Ultrafast Laser Shock Straining in Chiral Chain 2D Materials: Mold Topology-Controlled Anisotropic Deformation
Corresponding Author: Gary J. Cheng
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 83
Abstract
Tellurene, a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity, emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering. This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting (LSI) in two-dimensional tellurium (Te), establishing a direct relationship between strain field orientation, mold topology, and anisotropic structural evolution. This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks. By applying controlled strain fields parallel or transverse to Te’s helical chains, we uncover two distinct deformation regimes. Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions, preserving covalent intrachain bonds and vibrational modes. In contrast, transverse strain drives shear-mediated multimodal deformations—tensile stretching, compression, and bending—resulting in significant lattice distortions and electronic property modulation. We discovered the critical role of mold topology on deformation: sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds, triggering dislocation tangle formation, lattice reorientation, and inhomogeneous plastic deformation. Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration. These insights position LSI as a precision tool for nanoscale strain engineering, capable of sculpting 2D material morphologies without compromising crystallinity. By bridging ultrafast mechanics with chiral chain material science, this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics, while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates. This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te, linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion. It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics, with sharp-edged gratings enabling unprecedented control over lattice reorientation. Crucially, the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication, redefining LSI’s potential in ultrafast strain engineering of chiral chain materials.
Highlights:
1 Realized ultrafast laser shock imprinting on chiral chain tellurene: Reveals crystallographic orientation-dependent deformation in 2D tellurium via laser shock imprinting.
2 Dual deformation regimes: Identifies two distinct strain response modes—parallel strain enables chain gliding and rotation, while transverse strain induces multimodal shear-driven deformations, dramatically altering lattice structure and properties.
3 Mold topology enabled strain localization and single-crystal retention—sharp edges generate localized shear, forming dislocations more effectively than smooth molds. Asymmetric strain achieves dense deformation while preserving single-crystal zones, enabling precise optoelectronic nanostructuring.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang et al., Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 4(11), 732–737 (2009). https://doi.org/10.1038/nnano.2009.266
- F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010). https://doi.org/10.1038/nphys1420
- Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31(45), 1805417 (2019). https://doi.org/10.1002/adma.201805417
- C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10(1), 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
- Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai et al., Strain engineering and epitaxial stabilization of halide perovskites. Nature 577(7789), 209–215 (2020). https://doi.org/10.1038/s41586-019-1868-x
- P. Xiong, F. Zhang, X. Zhang, S. Wang, H. Liu et al., Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat. Commun. 11, 3297 (2020). https://doi.org/10.1038/s41467-020-17014-w
- S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler et al., A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Devices 51(11), 1790–1797 (2004). https://doi.org/10.1109/TED.2004.836648
- A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea et al., Local strain engineering in atomically thin MoS2. Nano Lett. 13(11), 5361–5366 (2013). https://doi.org/10.1021/nl402875m
- Y. Wang, S. Yao, P. Liao, S. Jin, Q. Wang et al., Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv. Mater. 32(29), e2002342 (2020). https://doi.org/10.1002/adma.202002342
- H. Gao, Y. Hu, Y. Xuan, J. Li, Y. Yang et al., Nanolithography. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science 346(6215), 1352–1356 (2014). https://doi.org/10.1126/science.1260139
- M. Motlag, P. Kumar, K.Y. Hu, S. Jin, J. Li et al., Asymmetric 3D elastic-plastic strain-modulated electron energy structure in monolayer graphene by laser shocking. Adv. Mater. 31(19), e1900597 (2019). https://doi.org/10.1002/adma.201900597
- M. Motlag, Y. Hu, L. Tong, X. Huang, L. Ye et al., Laser-shock-induced nanoscale kink-bands in WSe2 2D crystals. ACS Nano 13(9), 10587–10595 (2019). https://doi.org/10.1021/acsnano.9b04705
- G. Arlt, P. Quadflieg, Electronic displacement in tellurium by mechanical strain. Phys. Status Solidi B 32(2), 687–689 (1969). https://doi.org/10.1002/pssb.19690320220
- W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47(19), 7203–7212 (2018). https://doi.org/10.1039/C8CS00598B
- M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
- L. Tong, X. Huang, P. Wang, L. Ye, M. Peng et al., Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 11(1), 2308 (2020). https://doi.org/10.1038/s41467-020-16125-8
- M. Peng, R. Xie, Z. Wang, P. Wang, F. Wang et al., Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 7(16), eabf7358 (2021). https://doi.org/10.1126/sciadv.abf7358
- K. Okuyama, Y. Kumagai, Hall mobility of evaporated tellurium films. Jpn. J. Appl. Phys. 12(12), 1884–1889 (1973). https://doi.org/10.1143/jjap.12.1884
- Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12(1), 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
- A.K. Katiyar, J.-H. Ahn, Strain-engineered 2D materials: challenges, opportunities, and future perspectives. Small Methods 9(3), e2401404 (2025). https://doi.org/10.1002/smtd.202401404
- Y. Qi, M.A. Sadi, D. Hu, M. Zheng, Z. Wu et al., Recent progress in strain engineering on van der Waals 2D materials: tunable electrical, electrochemical, magnetic, and optical properties. Adv. Mater. 35(12), e2205714 (2023). https://doi.org/10.1002/adma.202205714
- H. Ma, W. Hu, J. Yang, Control of highly anisotropic electrical conductance of tellurene by strain-engineering. Nanoscale 11(45), 21775–21781 (2019). https://doi.org/10.1039/c9nr05660b
- J.-S. Oh, T.I. Kim, H.-I. Kwon, I.-J. Park, Strain modulation effects on two-dimensional tellurium for advanced p-type transistor applications. Appl. Surf. Sci. 651, 159288 (2024). https://doi.org/10.1016/j.apsusc.2024.159288
- Y. Xie, H. Yu, J. Wei, Q. He, P. Zhang et al., Bending strain-modulated flexible photodetection of tellurene in the long wavelength infrared region. J. Alloys Compd. 968, 171899 (2023). https://doi.org/10.1016/j.jallcom.2023.171899
- Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
- D. de Camargo Branco, G.J. Cheng, Employing hybrid lennard-Jones and axilrod-teller potentials to parametrize force fields for the simulation of materials’ properties. Materials 14(21), 6352 (2021). https://doi.org/10.3390/ma14216352
- P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
- S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039
References
J. Cao, E. Ertekin, V. Srinivasan, W. Fan, S. Huang et al., Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams. Nat. Nanotechnol. 4(11), 732–737 (2009). https://doi.org/10.1038/nnano.2009.266
F. Guinea, M.I. Katsnelson, A.K. Geim, Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6(1), 30–33 (2010). https://doi.org/10.1038/nphys1420
Z. Dai, L. Liu, Z. Zhang, Strain engineering of 2D materials: issues and opportunities at the interface. Adv. Mater. 31(45), 1805417 (2019). https://doi.org/10.1002/adma.201805417
C. Zhu, X. Niu, Y. Fu, N. Li, C. Hu et al., Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 10(1), 815 (2019). https://doi.org/10.1038/s41467-019-08507-4
Y. Chen, Y. Lei, Y. Li, Y. Yu, J. Cai et al., Strain engineering and epitaxial stabilization of halide perovskites. Nature 577(7789), 209–215 (2020). https://doi.org/10.1038/s41586-019-1868-x
P. Xiong, F. Zhang, X. Zhang, S. Wang, H. Liu et al., Strain engineering of two-dimensional multilayered heterostructures for beyond-lithium-based rechargeable batteries. Nat. Commun. 11, 3297 (2020). https://doi.org/10.1038/s41467-020-17014-w
S.E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler et al., A 90-nm logic technology featuring strained-silicon. IEEE Trans. Electron Devices 51(11), 1790–1797 (2004). https://doi.org/10.1109/TED.2004.836648
A. Castellanos-Gomez, R. Roldán, E. Cappelluti, M. Buscema, F. Guinea et al., Local strain engineering in atomically thin MoS2. Nano Lett. 13(11), 5361–5366 (2013). https://doi.org/10.1021/nl402875m
Y. Wang, S. Yao, P. Liao, S. Jin, Q. Wang et al., Strain-engineered anisotropic optical and electrical properties in 2D chiral-chain tellurium. Adv. Mater. 32(29), e2002342 (2020). https://doi.org/10.1002/adma.202002342
H. Gao, Y. Hu, Y. Xuan, J. Li, Y. Yang et al., Nanolithography. Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures. Science 346(6215), 1352–1356 (2014). https://doi.org/10.1126/science.1260139
M. Motlag, P. Kumar, K.Y. Hu, S. Jin, J. Li et al., Asymmetric 3D elastic-plastic strain-modulated electron energy structure in monolayer graphene by laser shocking. Adv. Mater. 31(19), e1900597 (2019). https://doi.org/10.1002/adma.201900597
M. Motlag, Y. Hu, L. Tong, X. Huang, L. Ye et al., Laser-shock-induced nanoscale kink-bands in WSe2 2D crystals. ACS Nano 13(9), 10587–10595 (2019). https://doi.org/10.1021/acsnano.9b04705
G. Arlt, P. Quadflieg, Electronic displacement in tellurium by mechanical strain. Phys. Status Solidi B 32(2), 687–689 (1969). https://doi.org/10.1002/pssb.19690320220
W. Wu, G. Qiu, Y. Wang, R. Wang, P. Ye, Tellurene: its physical properties, scalable nanomanufacturing, and device applications. Chem. Soc. Rev. 47(19), 7203–7212 (2018). https://doi.org/10.1039/C8CS00598B
M. Amani, C. Tan, G. Zhang, C. Zhao, J. Bullock et al., Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors. ACS Nano 12(7), 7253–7263 (2018). https://doi.org/10.1021/acsnano.8b03424
L. Tong, X. Huang, P. Wang, L. Ye, M. Peng et al., Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature. Nat. Commun. 11(1), 2308 (2020). https://doi.org/10.1038/s41467-020-16125-8
M. Peng, R. Xie, Z. Wang, P. Wang, F. Wang et al., Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Sci. Adv. 7(16), eabf7358 (2021). https://doi.org/10.1126/sciadv.abf7358
K. Okuyama, Y. Kumagai, Hall mobility of evaporated tellurium films. Jpn. J. Appl. Phys. 12(12), 1884–1889 (1973). https://doi.org/10.1143/jjap.12.1884
Z. Shi, R. Cao, K. Khan, A.K. Tareen, X. Liu et al., Two-dimensional tellurium: progress, challenges, and prospects. Nano-Micro Lett. 12(1), 99 (2020). https://doi.org/10.1007/s40820-020-00427-z
A.K. Katiyar, J.-H. Ahn, Strain-engineered 2D materials: challenges, opportunities, and future perspectives. Small Methods 9(3), e2401404 (2025). https://doi.org/10.1002/smtd.202401404
Y. Qi, M.A. Sadi, D. Hu, M. Zheng, Z. Wu et al., Recent progress in strain engineering on van der Waals 2D materials: tunable electrical, electrochemical, magnetic, and optical properties. Adv. Mater. 35(12), e2205714 (2023). https://doi.org/10.1002/adma.202205714
H. Ma, W. Hu, J. Yang, Control of highly anisotropic electrical conductance of tellurene by strain-engineering. Nanoscale 11(45), 21775–21781 (2019). https://doi.org/10.1039/c9nr05660b
J.-S. Oh, T.I. Kim, H.-I. Kwon, I.-J. Park, Strain modulation effects on two-dimensional tellurium for advanced p-type transistor applications. Appl. Surf. Sci. 651, 159288 (2024). https://doi.org/10.1016/j.apsusc.2024.159288
Y. Xie, H. Yu, J. Wei, Q. He, P. Zhang et al., Bending strain-modulated flexible photodetection of tellurene in the long wavelength infrared region. J. Alloys Compd. 968, 171899 (2023). https://doi.org/10.1016/j.jallcom.2023.171899
Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang et al., Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1(4), 228–236 (2018). https://doi.org/10.1038/s41928-018-0058-4
D. de Camargo Branco, G.J. Cheng, Employing hybrid lennard-Jones and axilrod-teller potentials to parametrize force fields for the simulation of materials’ properties. Materials 14(21), 6352 (2021). https://doi.org/10.3390/ma14216352
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21(39), 395502 (2009). https://doi.org/10.1088/0953-8984/21/39/395502
S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995). https://doi.org/10.1006/jcph.1995.1039