Defect Engineering and Carbon Supporting to Achieve Ni-Doped CoP3 with High Catalytic Activities for Overall Water Splitting
Corresponding Author: Zhongqing Jiang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 250
Abstract
This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline media. Specifically, the nitrogen-doped carbon nanofiber-supported Ni-doped CoP3 with rich P defects (Pv·) on the carbon cloth (p-NiCoP/NCFs@CC) is synthesized through a plasma-assisted phosphorization method. The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER. It only needs overpotentials of 107 and 306 mV to drive 100 mA cm−2 for the HER and the OER, respectively. Its catalytic activities are higher than those of other catalysts reported recently. The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features. The density functional theory calculation indicates that the Pv· richness, the Ni doping, and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process. This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER. When used in alkaline water electrolyzers, the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.
Highlights:
1 Plasma-assisted phosphorization has been used to prepare defect-rich metal phosphides.
2 The p-NiCoP/NCF@CC shows high activities and excellent stability for the hydrogen evolution reaction and the oxygen evolution reaction.
3 The p-NiCoP/NCF@CC shows great potential for overall water splitting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das et al., Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 136, 17530–17536 (2014). https://doi.org/10.1021/ja509348t
- T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949
- L. Ye, W. Chen, Z.-J. Jiang, Z. Jiang, Co/CoO heterojunction rich in oxygen vacancies introduced by O2 plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc–air battery. Carbon Energy (2024). https://doi.org/10.1002/cey2.457
- G. Glenk, S. Reichelstein, Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019). https://doi.org/10.1038/s41560-019-0326-1
- X. Kong, J. Xu, Z. Ju, C. Chen, Durable Ru nanocrystal with HfO2 modification for acidic overall water splitting. Nano-Micro Lett. 16, 185 (2024). https://doi.org/10.1007/s40820-024-01384-7
- G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
- Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng et al., Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 9, 1901213 (2019). https://doi.org/10.1002/aenm.201901213
- Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia et al., Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic–metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14, 4141–4152 (2020). https://doi.org/10.1021/acsnano.9b08904
- H. Zhu, Y. Wang, Z. Jiang, B. Deng, Y. Xin et al., Defect engineering promoted ultrafine Ir nanop growth and Sr single-atom adsorption on TiO2 nanowires to achieve high-performance overall water splitting in acidic media. Adv. Energy Mater. 14, 2303987 (2024). https://doi.org/10.1002/aenm.202303987
- J. Kuang, B. Deng, Z. Jiang, Y. Wang, Z.-J. Jiang, Sr-Stabilized IrMnO2 solid solution nano-electrocatalysts with superior activity and excellent durability for oxygen evolution reaction in acid media. Adv. Mater. 36, 2306934 (2024). https://doi.org/10.1002/adma.202306934
- H. Yan, Z. Jiang, B. Deng, Y. Wang, Z.-J. Jiang, Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super-high durability. Adv. Energy Mater. 13, 2300152 (2023). https://doi.org/10.1002/aenm.202300152
- B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
- F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int. J. Hydrog. Energy 40, 256–274 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.109
- C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
- J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31, 1808167 (2019). https://doi.org/10.1002/adma.201808167
- J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15, 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
- J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
- Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017). https://doi.org/10.1016/j.nantod.2017.06.006
- C.-Z. Yuan, Y.-F. Jiang, Z. Wang, X. Xie, Z.-K. Yang et al., Cobalt phosphate nanops decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 4, 8155–8160 (2016). https://doi.org/10.1039/C6TA01929C
- F. Li, G.-F. Han, J.-B. Baek, Active site engineering in transition metal based electrocatalysts for green energy applications. Acc. Mater. Res. 2, 147–158 (2021). https://doi.org/10.1021/accountsmr.0c00110
- P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
- Y. Liang, Y. Li, H. Wang, H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135, 2013–2036 (2013). https://doi.org/10.1021/ja3089923
- T. Zhou, Y. Du, S. Yin, X. Tian, H. Yang et al., Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci. 9, 2563–2570 (2016). https://doi.org/10.1039/C6EE01297C
- D. Chen, R. Lu, Z. Pu, J. Zhu, H.-W. Li et al., Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B Environ. 279, 119396 (2020). https://doi.org/10.1016/j.apcatb.2020.119396
- F. Zhou, X. Zhang, R. Sa, S. Zhang, Z. Wen et al., The electrochemical overall water splitting promoted by MoS2 in coupled nickel–iron (oxy)hydride/molybdenum sulfide/graphene composite. Chem. Eng. J. 397, 125454 (2020). https://doi.org/10.1016/j.cej.2020.125454
- Y. Gan, C. Wang, X. Chen, P. Liang, H. Wan et al., High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 392, 123661 (2020). https://doi.org/10.1016/j.cej.2019.123661
- Y. Liu, Z. Jiang, Z.-J. Jiang, Plasma-assisted formation of oxygen defective NiCoO/NiCoN heterostructure with improved ORR/OER activities for highly durable all-solid-state zinc-air batteries. Adv. Funct. Mater. 33, 2302883 (2023). https://doi.org/10.1002/adfm.202302883
- M. Wang, W. Fu, L. Du, Y. Wei, P. Rao et al., Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis. Appl. Surf. Sci. 515, 146059 (2020). https://doi.org/10.1016/j.apsusc.2020.146059
- J. Ge, S. Diao, J. Jin, Y. Wang, X. Zhao et al., NiFeCu phosphides with surface reconstruction via the topotactic transformation of layered double hydroxides for overall water splitting. Inorg. Chem. Front. 10, 3515–3524 (2023). https://doi.org/10.1039/D2QI02582E
- S. Wen, J. Huang, T. Li, W. Chen, G. Chen et al., Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Appl. Catal. B Environ. 316, 121678 (2022). https://doi.org/10.1016/j.apcatb.2022.121678
- H. Liu, J. Gao, X. Xu, Q. Jia, L. Yang et al., Oriented construction Cu3P and Ni2P heterojunction to boost overall water splitting. Chem. Eng. J. 448, 137706 (2022). https://doi.org/10.1016/j.cej.2022.137706
- M.R. Kandel, U.N. Pan, D.R. Paudel, P.P. Dhakal, N.H. Kim et al., Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Compos. Part B Eng. 239, 109992 (2022). https://doi.org/10.1016/j.compositesb.2022.109992
- Y. Wang, Y. Jiao, H. Yan, G. Yang, C. Tian et al., Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew. Chem. Int. Ed. 61, e202116233 (2022). https://doi.org/10.1002/anie.202116233
- J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan et al., Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017). https://doi.org/10.1039/C7TA03947F
- G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
- Y. Zang, B. Yang, A. Li, C. Liao, G. Chen et al., Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Appl. Mater. Interfaces 13, 41573–41583 (2021). https://doi.org/10.1021/acsami.1c10060
- J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j
- W. Tang, E. Sanville, G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. J. Phys.-Condens. Mat. 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204
References
A. Indra, P.W. Menezes, N.R. Sahraie, A. Bergmann, C. Das et al., Unification of catalytic water oxidation and oxygen reduction reactions: amorphous beat crystalline cobalt iron oxides. J. Am. Chem. Soc. 136, 17530–17536 (2014). https://doi.org/10.1021/ja509348t
T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949
L. Ye, W. Chen, Z.-J. Jiang, Z. Jiang, Co/CoO heterojunction rich in oxygen vacancies introduced by O2 plasma embedded in mesoporous walls of carbon nanoboxes covered with carbon nanotubes for rechargeable zinc–air battery. Carbon Energy (2024). https://doi.org/10.1002/cey2.457
G. Glenk, S. Reichelstein, Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019). https://doi.org/10.1038/s41560-019-0326-1
X. Kong, J. Xu, Z. Ju, C. Chen, Durable Ru nanocrystal with HfO2 modification for acidic overall water splitting. Nano-Micro Lett. 16, 185 (2024). https://doi.org/10.1007/s40820-024-01384-7
G. Qian, J. Chen, T. Yu, J. Liu, L. Luo et al., Three-phase heterojunction nimo-based nano-needle for water splitting at industrial alkaline condition. Nano-Micro Lett. 14, 20 (2021). https://doi.org/10.1007/s40820-021-00744-x
Y. Lin, K. Sun, S. Liu, X. Chen, Y. Cheng et al., Construction of CoP/NiCoP nanotadpoles heterojunction interface for wide pH hydrogen evolution electrocatalysis and supercapacitor. Adv. Energy Mater. 9, 1901213 (2019). https://doi.org/10.1002/aenm.201901213
Y. Guo, J. Tang, J. Henzie, B. Jiang, W. Xia et al., Mesoporous iron-doped MoS2/CoMo2S4 heterostructures through organic–metal cooperative interactions on spherical micelles for electrochemical water splitting. ACS Nano 14, 4141–4152 (2020). https://doi.org/10.1021/acsnano.9b08904
H. Zhu, Y. Wang, Z. Jiang, B. Deng, Y. Xin et al., Defect engineering promoted ultrafine Ir nanop growth and Sr single-atom adsorption on TiO2 nanowires to achieve high-performance overall water splitting in acidic media. Adv. Energy Mater. 14, 2303987 (2024). https://doi.org/10.1002/aenm.202303987
J. Kuang, B. Deng, Z. Jiang, Y. Wang, Z.-J. Jiang, Sr-Stabilized IrMnO2 solid solution nano-electrocatalysts with superior activity and excellent durability for oxygen evolution reaction in acid media. Adv. Mater. 36, 2306934 (2024). https://doi.org/10.1002/adma.202306934
H. Yan, Z. Jiang, B. Deng, Y. Wang, Z.-J. Jiang, Ultrathin carbon coating and defect engineering promote RuO2 as an efficient catalyst for acidic oxygen evolution reaction with super-high durability. Adv. Energy Mater. 13, 2300152 (2023). https://doi.org/10.1002/aenm.202300152
B. Guo, Y. Ding, H. Huo, X. Wen, X. Ren et al., Recent advances of transition metal basic salts for electrocatalytic oxygen evolution reaction and overall water electrolysis. Nano-Micro Lett. 15, 57 (2023). https://doi.org/10.1007/s40820-023-01038-0
F. Safizadeh, E. Ghali, G. Houlachi, Electrocatalysis developments for hydrogen evolution reaction in alkaline solutions—a review. Int. J. Hydrog. Energy 40, 256–274 (2015). https://doi.org/10.1016/j.ijhydene.2014.10.109
C. Wang, Q. Zhang, B. Yan, B. You, J. Zheng et al., Facet engineering of advanced electrocatalysts toward hydrogen/oxygen evolution reactions. Nano-Micro Lett. 15, 52 (2023). https://doi.org/10.1007/s40820-023-01024-6
J. Zhang, Q. Zhang, X. Feng, Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 31, 1808167 (2019). https://doi.org/10.1002/adma.201808167
J. Zhu, J. Qian, X. Peng, B. Xia, D. Gao, Etching-induced surface reconstruction of NiMoO4 for oxygen evolution reaction. Nano-Micro Lett. 15, 30 (2023). https://doi.org/10.1007/s40820-022-01011-3
J. Li, J. Li, J. Ren, H. Hong, D. Liu et al., Electric-field-treated Ni/Co3O4 film as high-performance bifunctional electrocatalysts for efficient overall water splitting. Nano-Micro Lett. 14, 148 (2022). https://doi.org/10.1007/s40820-022-00889-3
Y. Wang, B. Kong, D. Zhao, H. Wang, C. Selomulya, Strategies for developing transition metal phosphides as heterogeneous electrocatalysts for water splitting. Nano Today 15, 26–55 (2017). https://doi.org/10.1016/j.nantod.2017.06.006
C.-Z. Yuan, Y.-F. Jiang, Z. Wang, X. Xie, Z.-K. Yang et al., Cobalt phosphate nanops decorated with nitrogen-doped carbon layers as highly active and stable electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 4, 8155–8160 (2016). https://doi.org/10.1039/C6TA01929C
F. Li, G.-F. Han, J.-B. Baek, Active site engineering in transition metal based electrocatalysts for green energy applications. Acc. Mater. Res. 2, 147–158 (2021). https://doi.org/10.1021/accountsmr.0c00110
P. Wang, Y. Luo, G. Zhang, Z. Chen, H. Ranganathan et al., Interface engineering of NixSy@MnOxHy nanorods to efficiently enhance overall-water-splitting activity and stability. Nano-Micro Lett. 14, 120 (2022). https://doi.org/10.1007/s40820-022-00860-2
Y. Liang, Y. Li, H. Wang, H. Dai, Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J. Am. Chem. Soc. 135, 2013–2036 (2013). https://doi.org/10.1021/ja3089923
T. Zhou, Y. Du, S. Yin, X. Tian, H. Yang et al., Nitrogen-doped cobalt phosphate@nanocarbon hybrids for efficient electrocatalytic oxygen reduction. Energy Environ. Sci. 9, 2563–2570 (2016). https://doi.org/10.1039/C6EE01297C
D. Chen, R. Lu, Z. Pu, J. Zhu, H.-W. Li et al., Ru-doped 3D flower-like bimetallic phosphide with a climbing effect on overall water splitting. Appl. Catal. B Environ. 279, 119396 (2020). https://doi.org/10.1016/j.apcatb.2020.119396
F. Zhou, X. Zhang, R. Sa, S. Zhang, Z. Wen et al., The electrochemical overall water splitting promoted by MoS2 in coupled nickel–iron (oxy)hydride/molybdenum sulfide/graphene composite. Chem. Eng. J. 397, 125454 (2020). https://doi.org/10.1016/j.cej.2020.125454
Y. Gan, C. Wang, X. Chen, P. Liang, H. Wan et al., High conductivity Ni12P5 nanowires as high-rate electrode material for battery-supercapacitor hybrid devices. Chem. Eng. J. 392, 123661 (2020). https://doi.org/10.1016/j.cej.2019.123661
Y. Liu, Z. Jiang, Z.-J. Jiang, Plasma-assisted formation of oxygen defective NiCoO/NiCoN heterostructure with improved ORR/OER activities for highly durable all-solid-state zinc-air batteries. Adv. Funct. Mater. 33, 2302883 (2023). https://doi.org/10.1002/adfm.202302883
M. Wang, W. Fu, L. Du, Y. Wei, P. Rao et al., Surface engineering by doping manganese into cobalt phosphide towards highly efficient bifunctional HER and OER electrocatalysis. Appl. Surf. Sci. 515, 146059 (2020). https://doi.org/10.1016/j.apsusc.2020.146059
J. Ge, S. Diao, J. Jin, Y. Wang, X. Zhao et al., NiFeCu phosphides with surface reconstruction via the topotactic transformation of layered double hydroxides for overall water splitting. Inorg. Chem. Front. 10, 3515–3524 (2023). https://doi.org/10.1039/D2QI02582E
S. Wen, J. Huang, T. Li, W. Chen, G. Chen et al., Multiphase nanosheet-nanowire cerium oxide and nickel-cobalt phosphide for highly-efficient electrocatalytic overall water splitting. Appl. Catal. B Environ. 316, 121678 (2022). https://doi.org/10.1016/j.apcatb.2022.121678
H. Liu, J. Gao, X. Xu, Q. Jia, L. Yang et al., Oriented construction Cu3P and Ni2P heterojunction to boost overall water splitting. Chem. Eng. J. 448, 137706 (2022). https://doi.org/10.1016/j.cej.2022.137706
M.R. Kandel, U.N. Pan, D.R. Paudel, P.P. Dhakal, N.H. Kim et al., Hybridized bimetallic phosphides of Ni–Mo, Co–Mo, and Co–Ni in a single ultrathin-3D-nanosheets for efficient HER and OER in alkaline media. Compos. Part B Eng. 239, 109992 (2022). https://doi.org/10.1016/j.compositesb.2022.109992
Y. Wang, Y. Jiao, H. Yan, G. Yang, C. Tian et al., Vanadium-incorporated CoP2 with lattice expansion for highly efficient acidic overall water splitting. Angew. Chem. Int. Ed. 61, e202116233 (2022). https://doi.org/10.1002/anie.202116233
J. Li, G. Wei, Y. Zhu, Y. Xi, X. Pan et al., Hierarchical NiCoP nanocone arrays supported on Ni foam as an efficient and stable bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 5, 14828–14837 (2017). https://doi.org/10.1039/C7TA03947F
G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996). https://doi.org/10.1103/PhysRevB.54.11169
Y. Zang, B. Yang, A. Li, C. Liao, G. Chen et al., Tuning interfacial active sites over porous Mo2N-supported cobalt sulfides for efficient hydrogen evolution reactions in acid and alkaline electrolytes. ACS Appl. Mater. Interfaces 13, 41573–41583 (2021). https://doi.org/10.1021/acsami.1c10060
J.K. Nørskov, J. Rossmeisl, A. Logadottir, L. Lindqvist, J.R. Kitchin et al., Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004). https://doi.org/10.1021/jp047349j
W. Tang, E. Sanville, G. Henkelman, A grid-based Bader analysis algorithm without lattice bias. J. Phys.-Condens. Mat. 21, 084204 (2009). https://doi.org/10.1088/0953-8984/21/8/084204