Wang, M. Zhang, T. Xu, X. Wang et al., Simultaneous preparation of lignin-containing cellulose nanocrystals and lignin nanops from wood sawdust by mixed organic acid hydrolysis. Ind. Crops Prod. 222, 119658 (2024). https://doi.org/10.1016/j.indcrop.2024.119658
N. Zhao, F. Wu, Y. Xing, W. Qu, N. Chen et al., Flexible hydrogel electrolyte with superior mechanical properties based on poly(vinyl alcohol) and bacterial cellulose for the solid-state zinc-air batteries. ACS Appl. Mater. Interfaces 11(17), 15537–15542 (2019). https://doi.org/10.1021/acsami.9b00758
W. Li, W. Zhang, Y. Xu, G. Wang, W. Sui et al., Heteroatom-doped lignin derived carbon materials with improved electrochemical performance for advanced supercapacitors. Chem. Eng. J. 497, 154829 (2024). https://doi.org/10.1016/j.cej.2024.154829
J. Qi, M. Zhang, T. Xu, K. Liu, Y. Wang et al., Nanocellulose/metal-organic frameworks composites for advanced energy storage of electrodes and separators. Chem. Eng. J. 500, 157318 (2024). https://doi.org/10.1016/j.cej.2024.157318
Z. Zheng, W. Cheng, G. Jiang, X. Li, J. Sun et al., Ethanol vapor-induced synthesis of robust, high-efficiency zinc ion gel electrolytes for flexible Zn-ion batteries. Small Struct. 5(10), 2400180 (2024). https://doi.org/10.1002/sstr.202400180
F. Yu, H. Zhang, L. Zhao, Z. Sun, Y. Li et al., A flexible cellulose/methylcellulose gel polymer electrolyte endowing superior Li+ conducting property for lithium ion battery. Carbohydr. Polym. 246, 116622 (2020). https://doi.org/10.1016/j.carbpol.2020.116622
A. Zhu, J. Huang, H. Xie, W. Yue, S. Qin et al., Use of a superbase/DMSO/CO2 solvent in order to incorporate cellulose into organic ionogel electrolyte for flexible supercapacitors. Chem. Eng. J. 446, 137032 (2022). https://doi.org/10.1016/j.cej.2022.137032
X. Liu, J. Gan, Y. Huang, J. Liu, D. Pu et al., Gel polymer electrolyte based on polymer matrix of hydroxyethyl cellulose composite lignocellulose. Bull. Mater. Sci. 46(4), 211 (2023). https://doi.org/10.1007/s12034-023-03050-x
J.-Y. Han, Y. Huang, Y. Chen, A.-M. Song, X.-H. Deng et al., High-performance gel polymer electrolyte based on chitosan–lignocellulose for lithium-ion batteries. ChemElectroChem 7(5), 1213–1224 (2020). https://doi.org/10.1002/celc.202000007
R. Zhang, C. Wu, C. Yao, W. Yang, Y. Jing et al., Preparation of PVA based multifunctional hydrogel electrolyte reinforced by phosphoric acid-dissolved-cellulose and its application in quasi-solid supercapacitors. Cellulose 31(2), 1071–1087 (2024). https://doi.org/10.1007/s10570-023-05661-3
T. Li, X. Cheng, Y. Feng, E. Zhu, Q. Zhang et al., Tough and highly conductive deep eutectic solvent-based gel electrolyte strengthened by high aspect ratio of hemp lignocellulosic nanofiber. Carbohydr. Polym. 345, 122566 (2024). https://doi.org/10.1016/j.carbpol.2024.122566
W. Huang, Y. Li, H. Gu, J. Wang, Q. Zhong, Gel polymer electrolyte with enhanced performance based on lignocellulose modified by NaOH/urea for lithium-sulfur batteries. ChemistrySelect 5(43), 13461–13468 (2020). https://doi.org/10.1002/slct.202003577
X. Xu, J. Gan, Y. Huang, J. Liu, L. Zhao et al., Gel polymer electrolyte combined lignocellulose with sodium alginate in lithium-ion battery. Funct. Mater. Lett. 15, 2251010 (2022). https://doi.org/10.1142/s1793604722510109
A. Song, Y. Huang, B. Liu, H. Cao, X. Zhong et al., Gel polymer electrolyte based on polyethylene glycol composite lignocellulose matrix with higher comprehensive performances. Electrochim. Acta 247, 505–515 (2017). https://doi.org/10.1016/j.electacta.2017.07.048
A. Song, Y. Huang, X. Zhong, H. Cao, B. Liu et al., Gel polymer electrolyte with high performances based on pure natural polymer matrix of potato starch composite lignocellulose. Electrochim. Acta 245, 981–992 (2017). https://doi.org/10.1016/j.electacta.2017.05.176
L. Zhao, J. Fu, Z. Du, X. Jia, Y. Qu et al., High-strength and flexible cellulose/PEG based gel polymer electrolyte with high performance for lithium ion batteries. J. Membr. Sci. 593, 117428 (2020). https://doi.org/10.1016/j.memsci.2019.117428
T. Zhang, Y. Wang, Y. Li, Y. Li, X. Li et al., Carboxymethyl cellulose gel electrolyte based on hydrolyzed keratin modified for dendrite-free zinc-ion batteries. Langmuir 40(40), 21032–21040 (2024). https://doi.org/10.1021/acs.langmuir.4c02308
H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16(1), 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
Y. Quan, H. Ma, M. Chen, W. Zhou, Q. Tian et al., Salting-out effect realizing high-strength and dendrite-inhibiting cellulose hydrogel electrolyte for durable aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 15(38), 44974–44983 (2023). https://doi.org/10.1021/acsami.3c09127
J. Wang, C. Wang, W. Wang, W. Li, J. Lou, Carboxymethylated nanocellulose-based gel polymer electrolyte with a high lithium ion transfer number for flexible lithium-ion batteries application. Chem. Eng. J. 428, 132604 (2022). https://doi.org/10.1016/j.cej.2021.132604
C. Gao, X. Li, G. Wei, S. Wang, X. Zhao et al., In-situ construction of cellulose acetate propionate-based hybrid gel polymer electrolyte for high-performance lithium metal batteries. Ind. Crops Prod. 204, 117395 (2023). https://doi.org/10.1016/j.indcrop.2023.117395
X. Zi, H. Wu, J. Song, G. Guo, J. Guo, Cellulose/PEGDA composite gel electrolyte with adjustable porosity and interfacial compatibility for lithium-ion batteries. J. Mater. Sci. Mater. Electron. 34(21), 1599 (2023). https://doi.org/10.1007/s10854-023-11012-6
Y. Huang, F. Cheng, C. Cai, Y. Fu, Simultaneously suppressing shuttle effect and dendrite growth in lithium–sulfur batteries via building dual-functional asymmetric-cellulose gel electrolyte. Small 19(28), 2300076 (2023). https://doi.org/10.1002/smll.202300076
X. Zi, H. Wu, J. Song, J. Wu, J. Guo, Long-cycling cellulose-based gel polymer electrolyte utilizing nanohydrotalcite as a Li(+) transport redistributor. ACS Appl. Mater. Interfaces 16(36), 47416–47428 (2024). https://doi.org/10.1021/acsami.4c07314
X. Wei, Y. Deng, X. Hu, Z. Yang, G. Han et al., Thermal stability of PVDF-HFP based gel electrolyte for high performance and safe lithium metal batteries. Chem. Eng. J. 502, 157725 (2024). https://doi.org/10.1016/j.cej.2024.157725
M. Liu, S. Zhang, G. Li, C. Wang, B. Li et al., A cross-linked gel polymer electrolyte employing cellulose acetate matrix and layered boron nitride filler prepared via in situ thermal polymerization. J. Power. Sources 484, 229235 (2021). https://doi.org/10.1016/j.jpowsour.2020.229235
J. Ji, F. Cheng, C. Cai, Y. Fu, Tailored cellulose gel electrolytes with dual pores, aligned channels, and dendrite mitigation for improved K/Zn dual-ion battery. ACS Sustainable Chem. Eng. 12(36), 13558–13567 (2024). https://doi.org/10.1021/acssuschemeng.4c04180
L. Yue, Y. Xie, Y. Zheng, W. He, S. Guo et al., Sulfonated bacterial cellulose/polyaniline composite membrane for use as gel polymer electrolyte. Compos. Sci. Technol. 145, 122–131 (2017). https://doi.org/10.1016/j.compscitech.2017.04.002
K. Liu, M. Zhang, K. Zhou, X. Liu, T. Xu et al., Multifunctional nanocellulose-based electromagnetic interference shielding composites: design, functionality, and future prospects. Ind. Crops Prod. 210, 118148 (2024). https://doi.org/10.1016/j.indcrop.2024.118148
Z. Wang, P. Heasman, J. Rostami, T. Benselfelt, M. Linares et al., Dynamic networks of cellulose nanofibrils enable highly conductive and strong polymer gel electrolytes for lithium-ion batteries. Adv. Funct. Mater. 33(30), 2212806 (2023). https://doi.org/10.1002/adfm.202212806
C. Gao, X. Li, C. Song, G. Wei, X. Zhao et al., Electrospun polyimide/cellulose acetate propionate nanofiber membrane-based gel polymer electrolyte with fast lithium-ion transport and high interface stability for lithium metal batteries. Cellulose 30(14), 9113–9126 (2023). https://doi.org/10.1007/s10570-023-05434-y
M. Das, N. Shukla, B. Boruah, A. Gogoi, L. Saikia et al., Cellulose acetate-based gel electrolytes grafted with surface-functionalized SiO2 nanofiber for green energy storing applications. Colloids Surf A Physicochem Eng Asp 686, 133268 (2024). https://doi.org/10.1016/j.colsurfa.2024.133268
T. Pang, G. Wang, W. Sui, T. Xu, D. Wang et al., Lignin-based support for metal catalysts: Synthetic strategies, performance boost, and application advances. Coord. Chem. Rev. 528, 216426 (2025). https://doi.org/10.1016/j.ccr.2024.216426
Y.-X. Yang, K.-K. Ge, S. Rehman, H. Bi, Nanocarbon-based electrode materials applied for supercapacitors. Rare Met. 41(12), 3957–3975 (2022). https://doi.org/10.1007/s12598-022-02091-1
T. Xu, Y. Wang, K. Liu, Q. Zhao, Q. Liang et al., Ultralight MXene/carbon nanotube composite aerogel for high-performance flexible supercapacitor. Adv. Compos. Hybrid Mater. 6(3), 108 (2023). https://doi.org/10.1007/s42114-023-00675-8
T. Xu, K. Liu, N. Sheng, M. Zhang, W. Liu et al., Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: properties, applications, and perspectives. Energy Storage Mater. 48, 244–262 (2022). https://doi.org/10.1016/j.ensm.2022.03.013
H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
Y. Wang, T. Xu, J. Qi, A. Wang, K. Liu et al., Wet spun cellulose nanocrystal/MXene hybrid fiber regulated by bridging effect for high electrochemical performance supercapacitor. Adv. Compos. Hybrid Mater. 7(4), 120 (2024). https://doi.org/10.1007/s42114-024-00918-2
N. Chen, L. Tao, X. Lu, M.M. Hassan, R. Yang et al., An adhesive cellulose nanocrystal-reinforced nanocomposite hydrogel electrolyte for supercapacitor applications. Giant 17, 100230 (2024). https://doi.org/10.1016/j.giant.2023.100230
Y. Wang, K. Liu, M. Zhang, T. Xu, H. Du et al., Sustainable polysaccharide-based materials for intelligent packaging. Carbohydr. Polym. 313, 120851 (2023). https://doi.org/10.1016/j.carbpol.2023.120851
X. Li, L. Yuan, R. Liu, H. He, J. Hao et al., Engineering textile electrode and bacterial cellulose nanofiber reinforced hydrogel electrolyte to enable high-performance flexible all-solid-state supercapacitors. Adv. Energy Mater. 11(12), 2003010 (2021). https://doi.org/10.1002/aenm.202003010
K. Zhang, Y. Pang, C. Chen, M. Wu, Y. Liu et al., Stretchable and conductive cellulose hydrogel electrolytes for flexible and foldable solid-state supercapacitors. Carbohydr. Polym. 293, 119673 (2022). https://doi.org/10.1016/j.carbpol.2022.119673
J.H. Park, H.H. Rana, J.Y. Lee, H.S. Park, Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J. Mater. Chem. A 7(28), 16962–16968 (2019). https://doi.org/10.1039/C9TA03519B
D. Li, S. Yang, Z. Zheng, W.-Y. Lai, Constructing lithium-free anode/separator interface via 3D carbon fabric scaffold for ultrasafe lithium metal batteries. Research 6, 0267 (2023). https://doi.org/10.34133/research.0267
H. Liu, H. Du, T. Zheng, K. Liu, X. Ji et al., Cellulose based composite foams and aerogels for advanced energy storage devices. Chem. Eng. J. 426, 130817 (2021). https://doi.org/10.1016/j.cej.2021.130817
Q. Long, G. Jiang, J. Zhou, D. Zhao, H. Yu, A cellulose ionogel with rubber-like stretchability for low-grade heat harvesting. Research 7, 0533 (2024). https://doi.org/10.34133/research.0533
K. Liu, H. Du, W. Liu, H. Liu, M. Zhang et al., Cellulose nanomaterials for oil exploration applications. Polym. Rev. 62(3), 585–625 (2022). https://doi.org/10.1080/15583724.2021.2007121
Z. Du, Y. Su, Y. Qu, L. Zhao, X. Jia et al., A mechanically robust, biodegradable and high performance cellulose gel membrane as gel polymer electrolyte of lithium-ion battery. Electrochim. Acta 299, 19–26 (2019). https://doi.org/10.1016/j.electacta.2018.12.173
H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 13(27), 32115–32125 (2021). https://doi.org/10.1021/acsami.1c06647
W. Wang, Z. Li, H. Huang, W. Li, J. Wang, Facile design of novel nanocellulose-based gel polymer electrolyte for lithium-ion batteries application. Chem. Eng. J. 445, 136568 (2022). https://doi.org/10.1016/j.cej.2022.136568
C. Ding, X. Fu, H. Li, J. Yang, J.-L. Lan et al., An ultrarobust composite gel electrolyte stabilizing ion deposition for long-life lithium metal batteries. Adv. Funct. Mater. 29(43), 1904547 (2019). https://doi.org/10.1002/adfm.201904547
Y. Xu, W. Li, W. Sui, T. Xu, G. Wang et al., Lignin-based photocatalytic materials: Fabrication, applications, and perspectives. Renew. Sustain. Energy Rev. 216, 115695 (2025). https://doi.org/10.1016/j.rser.2025.115695
Y. Xu, G. Wang, W. Li, Z. Yuan, C. Si, Broad-spectrum responsive lignin-KOH co-modified graphitic carbon nitride for synergetic photocatalytic H2O2 production via carbon-ring embedding and defect engineering. Chem. Eng. J. 503, 158655 (2025). https://doi.org/10.1016/j.cej.2024.158655
N.S. Shabanov, K.S. Rabadanov, M.M. Gafurov, A.B. Isaev, D.S. Sobola et al., Lignin-based gel polymer electrolyte for cationic conductivity. Polymers 13(14), 2306 (2021). https://doi.org/10.3390/polym13142306
W.-L. Wong, J. Xu, Y. Zhao, Y. Wang, H. Du et al., Upcycling of degraded Prussian blue into layered materials for sodium-ion battery. Research 8, 0643 (2025). https://doi.org/10.34133/research.0643
H. Du, M. Parit, K. Liu, M. Zhang, Z. Jiang et al., Engineering cellulose nanopaper with water resistant, antibacterial, and improved barrier properties by impregnation of chitosan and the followed halogenation. Carbohydr. Polym. 270, 118372 (2021). https://doi.org/10.1016/j.carbpol.2021.118372
K. Liu, H. Du, W. Liu, M. Zhang, Y. Wang et al., Strong, flexible, and highly conductive cellulose nanofibril/PEDOT: PSS/MXene nanocomposite films for efficient electromagnetic interference shielding. Nanoscale 14(40), 14902–14912 (2022). https://doi.org/10.1039/d2nr00468b
K. Liu, H. Du, T. Zheng, H. Liu, M. Zhang et al., Recent advances in cellulose and its derivatives for oilfield applications. Carbohydr. Polym. 259, 117740 (2021). https://doi.org/10.1016/j.carbpol.2021.117740
N. Mittal, S. Tien, E. Lizundia, M. Niederberger, Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 18(43), 2107183 (2022). https://doi.org/10.1002/smll.202107183
S. Zhao, Y. Shen, H. Che, M. Jabeen, C. Lu et al., Cellulose derivative and polyionic liquid crosslinked network gel electrolytes for sodium metal quasi-solid-state batteries. Adv. Funct. Mater. 35(15), 2422162 (2025). https://doi.org/10.1002/adfm.202422162
D. Liu, G. Du, Y. Qi, Y. Niu, S.-J. Bao et al., Bacterial cellulose network based gel polymer electrolyte for quasi-solid-state sodium-ion battery. J. Mater. Sci. Mater. Electron. 33(19), 15313–15322 (2022). https://doi.org/10.1007/s10854-022-08395-3
K. Yu, X. Pan, G. Zhang, X. Liao, X. Zhou et al., Nanowires in energy storage devices: structures, synthesis, and applications. Adv. Energy Mater. 8(32), 1802369 (2018). https://doi.org/10.1002/aenm.201802369
H. Li, L. Ma, C. Han, Z. Wang, Z. Liu et al., Advanced rechargeable zinc-based batteries: recent progress and future perspectives. Nano Energy 62, 550–587 (2019). https://doi.org/10.1016/j.nanoen.2019.05.059
Q. Zhao, H. Zhang, X. Wang, T. Xu, M. Zhang et al., Highly reversible and rapid charge transfer Zn-MnO2 battery by MnO2 nanosheet arrays anchored nanocellulose-based carbon aerogel. Adv. Compos. Hybrid Mater. 7(3), 90 (2024). https://doi.org/10.1007/s42114-024-00900-y
H. Zhang, M. Zhang, T. Xu, X. Wang, J. Qi et al., Ions and electrons dual transport channels regulated by nanocellulose for mitigating dendrite growth of zinc-ion batteries. Chem. Eng. J. 505, 159476 (2025). https://doi.org/10.1016/j.cej.2025.159476
M. Xu, D.G. Ivey, W. Qu, Z. Xie, Study of the mechanism for electrodeposition of dendrite-free zinc in an alkaline electrolyte modified with 1-ethyl-3-methylimidazolium dicyanamide. J. Power. Sources 274, 1249–1253 (2015). https://doi.org/10.1016/j.jpowsour.2014.10.140
Q. Zhao, T. Xu, K. Liu, H. Du, M. Zhang et al., Biomass-based functional materials for rechargeable Zn-ion batteries. Energy Storage Mater. 71, 103605 (2024). https://doi.org/10.1016/j.ensm.2024.103605
K. Liu, H. Du, T. Zheng, W. Liu, M. Zhang et al., Lignin-containing cellulose nanomaterials: preparation and applications. Green Chem. 23(24), 9723–9746 (2021). https://doi.org/10.1039/d1gc02841c
G.J.H. Lim, J.J. Koh, K.K. Chan, V. Verma, R. Chua et al., Amorphous cellulose electrolyte for long life and mechanically robust aqueous structural batteries. Adv. Funct. Mater. 34(24), 2313531 (2024). https://doi.org/10.1002/adfm.202313531
H. Zhang, X. Gan, Y. Gao, H. Wu, Z. Song et al., Carboxylic acid-functionalized cellulose hydrogel electrolyte for dual-interface stabilization in aqueous zinc-organic batteries. Adv. Mater. 37(1), 2411997 (2025). https://doi.org/10.1002/adma.202411997
P. Lin, J. Cong, J. Li, M. Zhang, P. Lai et al., Achieving ultra-long lifespan Zn metal anodes by manipulating desolvation effect and Zn deposition orientation in a multiple cross-linked hydrogel electrolyte. Energy Storage Mater. 49, 172–180 (2022). https://doi.org/10.1016/j.ensm.2022.04.010
H. Zhang, X. Gan, Z. Song, J. Zhou, Amphoteric cellulose-based double-network hydrogel electrolyte toward ultra-stable Zn anode. Angew. Chem. Int. Ed. 62(13), e202217833 (2023). https://doi.org/10.1002/anie.202217833
D. Zhong, K. Wang, M. Wei, H. Wang, P. Pei, Enhanced low-temperature performance of flexible Zinc-Air batteries via high-concentration ZnCl2 and lignin modified polyacrylamide hydrogels. Chem. Eng. J. 510, 161596 (2025). https://doi.org/10.1016/j.cej.2025.161596
Y. Lv, H. Zhang, J. Wang, L. Chen, L. Bian et al., All-in-one deposition to synergistically manipulate perovskite growth for high-performance solar cell. Research 2020, 2763409 (2020). https://doi.org/10.34133/2020/2763409
W. Li, K. Liu, H. Yang, Y. Xu, M. Zhang et al., Precision-engineered lignin-based food packaging materials. Trends Food Sci. Technol. 163, 105168 (2025). https://doi.org/10.1016/j.tifs.2025.105168
D. Raja, B. Selvaraj, G. Shanmugam, A. Maruthapillai, D. Sundaramurthy, Improving the efficiency of dye-sensitized solar cells via the impact of triphenylamine-based inventive organic additives on biodegradable cellulose polymer gel electrolytes. Energy Fuels 35(5), 4273–4282 (2021). https://doi.org/10.1021/acs.energyfuels.0c03223
M.A. Mingsukang, M.H. Buraidah, M.A. Careem, Development of gel polymer electrolytes for application in quantum dot-sensitized solar cells. Ionics 23(2), 347–355 (2017). https://doi.org/10.1007/s11581-016-1895-7