Engineering Bifunctional Catalytic Microenvironments for Durable and High-Energy-Density Metal–Air Batteries
Corresponding Author: Thandavarayan Maiyalagan
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 294
Abstract
Rechargeable metal–air batteries have gained significant interest due to their high energy density and environmental benignity. However, these batteries face significant challenges, particularly related to the air-breathing electrode, resulting in poor cycle life, low efficiency, and catalyst degradation. Developing a robust bifunctional electrocatalyst remains difficult, as oxygen electrocatalysis involves sluggish kinetics and follows different reaction pathways, often requiring distinct active sites. Consequently, the poorly understood mechanisms and irreversible surface reconstruction in the catalyst’s microenvironment, such as atomic modulation, nano-/microscale, and surface interfaces, lead to accelerated degradation during charge and discharge cycles. Overcoming these barriers requires advancements in the development and understanding of bifunctional electrocatalysts. In this review, the critical components of metal–air batteries, the associated challenges, and the current engineering approaches to address these issues are discussed. Additionally, the mechanisms of oxygen electrocatalysis on the air electrodes are examined, along with insights into how chemical characteristics of materials influence these mechanisms. Furthermore, recent advances in bifunctional electrocatalysts are highlighted, with an emphasis on the synthesis strategies, microenvironmental modulations, and stabilized systems demonstrating efficient performance, particularly zinc– and lithium–air batteries. Finally, perspectives and future research directions are provided for designing efficient and durable bifunctional electrocatalysts for metal–air batteries.
Highlights:
1 Overview of metal–air batteries architecture, reaction mechanisms, and challenges in developing bifunctional air-breathing electrodes.
2 Comprehensive discussion on engineering the microenvironment chemistry of noble metal-free bifunctional oxygen electrocatalysts.
3 Insights into future research directions for earth-abundant bifunctional catalysts with enhanced performance and durability, aiming to guide the future development of advanced bifunctional catalysts for scalable applications.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- I. Kamaraj, S. Kamaraj, Introduction to energy storage and conversion, in Materials for Boosting Energy Storage. Volume 1: Advances in Sustainable Energy Technologies. ed. by S.S. Kumar, P. Sharma, T. Kumar, V. Kumar (American Chemical Society, Washington, DC, 2024), pp.1–27. https://doi.org/10.1021/bk-2024-1477.ch001
- S.H. Davies, P. Christensen, T. Holberg, J. Avelar, O. Heidrich, in Raw materials and recycling of lithium-ion batteries. Emerging Battery Technologies to Boost the Clean Energy Transition. (Springer, Cham, 2024), pp. 143–169. https://doi.org/10.1007/978-3-031-48359-2_9
- B. Ramasubramanian, J. Ling, R. Jose, S. Ramakrishna, Ten major challenges for sustainable lithium-ion batteries. Cell Rep. Phys. Sci. 5(6), 102032 (2024). https://doi.org/10.1016/j.xcrp.2024.102032
- D. Lin, Y. Lin, R. Pan, J. Li, A. Zhu et al., Water-restrained hydrogel electrolytes with repulsion-driven cationic express pathways for durable zinc-ion batteries. Nano-Micro Lett. 17(1), 193 (2025). https://doi.org/10.1007/s40820-025-01704-5
- Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16(1), 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
- H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16(1), 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
- M. Asmare Alemu, A. Ketema Worku, M. Zegeye Getie, Recent advancement of electrically rechargeable di-trivalent metal-air batteries for future mobility. Results Chem. 6, 101041 (2023). https://doi.org/10.1016/j.rechem.2023.101041
- Y.-E. Feng, W. Chen, L. Zhao, Z.-J. Jiang, X. Tian et al., Ar/NH3 plasma etching of cobalt-nickel selenide microspheres rich in selenium vacancies wrapped with nitrogen doped carbon nanotubes as highly efficient air cathode catalysts for zinc-air batteries. Small Meth. 8(12), 2400565 (2024). https://doi.org/10.1002/smtd.202400565
- Y. Xiong, Z. Jiang, L. Gong, X. Tian, C. Song et al., Construction of Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal–organic frameworks using O2 plasma as a high-performance bifunctional catalyst for rechargeable zinc-air batteries. J. Colloid Interface Sci. 649, 36–48 (2023). https://doi.org/10.1016/j.jcis.2023.06.040
- S. Islam, S.M. Abu Nayem, A. Anjum, S. Shaheen Shah, A.J. Saleh Ahammad et al., A mechanistic overview of the current status and future challenges in air cathode for aluminum air batteries. Chem. Rec. 24(1), e202300017 (2024). https://doi.org/10.1002/tcr.202300017
- E.V. Timofeeva, C.U. Segre, G.S. Pour, M. Vazquez, B.L. Patawah, Aqueous air cathodes and catalysts for metal–air batteries. Curr. Opin. Electrochem. 38, 101246 (2023). https://doi.org/10.1016/j.coelec.2023.101246
- F. Torabi, P. Ahmadi, Chapter 1 - battery technologies, in Simulation of Battery Systems. ed. by F. Torabi, P. Ahmadi (Academic Press, 2020), pp.1–54
- A.G. Olabi, E.T. Sayed, T. Wilberforce, A. Jamal, A.H. Alami et al., Metal-air batteries: a review. Energies 14(21), 7373 (2021). https://doi.org/10.3390/en14217373
- J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
- L. Yaqoob, T. Noor, N. Iqbal, An overview of metal-air batteries, current progress, and future perspectives. J. Energy Storage 56, 106075 (2022). https://doi.org/10.1016/j.est.2022.106075
- G. Nazir, A. Rehman, J.-H. Lee, C.-H. Kim, J. Gautam et al., A review of rechargeable zinc-air batteries: recent progress and future perspectives. Nano-Micro Lett. 16(1), 138 (2024). https://doi.org/10.1007/s40820-024-01328-1
- B. Rani, J.K. Yadav, P. Saini, A.P. Pandey, A. Dixit, Aluminum-air batteries: current advances and promises with future directions. RSC Adv. 14(25), 17628–17663 (2024). https://doi.org/10.1039/d4ra02219j
- Y. Wang, Y. Sun, W. Ren, D. Zhang, Y. Yang et al., Challenges and prospects of Mg-air batteries: a review. Energy Mater 2(4), 200024 (2022). https://doi.org/10.20517/energymater.2022.20
- J.G. Smith, J. Naruse, H. Hiramatsu, D.J. Siegel, Intrinsic conductivity in magnesium–oxygen battery discharge products: MgO and MgO2. Chem. Mater. 29(7), 3152–3163 (2017). https://doi.org/10.1021/acs.chemmater.7b00217
- B. Sun, H. Wang, C. Peng, Harnessing solid-state technology for next-generation iron–air batteries. Sustain. Energy Fuels 8(24), 5711–5730 (2024). https://doi.org/10.1039/D4SE01224K
- L. Lyu, S. Cho, Y.-M. Kang, Recent advances in perovskite oxide electrocatalysts for Li–O2 batteries. EES Catal. 1(3), 230–249 (2023). https://doi.org/10.1039/D3EY00028A
- A. Singh, R. Sharma, A. Gautam, B. Kumar, S. Mittal et al., Chemistry in rechargeable zinc-air battery: a mechanistic overview. Catal. Today 445, 115108 (2025). https://doi.org/10.1016/j.cattod.2024.115108
- Z. Cai, J. Wang, Y. Sun, Anode corrosion in aqueous Zn metal batteries. eScience 3(1), 100093 (2023). https://doi.org/10.1016/j.esci.2023.100093
- Y. Gong, K. Wei, W. Jiang, C. Xiang, H. Ding et al., Effect of Zn addition on the microstructure and discharge performance of Mg-Al-Mn-Ca alloys for magnesium-air batteries. Metals 14(9), 1014 (2024). https://doi.org/10.3390/met14091014
- B. Ma, Y.-L. Zhang, X.-H. Liu, Concept of hydrophobic Li+-solvated structure for high performances lithium metal batteries. Rare Met. 42(5), 1427–1430 (2023). https://doi.org/10.1007/s12598-022-02217-5
- H. Huang, C. Liu, Z. Liu, Y. Wu, Y. Liu et al., Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries. Adv. Powder Mater. 3(1), 100141 (2024). https://doi.org/10.1016/j.apmate.2023.100141
- S.M. Abu Nayem, S. Islam, M. Mohamed, S. Shaheen Shah, A.J. Saleh Ahammad et al., A mechanistic overview of the current status and future challenges of aluminum anode and electrolyte in aluminum-air batteries. Chem. Rec. 24(1), e202300005 (2024). https://doi.org/10.1002/tcr.202300005
- M. Salado, E. Lizundia, Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater. Today Energy 28, 101064 (2022). https://doi.org/10.1016/j.mtener.2022.101064
- L. Jiang, X. Luo, D.-W. Wang, A review on system and materials for aqueous flexible metal–air batteries. Carbon Energy 5(3), e284 (2023). https://doi.org/10.1002/cey2.284
- J. Zhou, J. Cheng, B. Wang, H. Peng, J. Lu, Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 13(7), 1933–1970 (2020). https://doi.org/10.1039/D0EE00039F
- H. Yan, S. Li, J. Zhong, B. Li, An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 16(1), 15 (2023). https://doi.org/10.1007/s40820-023-01227-x
- L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
- Z. Liu, M. Xi, R. Sheng, Y. Huang, J. Ding et al., Zn(TFSI)2-mediated ring-opening polymerization for electrolyte engineering toward stable aqueous zinc metal batteries. Nano-Micro Lett. 17(1), 120 (2025). https://doi.org/10.1007/s40820-025-01649-9
- H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1(3), 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008
- Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater. 27, 478–505 (2020). https://doi.org/10.1016/j.ensm.2019.12.011
- Q. Sun, L. Dai, T. Luo, L. Wang, F. Liang et al., Recent advances in solid-state metal–air batteries. Carbon Energy 5(2), e276 (2023). https://doi.org/10.1002/cey2.276
- A. Iqbal, O.M. El-Kadri, N.M. Hamdan, Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 62, 106926 (2023). https://doi.org/10.1016/j.est.2023.106926
- H.B. Tao, J. Zhang, J. Chen, L. Zhang, Y. Xu et al., Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 141(35), 13803–13811 (2019). https://doi.org/10.1021/jacs.9b01834
- M. Jahan, Z. Liu, K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23(43), 5363–5372 (2013). https://doi.org/10.1002/adfm.201300510
- C. He, C. Xia, F.-M. Li, J. Zhang, W. Guo et al., Rational design of oxygen species adsorption on nonnoble metal catalysts for two-electron oxygen reduction. Adv. Energy Mater. 14(1), 2303233 (2024). https://doi.org/10.1002/aenm.202303233
- H. Adamu, Z.H. Yamani, M. Qamar, Modulation to favorable surface adsorption energy for oxygen evolution reaction intermediates over carbon-tunable alloys towards sustainable hydrogen production. Mater. Renew. Sustain. Energy 11(3), 169–213 (2022). https://doi.org/10.1007/s40243-022-00214-3
- J. Milikić, A. Nastasić, M. Martins, C.A.C. Sequeira, B. Šljukić, Air cathodes and bifunctional oxygen electrocatalysts for aqueous metal–air batteries. Batteries 9(8), 394 (2023). https://doi.org/10.3390/batteries9080394
- J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
- D. Zha, R. Wang, S. Tian, Z.-J. Jiang, Z. Xu et al., Defect engineering and carbon supporting to achieve Ni-doped CoP3 with high catalytic activities for overall water splitting. Nano-Micro Lett. 16(1), 250 (2024). https://doi.org/10.1007/s40820-024-01471-9
- X. Lyu, X. Gu, G. Li, H. Chen, H. Hou et al., Hierarchical porous carbon anchored atomic/clustered cobalt for boosting oxygen reduction electrocatalysis. ChemCatChem 14(24), e202201192 (2022). https://doi.org/10.1002/cctc.202201192
- L. Sun, M. Feng, Y. Peng, X. Zhao, Y. Shao et al., Constructing oxygen vacancies by doping Mo into spinel Co3O4 to trigger a fast oxide path mechanism for acidic oxygen evolution reaction. J. Mater. Chem. A 12(15), 8796–8804 (2024). https://doi.org/10.1039/D4TA00655K
- N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15(1), 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
- X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
- J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
- J. Guo, H. Liu, D. Li, J. Wang, X. Djitcheu et al., A minireview on the synthesis of single atom catalysts. RSC Adv. 12(15), 9373–9394 (2022). https://doi.org/10.1039/d2ra00657j
- M. Du, B. Chu, Q. Wang, C. Li, Y. Lu et al., Dual Fe/I single-atom electrocatalyst for high-performance oxygen reduction and wide-temperature quasi-solid-state Zn-air batteries. Adv. Mater. 36(47), 2412978 (2024). https://doi.org/10.1002/adma.202412978
- X. Shi, P. Sun, X. Wang, W. Xiang, Y. Wei et al., High-performance rechargeable zinc-air batteries enabled by cobalt iron anchored on nitrogen-doped carbon matrix as bifunctional electrocatalyst. J. Colloid Interface Sci. 679, 1029–1039 (2025). https://doi.org/10.1016/j.jcis.2024.10.129
- Y. Liu, W. Zhang, Large-scale synthesis of functional single-atom catalysts. Commun. Chem. 6(1), 36 (2023). https://doi.org/10.1038/s42004-023-00834-4
- Y. Du, Z. Zhong, Z. Shi, L. Zhou, S. Pan et al., Dual-ligand engineered CoNi alloy/N-doped carbon nanotubes bifunctional ORR/OER electrocatalyst for long-lifespan rechargeable Zn-air batteries. J. Colloid Interface Sci. 683, 631–640 (2025). https://doi.org/10.1016/j.jcis.2024.12.036
- V. Jose, J.M.V. Nsanzimana, H. Hu, J. Choi, X. Wang et al., Highly efficient oxygen reduction reaction activity of N-doped carbon–cobalt boride heterointerfaces. Adv. Energy Mater. 11(17), 2100157 (2021). https://doi.org/10.1002/aenm.202100157
- Y. Duan, B. Li, K. Yang, Z. Gong, X. Peng et al., Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer. Nano-Micro Lett. 17(1), 79 (2024). https://doi.org/10.1007/s40820-024-01586-z
- N. Liu, Y. Li, W. Liu, Z. Liang, B. Liao et al., Engineering bipolar doping in a Janus dual-atom catalyst for photo-enhanced rechargeable Zn-air battery. Nano-Micro Lett. 17(1), 203 (2025). https://doi.org/10.1007/s40820-025-01707-2
- C. Xu, J. Wu, L. Chen, Y. Gong, B. Mao et al., Boric acid-assisted pyrolysis for high-loading single-atom catalysts to boost oxygen reduction reaction in Zn-air batteries. Energy Environ. Mater. 7(2), e12569 (2024). https://doi.org/10.1002/eem2.12569
- W.W. Zhang, Y. Wang, Y.C. Li, L.L. Sun, X.Y. Zhang, First-principles calculations insight into non-noble-metal bifunctional electrocatalysts for zinc–air batteries. Appl. Energy 391, 125925 (2025). https://doi.org/10.1016/j.apenergy.2025.125925
- S. Mitchell, J. Pérez-Ramírez, Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11(1), 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5
- T. Bai, D. Li, S. Xiao, F. Ji, S. Zhang et al., Recent progress on single-atom catalysts for lithium–air battery applications. Energy Environ. Sci. 16(4), 1431–1465 (2023). https://doi.org/10.1039/d2ee02949a
- P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design. Adv. Mater. 35(35), 2303243 (2023). https://doi.org/10.1002/adma.202303243
- Y. Chen, T. He, Q. Liu, Y. Hu, H. Gu et al., Highly durable iron single-atom catalysts for low-temperature zinc-air batteries by electronic regulation of adjacent iron nanoclusters. Appl. Catal. B Environ. 323, 122163 (2023). https://doi.org/10.1016/j.apcatb.2022.122163
- X. Zhang, Y. Liu, X. Zhao, Z. Cheng, X. Mu, Recent advances and perspectives of high-entropy alloys as electrocatalysts for metal-air batteries. Energy Fuels 38(20), 19236–19252 (2024). https://doi.org/10.1021/acs.energyfuels.4c03386
- X. Yang, L. Xu, Y. Li, Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev. 516, 215961 (2024). https://doi.org/10.1016/j.ccr.2024.215961
- S. Qin, K. Li, M. Cao, W. Liu, Z. Huang et al., Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries. Nano Res. Energy 3(3), e9120122 (2024). https://doi.org/10.26599/nre.2024.9120122
- J.-E. Tsai, W.-X. Hong, H. Pourzolfaghar, W.-H. Wang, Y.-Y. Li, A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries. Chem. Eng. J. 460, 141868 (2023). https://doi.org/10.1016/j.cej.2023.141868
- Y. Ma, H. Fan, C. Wu, M. Zhang, J. Yu et al., An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon 185, 526–535 (2021). https://doi.org/10.1016/j.carbon.2021.09.044
- R. Li, D. Wang, Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater. 12(9), 2103564 (2022). https://doi.org/10.1002/aenm.202103564
- J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
- X. Li, G. Han, S. Lou, Z. Qiang, J. Zhu et al., Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy 93, 106810 (2022). https://doi.org/10.1016/j.nanoen.2021.106810
- J. Li, C. Chen, L. Xu, Y. Zhang, W. Wei et al., Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au 3(3), 736–755 (2023). https://doi.org/10.1021/jacsau.3c00001
- Q. Wang, Y. Xue, S. Sun, S. Yan, H. Miao et al., Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. J. Power. Sources 435, 226761 (2019). https://doi.org/10.1016/j.jpowsour.2019.226761
- Z. Abedi, D. Leistenschneider, W. Chen, D.G. Ivey, Spinel type Mn−Co oxide coated carbon fibers as efficient bifunctional electrocatalysts for zinc-air batteries. Batter. Supercaps 5(2), e202100339 (2022). https://doi.org/10.1002/batt.202100339
- X. Zhang, Q. Liu, S. Liu, E. Wang, Manganese-doped cobalt spinel oxide as bifunctional oxygen electrocatalyst toward high-stable rechargeable Zn-air battery. Electrochim. Acta 437, 141477 (2023). https://doi.org/10.1016/j.electacta.2022.141477
- P. Saha, S. Shaheen Shah, M. Ali, M. Nasiruzzaman Shaikh, M.A. Aziz et al., Cobalt oxide-based electrocatalysts with bifunctionality for high-performing rechargeable zinc-air batteries. Chem. Rec. 24(1), e202300216 (2024). https://doi.org/10.1002/tcr.202300216
- R.R. Ayyaluri, B.N. Vamsi Krishna, O.R. Ankinapalli, Y.J. Lee, L. Natarajan et al., MnCo2O4/Mn2O3 nanorod architectures as bifunctional electrocatalyst material for rechargeable zinc–air batteries. ACS Sustain. Chem. Eng. 12(29), 10765–10775 (2024). https://doi.org/10.1021/acssuschemeng.4c01477
- S. Kosasang, H. Gatemala, N. Ma, P. Chomkhuntod, M. Sawangphruk, Trimetallic spinel-type cobalt nickel-doped manganese oxides as bifunctional electrocatalysts for Zn-air batteries. Batter. Supercaps 3(7), 631–637 (2020). https://doi.org/10.1002/batt.202000006
- J. González-Morales, M. Aparicio, N.C. Rosero-Navarro, J. Mosa, A stable rechargeable aqueous Zn–oxygen battery with Mn-based bifunctional electrocatalysts. ACS Appl. Energy Mater. 7(16), 7096–7109 (2024). https://doi.org/10.1021/acsaem.4c01506
- X. Zheng, A.M. Zuria, M. Mohamedi, Tailored self-supported co, Ni/MnO2 Nanorods@Hierarchical carbon spheres chains as advanced electrocatalysts for rechargeable Zn-air battery and self-driven water splitting. ACS Electrochem. 1(2), 216–229 (2025). https://doi.org/10.1021/acselectrochem.4c00066
- X. Zheng, A.M. Zuria, M. Mohamedi, Hybrid carbon sphere chain-MnO2 nanorods as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Inorg. Chem. 62(2), 989–1000 (2023). https://doi.org/10.1021/acs.inorgchem.2c03916
- T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949
- Y. Xu, A. Sumboja, A. Groves, T. Ashton, Y. Zong et al., Enhancing bifunctional catalytic activity of cobalt–nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc–air batteries. RSC Adv. 10(68), 41871–41882 (2020). https://doi.org/10.1039/D0RA08363A
- L.B. Liu, C. Yi, H.C. Mi, S.L. Zhang, X.Z. Fu et al., Perovskite oxides toward oxygen evolution reaction: intellectual design strategies, properties and perspectives. Electrochem. Energy Rev. 7(1), 14 (2024). https://doi.org/10.1007/s41918-023-00209-2
- C. Sun, J.A. Alonso, J. Bian, Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 11(2), 2000459 (2021). https://doi.org/10.1002/aenm.202000459
- J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
- Y. Deng, J. Du, Y. Zhu, L. Zhao, H. Wang et al., Interface engineering of Ruddlesden-Popper perovskite/CeO2/carbon heterojunction for rechargeable zinc-air batteries. J. Colloid Interface Sci. 653, 1775–1784 (2024). https://doi.org/10.1016/j.jcis.2023.09.138
- H. Zhou, W. Zhao, J. Yan, Y. Zheng, Bifunctional catalytic activity of LaCoO3 perovskite air electrode for rechargeable Zn–air batteries boosted by molybdenum doping. J. Power. Sources 597, 234104 (2024). https://doi.org/10.1016/j.jpowsour.2024.234104
- D.U. Lee, M.G. Park, H.W. Park, M.H. Seo, V. Ismayilov et al., Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochem. Commun. 60, 38–41 (2015). https://doi.org/10.1016/j.elecom.2015.08.001
- B.-Z. Hsu, J.-K. Lai, Y.-H. Lee, La-based perovskites for capacity enhancement of Li-O2 batteries. Front. Chem. 11, 1264593 (2023). https://doi.org/10.3389/fchem.2023.1264593
- Y. Li, M. Chen, M. Chu, X. Wang, Y. Wang et al., Mono-doped carbon nanofiber aerogel as a high-performance electrode material for rechargeable zinc-air batteries. ChemElectroChem 8(5), 829–838 (2021). https://doi.org/10.1002/celc.202001593
- H. Zhou, W. Zhao, Z. Lu, S. He, B. Yin et al., Ba-doped LaCoO3 perovskite as novel bifunctional electrocatalyst for zinc–air batteries. Electrochim. Acta 462, 142757 (2023). https://doi.org/10.1016/j.electacta.2023.142757
- Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28(6), 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457
- Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan et al., Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199–209 (2018). https://doi.org/10.1016/j.nanoen.2018.02.051
- Q. Wang, Y. Xue, S. Sun, S. Li, H. Miao et al., La0.8Sr0.2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim. Acta 254, 14–24 (2017). https://doi.org/10.1016/j.electacta.2017.09.034
- Q. Zheng, Y. Zhang, C. Wang, C. Zhang, Y. Guo, CoO enhanced oxygen evolution kinetics of LaMnO3 perovskite as a potential cathode for rechargeable Zn-air batteries. Energy Fuels 36(2), 1091–1099 (2022). https://doi.org/10.1021/acs.energyfuels.1c03869
- X.X. Li, Y. Wang, Y.C. Li, Y. Liang, Durable bifunctional electrocatalyst for cathode of zinc-air battery: surface pre-reconstruction of La0.7Sr0.3MnO3 perovskite by iron ions. J. Alloys Compd. 976, 173398 (2024). https://doi.org/10.1016/j.jallcom.2023.173398
- L. Gui, Z. Wang, K. Zhang, B. He, Y. Liu et al., Oxygen vacancies-rich Ce0.9Gd0.1O2-δ decorated Pr0.5Ba0.5CoO3-δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B Environ. 266, 118656 (2020). https://doi.org/10.1016/j.apcatb.2020.118656
- F. Li, N. Mushtaq, T. Su, Y. Cui, J. Huang et al., NCNT grafted perovskite oxide as an active bifunctional electrocatalyst for rechargeable zinc-air battery. Mater. Today Nano 21, 100287 (2023). https://doi.org/10.1016/j.mtnano.2022.100287
- T. Erdil, C. Toparli, B-site effect on high-entropy perovskite oxide as a bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 6(21), 11255–11267 (2023). https://doi.org/10.1021/acsaem.3c02149
- Z. Shui, H. Tian, S. Yu, H. Xiao, W. Zhao et al., La0.75Sr0.25MnO3- based perovskite oxides as efficient and durable bifunctional oxygen electrocatalysts in rechargeable Zn-air batteries. Sci. China Mater. 66(3), 1002–1012 (2023). https://doi.org/10.1007/s40843-022-2203-5
- W.G. Hardin, D.A. Slanac, X. Wang, S. Dai, K.P. Johnston et al., Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J. Phys. Chem. Lett. 4(8), 1254–1259 (2013). https://doi.org/10.1021/jz400595z
- K.H. Park, D.Y. Kim, J.Y. Kim, M. Kim, G.-T. Yun et al., Fabrication of highly monodisperse and small-grain platinum hole–cylinder nanops as a cathode catalyst for Li–O2 batteries. ACS Appl. Energy Mater. 4(3), 2514–2521 (2021). https://doi.org/10.1021/acsaem.0c03082
- N. Algethami, H.I. Alkhammash, F. Sultana, M. Mushtaq, A. Zaman et al., Preparation of RuO2/CNTs by atomic layer deposition and its application as binder free cathode for polymer based Li-O2 battery. Int. J. Electrochem. Sci. 17(9), 220967 (2022). https://doi.org/10.20964/2022.09.62
- Y. Cong, Z. Geng, Y. Sun, L. Yuan, X. Wang et al., Cation segregation of A-site deficiency perovskite La0.85FeO3-δ nanops toward high-performance cathode catalysts for rechargeable Li-O2 battery. ACS Appl. Mater. Interfaces 10(30), 25465–25472 (2018). https://doi.org/10.1021/acsami.8b07924
- Z. Wang, X. Peng, S. Guo, M. Sun, J. Cheng et al., Ultraviolet light-assisted Ag@La0.6Sr0.4Fe0.9Mn0.1O3 nanohybrids: a facile and versatile method for preparation of highly stable catalysts in Li-O2 batteries. ACS Appl. Energy Mater. 4(9), 9376–9383 (2021). https://doi.org/10.1021/acsaem.1c01572
- S. Guo, L. Zou, M. Sun, Z. Wang, S. Han et al., Enhancing the bifunctional catalytic performance of porous La0.9Mn0.6Ni0.4O3–δ Nanofibers for Li–O2 Batteries through exsolution of Ni nanops. ACS Appl. Energy Mater. 3(10), 10015–10022 (2020). https://doi.org/10.1021/acsaem.0c01691
- Z. Wang, Y. You, J. Yuan, Y.-X. Yin, Y.-T. Li et al., Nickel-doped La0.8Sr0.2Mn1-xNixO3 nanops containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Appl. Mater. Interfaces 8(10), 6520–6528 (2016). https://doi.org/10.1021/acsami.6b00296
- H. Kim, Y.S. Lim, J.H. Kim, Highly porous structured Sr-doped La2NiO4/NiO composite cathode with interconnected pores for lithium-oxygen batteries. Chem. Eng. J. 431, 134278 (2022). https://doi.org/10.1016/j.cej.2021.134278
- Q. Qiu, Z.-Z. Pan, P. Yao, J. Yuan, C. Xia et al., A 98.2% energy efficiency Li-O2 battery using a LaNi-0.5Co0.5O3 perovskite cathode with extremely fast oxygen reduction and evolution kinetics. Chem. Eng. J. 452, 139608 (2023). https://doi.org/10.1016/j.cej.2022.139608
- G. Liu, H. Chen, L. Xia, S. Wang, L.-X. Ding et al., Hierarchical mesoporous/macroporous perovskite La0.5Sr0.5CoO3-x nanotubes: a bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries. ACS Appl. Mater. Interfaces 7(40), 22478–22486 (2015). https://doi.org/10.1021/acsami.5b06587
- Y. Cong, Z. Geng, Q. Zhu, H. Hou, X. Wu et al., Cation-exchange-induced metal and alloy dual-exsolution in perovskite ferrite oxides boosting the performance of Li-O2 battery. Angew. Chem. Int. Ed. 60(43), 23380–23387 (2021). https://doi.org/10.1002/anie.202110116
- Z. Zhang, K. Tan, Y. Gong, H. Wang, R. Wang et al., An integrated bifunctional catalyst of metal-sulfide/perovskite oxide for lithium-oxygen batteries. J. Power. Sources 437, 226908 (2019). https://doi.org/10.1016/j.jpowsour.2019.226908
- D. Du, R. Zheng, M. He, C. Zhao, B. Zhou et al., A-site cationic defects induced electronic structure regulation of LaMnO3 perovskite boosts oxygen electrode reactions in aprotic lithium–oxygen batteries. Energy Storage Mater. 43, 293–304 (2021). https://doi.org/10.1016/j.ensm.2021.09.011
- C. Gong, L. Zhao, S. Li, H. Wang, Y. Gong et al., Atomic layered deposition iron oxide on perovskite LaNiO3 as an efficient and robust bi-functional catalyst for lithium oxygen batteries. Electrochim. Acta 281, 338–347 (2018). https://doi.org/10.1016/j.electacta.2018.05.161
- R. Li, J. Long, M. Li, D. Du, L. Ren et al., Sulfur-doped LaNiO3 perovskite oxides with enriched anionic vacancies and manipulated orbital occupancy facilitating oxygen electrode reactions in lithium-oxygen batteries. Mater. Today Chem. 24, 100889 (2022). https://doi.org/10.1016/j.mtchem.2022.100889
- H. Hou, Y. Cong, Q. Zhu, Z. Geng, X. Wang et al., Fluorine induced surface reconstruction of perovskite ferrite oxide as cathode catalyst for prolong-life Li-O2 battery. Chem. Eng. J. 448, 137684 (2022). https://doi.org/10.1016/j.cej.2022.137684
- G. Kothandam, G. Singh, X. Guan, J.M. Lee, K. Ramadass et al., Recent advances in carbon-based electrodes for energy storage and conversion. Adv. Sci. 10(18), 2301045 (2023). https://doi.org/10.1002/advs.202301045
- V.-T. Nguyen, K. Cho, Y. Choi, B. Hwang, Y.-K. Park et al., Biomass-derived materials for energy storage and electrocatalysis: recent advances and future perspectives. Biochar 6(1), 96 (2024). https://doi.org/10.1007/s42773-024-00388-1
- M.A. Alemu, M. Zegeye Getie, H. Mulugeta Wassie, M. Shitye Alem, A.A. Assegie et al., Biomass-derived metal-free heteroatom doped nanostructured carbon electrocatalysts for high-performance rechargeable lithium–air batteries. Green Chem. 26(23), 11427–11443 (2024). https://doi.org/10.1039/D4GC02551B
- J. Guo, Y. Yao, X. Yan, X. Meng, Q. Wang et al., Emerging carbon-based catalysts for the oxygen reduction reaction: insights into mechanisms and applications. Inorganics 12(12), 303 (2024). https://doi.org/10.3390/inorganics12120303
- C. Peng, J. Chen, M. Jin, X. Bi, C. Yi et al., Effect of the carbon on the electrochemical performance of rechargeable Zn-air batteries. Int. J. Hydrog. Energy 48(13), 5313–5322 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.240
- Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng et al., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
- Z. Li, Y. Yao, Y. Niu, W. Zhang, B. Chen et al., Multi-heteroatom-doped hollow carbon tubes as robust electrocatalysts for the oxygen reduction reaction, oxygen and hydrogen evolution reaction. Chem. Eng. J. 418, 129321 (2021). https://doi.org/10.1016/j.cej.2021.129321
- P. Li, H. Jang, J. Zhang, M. Tian, S. Chen et al., A metal-free N and P-codoped carbon nanosphere as bifunctional electrocatalyst for rechargeable zinc-air batteries. ChemElectroChem 6(2), 393–397 (2019). https://doi.org/10.1002/celc.201801419
- V. Sankar Devi, P. Elumalai, Selenium heteroatom-doped mesoporous carbon as an efficient air-breathing electrode for rechargeable lithium–oxygen batteries. New J. Chem. 47(5), 2189–2201 (2023). https://doi.org/10.1039/D2NJ05679H
- S. Chen, H.-M. Yan, J. Tseng, S. Ge, X. Li et al., Synthesis of metal-nitrogen-carbon electrocatalysts with atomically regulated nitrogen-doped polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 146(20), 13703–13708 (2024). https://doi.org/10.1021/jacs.4c01770
- D. Sun, Y. Shen, W. Zhang, L. Yu, Z. Yi et al., A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136(25), 8941–8946 (2014). https://doi.org/10.1021/ja501877e
- S.K. Yadav, D. Deckenbach, S. Yadav, C. Njel, V. Trouillet et al., CoFe2O4@N-CNH as bifunctional hybrid catalysts for rechargeable zinc-air batteries. Adv. Mater. Interfaces 11(28), 2400415 (2024). https://doi.org/10.1002/admi.202400415
- T.-H. Chen, C.-S. Ni, C.-Y. Lai, S. Gull, Y.-C. Chu et al., Enhanced oxygen evolution and power density of Co/Zn@NC@MWCNTs for the application of zinc-air batteries. J. Colloid Interface Sci. 679, 119–131 (2025). https://doi.org/10.1016/j.jcis.2024.09.187
- B.N. Vamsi Krishna, O.R. Ankinapalli, A.R. Reddy, J.S. Yu, Strong carbon layer-encapsulated cobalt tin sulfide-based nanoporous material as a bifunctional electrocatalyst for zinc–air batteries. Small 20(32), 2311176 (2024). https://doi.org/10.1002/smll.202311176
- Y.-F. Yao, W.-Y. Xie, S.-J. Huang, J.-S. Ye, H.-Y. Liu et al., Pyrolysis-free cobalt porphyrin coordination polymer as electrocatalyst for Zn-air batteries and water splitting. J. Electroanal. Chem. 952, 117987 (2024). https://doi.org/10.1016/j.jelechem.2023.117987
- C.-X. Zhao, J.-N. Liu, B.-Q. Li, D. Ren, X. Chen et al., Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc–air batteries. Adv. Funct. Mater. 30(36), 2003619 (2020). https://doi.org/10.1002/adfm.202003619
- F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14(1), 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
- J. Yang, Y. Wang, X. Zhao, J. Kang, X. Zhou et al., Atomically dispersed Fe-N4 bridged with MoOx clusters as a bifunctional electrocatalyst for rechargeable Zn-air battery. Adv. Funct. Mater. 35(9), 2416215 (2025). https://doi.org/10.1002/adfm.202416215
- S. Shahzadi, M. Akhtar, M. Arshad, M.H. Ijaz, M.R.S.A. Janjua, A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv. 14(38), 27575–27607 (2024). https://doi.org/10.1039/D4RA05183A
- B. Li, L. Hong, C. Jing, X. Yue, H. Huang et al., A review of series transition metal-based MOFs materials and derivatives for electrocatalytic oxygen evolution. Microporous Mesoporous Mater. 365, 112836 (2024). https://doi.org/10.1016/j.micromeso.2023.112836
- J. Du, F. Zhang, L. Jiang, Z. Guo, H. Song, Enhanced cobalt MOF electrocatalyst for oxygen evolution reaction via morphology regulation. Inorg. Chem. Commun. 158, 111661 (2023). https://doi.org/10.1016/j.inoche.2023.111661
- L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche et al., Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 23(2), 252–261 (2024). https://doi.org/10.1038/s41563-023-01744-5
- Y. Liu, Q. Yan, F. Ge, X. Duan, T. Wu et al., Size-confined Co nanops embedded in ultrathin carbon nanosheets for enhanced oxygen electrocatalysis in Zn–air batteries. J. Mater. Chem. A 13(6), 4513–4520 (2025). https://doi.org/10.1039/D4TA07845D
- Y. Wu, J. Chen, J. Liu, L. Zhang, R. Abazari et al., Iron phthalocyanine coupled with Co-Nx sites in carbon nanostraws for Zn-Air batteries. Chem. Eng. J. 503, 158343 (2025). https://doi.org/10.1016/j.cej.2024.158343
- G. Yerlikaya, M. Farsak, Enhancing lithium-air battery performance through CoPc@CNT composites: electrochemical analysis and insights. J. Energy Storage 73, 108991 (2023). https://doi.org/10.1016/j.est.2023.108991
- S.S. Shah, M.A. Aziz, P.I. Rasool, N.Z.K. Mohmand, A.J. Khan et al., Electrochemical synergy and future prospects: advancements and challenges in MXene and MOFs composites for hybrid supercapacitors. Sustain. Mater. Technol. 39, e00814 (2024). https://doi.org/10.1016/j.susmat.2023.e00814
- Q. Zhao, L. Bao, H. Wang, D. Dou, Y. Cong et al., Bimetallic Co–Ni alloy nanops loaded on nitrogen-doped wrinkled carbon nanospheres as high-performance bifunctionalORR/OERelectrocatalyst in alkaline media. Ionics 30(8), 4797–4810 (2024). https://doi.org/10.1007/s11581-024-05478-5
- M. Cui, Y. Zhang, B. Xu, F. Xu, J. Chen et al., High-entropy alloy nanomaterials for electrocatalysis. Chem. Commun. 60(87), 12615–12632 (2024). https://doi.org/10.1039/d4cc04075a
- C. Madan, S.R. Jha, N.K. Katiyar, A. Singh, R. Mitra et al., Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application. Energy Adv. 2(12), 2055–2068 (2023). https://doi.org/10.1039/D3YA00356F
- Z. Jin, X. Zhou, Y. Hu, X. Tang, K. Hu et al., A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low ΔE of 0.61 V for highly reversible Zn–air batteries. Chem. Sci. 13(41), 12056–12064 (2022). https://doi.org/10.1039/D2SC04461G
- T. Erdil, C. Ozgur, U. Geyikci, E. Lokcu, C. Toparli, Earth-abundant divalent cation high-entropy spinel ferrites as bifunctional electrocatalysts for oxygen evolution and reduction reactions. ACS Appl. Energy Mater. 7(18), 7775–7786 (2024). https://doi.org/10.1021/acsaem.4c01227
- X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), 2002853 (2020). https://doi.org/10.1002/adma.202002853
- L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv et al., A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144(23), 10582–10590 (2022). https://doi.org/10.1021/jacs.2c03544
- Z. Fang, S. Li, Y. Zhang, Y. Wang, K. Meng et al., The DFT and machine learning method accelerated the discovery of DMSCs with high ORR and OER catalytic activities. J. Phys. Chem. Lett. 15(1), 281–289 (2024). https://doi.org/10.1021/acs.jpclett.3c02938
- T.X. Nguyen, C.-H. Lee, J.-H. Sun, C.-K. Peng, W.-H. Chu et al., Synergistic modulation of electronic structure in high entropy perovskite oxide for enhanced bifuntional oxygen evolution/reduction reactions and its mechanistic insights via in situ analyses and density functional theory calculation. Chem. Eng. J. 511, 161731 (2025). https://doi.org/10.1016/j.cej.2025.161731
- A.R. Kottaichamy, J. Tzadikov, A. Pedersen, J. Barrio, G. Mark et al., A rechargeable Zn–air battery with high energy efficiency enabled by a hydrogen peroxide bifunctional catalyst. Adv. Energy Mater. 14(47), 2470208 (2024). https://doi.org/10.1002/aenm.202470208
- M. Batool, O. Sanumi, J. Jankovic, Application of artificial intelligence in the materials science, with a special focus on fuel cells and electrolyzers. Energy AI 18, 100424 (2024). https://doi.org/10.1016/j.egyai.2024.100424
References
I. Kamaraj, S. Kamaraj, Introduction to energy storage and conversion, in Materials for Boosting Energy Storage. Volume 1: Advances in Sustainable Energy Technologies. ed. by S.S. Kumar, P. Sharma, T. Kumar, V. Kumar (American Chemical Society, Washington, DC, 2024), pp.1–27. https://doi.org/10.1021/bk-2024-1477.ch001
S.H. Davies, P. Christensen, T. Holberg, J. Avelar, O. Heidrich, in Raw materials and recycling of lithium-ion batteries. Emerging Battery Technologies to Boost the Clean Energy Transition. (Springer, Cham, 2024), pp. 143–169. https://doi.org/10.1007/978-3-031-48359-2_9
B. Ramasubramanian, J. Ling, R. Jose, S. Ramakrishna, Ten major challenges for sustainable lithium-ion batteries. Cell Rep. Phys. Sci. 5(6), 102032 (2024). https://doi.org/10.1016/j.xcrp.2024.102032
D. Lin, Y. Lin, R. Pan, J. Li, A. Zhu et al., Water-restrained hydrogel electrolytes with repulsion-driven cationic express pathways for durable zinc-ion batteries. Nano-Micro Lett. 17(1), 193 (2025). https://doi.org/10.1007/s40820-025-01704-5
Y. Gao, L. Liu, Y. Jiang, D. Yu, X. Zheng et al., Design principles and mechanistic understandings of non-noble-metal bifunctional electrocatalysts for zinc-air batteries. Nano-Micro Lett. 16(1), 162 (2024). https://doi.org/10.1007/s40820-024-01366-9
H. Zhang, X. Gan, Y. Yan, J. Zhou, A sustainable dual cross-linked cellulose hydrogel electrolyte for high-performance zinc-metal batteries. Nano-Micro Lett. 16(1), 106 (2024). https://doi.org/10.1007/s40820-024-01329-0
M. Asmare Alemu, A. Ketema Worku, M. Zegeye Getie, Recent advancement of electrically rechargeable di-trivalent metal-air batteries for future mobility. Results Chem. 6, 101041 (2023). https://doi.org/10.1016/j.rechem.2023.101041
Y.-E. Feng, W. Chen, L. Zhao, Z.-J. Jiang, X. Tian et al., Ar/NH3 plasma etching of cobalt-nickel selenide microspheres rich in selenium vacancies wrapped with nitrogen doped carbon nanotubes as highly efficient air cathode catalysts for zinc-air batteries. Small Meth. 8(12), 2400565 (2024). https://doi.org/10.1002/smtd.202400565
Y. Xiong, Z. Jiang, L. Gong, X. Tian, C. Song et al., Construction of Co/FeCo@Fe(Co)3O4 heterojunction rich in oxygen vacancies derived from metal–organic frameworks using O2 plasma as a high-performance bifunctional catalyst for rechargeable zinc-air batteries. J. Colloid Interface Sci. 649, 36–48 (2023). https://doi.org/10.1016/j.jcis.2023.06.040
S. Islam, S.M. Abu Nayem, A. Anjum, S. Shaheen Shah, A.J. Saleh Ahammad et al., A mechanistic overview of the current status and future challenges in air cathode for aluminum air batteries. Chem. Rec. 24(1), e202300017 (2024). https://doi.org/10.1002/tcr.202300017
E.V. Timofeeva, C.U. Segre, G.S. Pour, M. Vazquez, B.L. Patawah, Aqueous air cathodes and catalysts for metal–air batteries. Curr. Opin. Electrochem. 38, 101246 (2023). https://doi.org/10.1016/j.coelec.2023.101246
F. Torabi, P. Ahmadi, Chapter 1 - battery technologies, in Simulation of Battery Systems. ed. by F. Torabi, P. Ahmadi (Academic Press, 2020), pp.1–54
A.G. Olabi, E.T. Sayed, T. Wilberforce, A. Jamal, A.H. Alami et al., Metal-air batteries: a review. Energies 14(21), 7373 (2021). https://doi.org/10.3390/en14217373
J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29(7), 1604685 (2017). https://doi.org/10.1002/adma.201604685
L. Yaqoob, T. Noor, N. Iqbal, An overview of metal-air batteries, current progress, and future perspectives. J. Energy Storage 56, 106075 (2022). https://doi.org/10.1016/j.est.2022.106075
G. Nazir, A. Rehman, J.-H. Lee, C.-H. Kim, J. Gautam et al., A review of rechargeable zinc-air batteries: recent progress and future perspectives. Nano-Micro Lett. 16(1), 138 (2024). https://doi.org/10.1007/s40820-024-01328-1
B. Rani, J.K. Yadav, P. Saini, A.P. Pandey, A. Dixit, Aluminum-air batteries: current advances and promises with future directions. RSC Adv. 14(25), 17628–17663 (2024). https://doi.org/10.1039/d4ra02219j
Y. Wang, Y. Sun, W. Ren, D. Zhang, Y. Yang et al., Challenges and prospects of Mg-air batteries: a review. Energy Mater 2(4), 200024 (2022). https://doi.org/10.20517/energymater.2022.20
J.G. Smith, J. Naruse, H. Hiramatsu, D.J. Siegel, Intrinsic conductivity in magnesium–oxygen battery discharge products: MgO and MgO2. Chem. Mater. 29(7), 3152–3163 (2017). https://doi.org/10.1021/acs.chemmater.7b00217
B. Sun, H. Wang, C. Peng, Harnessing solid-state technology for next-generation iron–air batteries. Sustain. Energy Fuels 8(24), 5711–5730 (2024). https://doi.org/10.1039/D4SE01224K
L. Lyu, S. Cho, Y.-M. Kang, Recent advances in perovskite oxide electrocatalysts for Li–O2 batteries. EES Catal. 1(3), 230–249 (2023). https://doi.org/10.1039/D3EY00028A
A. Singh, R. Sharma, A. Gautam, B. Kumar, S. Mittal et al., Chemistry in rechargeable zinc-air battery: a mechanistic overview. Catal. Today 445, 115108 (2025). https://doi.org/10.1016/j.cattod.2024.115108
Z. Cai, J. Wang, Y. Sun, Anode corrosion in aqueous Zn metal batteries. eScience 3(1), 100093 (2023). https://doi.org/10.1016/j.esci.2023.100093
Y. Gong, K. Wei, W. Jiang, C. Xiang, H. Ding et al., Effect of Zn addition on the microstructure and discharge performance of Mg-Al-Mn-Ca alloys for magnesium-air batteries. Metals 14(9), 1014 (2024). https://doi.org/10.3390/met14091014
B. Ma, Y.-L. Zhang, X.-H. Liu, Concept of hydrophobic Li+-solvated structure for high performances lithium metal batteries. Rare Met. 42(5), 1427–1430 (2023). https://doi.org/10.1007/s12598-022-02217-5
H. Huang, C. Liu, Z. Liu, Y. Wu, Y. Liu et al., Functional inorganic additives in composite solid-state electrolytes for flexible lithium metal batteries. Adv. Powder Mater. 3(1), 100141 (2024). https://doi.org/10.1016/j.apmate.2023.100141
S.M. Abu Nayem, S. Islam, M. Mohamed, S. Shaheen Shah, A.J. Saleh Ahammad et al., A mechanistic overview of the current status and future challenges of aluminum anode and electrolyte in aluminum-air batteries. Chem. Rec. 24(1), e202300005 (2024). https://doi.org/10.1002/tcr.202300005
M. Salado, E. Lizundia, Advances, challenges, and environmental impacts in metal–air battery electrolytes. Mater. Today Energy 28, 101064 (2022). https://doi.org/10.1016/j.mtener.2022.101064
L. Jiang, X. Luo, D.-W. Wang, A review on system and materials for aqueous flexible metal–air batteries. Carbon Energy 5(3), e284 (2023). https://doi.org/10.1002/cey2.284
J. Zhou, J. Cheng, B. Wang, H. Peng, J. Lu, Flexible metal–gas batteries: a potential option for next-generation power accessories for wearable electronics. Energy Environ. Sci. 13(7), 1933–1970 (2020). https://doi.org/10.1039/D0EE00039F
H. Yan, S. Li, J. Zhong, B. Li, An electrochemical perspective of aqueous zinc metal anode. Nano-Micro Lett. 16(1), 15 (2023). https://doi.org/10.1007/s40820-023-01227-x
L. Jiang, Y. Ding, L. Li, Y. Tang, P. Zhou et al., Cationic adsorption-induced microlevelling effect: a pathway to dendrite-free zinc anodes. Nano-Micro Lett. 17(1), 202 (2025). https://doi.org/10.1007/s40820-025-01709-0
Z. Liu, M. Xi, R. Sheng, Y. Huang, J. Ding et al., Zn(TFSI)2-mediated ring-opening polymerization for electrolyte engineering toward stable aqueous zinc metal batteries. Nano-Micro Lett. 17(1), 120 (2025). https://doi.org/10.1007/s40820-025-01649-9
H.-F. Wang, Q. Xu, Materials design for rechargeable metal-air batteries. Matter 1(3), 565–595 (2019). https://doi.org/10.1016/j.matt.2019.05.008
Q. Liu, Z. Pan, E. Wang, L. An, G. Sun, Aqueous metal-air batteries: fundamentals and applications. Energy Storage Mater. 27, 478–505 (2020). https://doi.org/10.1016/j.ensm.2019.12.011
Q. Sun, L. Dai, T. Luo, L. Wang, F. Liang et al., Recent advances in solid-state metal–air batteries. Carbon Energy 5(2), e276 (2023). https://doi.org/10.1002/cey2.276
A. Iqbal, O.M. El-Kadri, N.M. Hamdan, Insights into rechargeable Zn-air batteries for future advancements in energy storing technology. J. Energy Storage 62, 106926 (2023). https://doi.org/10.1016/j.est.2023.106926
H.B. Tao, J. Zhang, J. Chen, L. Zhang, Y. Xu et al., Revealing energetics of surface oxygen redox from kinetic fingerprint in oxygen electrocatalysis. J. Am. Chem. Soc. 141(35), 13803–13811 (2019). https://doi.org/10.1021/jacs.9b01834
M. Jahan, Z. Liu, K.P. Loh, A graphene oxide and copper-centered metal organic framework composite as a tri-functional catalyst for HER, OER, and ORR. Adv. Funct. Mater. 23(43), 5363–5372 (2013). https://doi.org/10.1002/adfm.201300510
C. He, C. Xia, F.-M. Li, J. Zhang, W. Guo et al., Rational design of oxygen species adsorption on nonnoble metal catalysts for two-electron oxygen reduction. Adv. Energy Mater. 14(1), 2303233 (2024). https://doi.org/10.1002/aenm.202303233
H. Adamu, Z.H. Yamani, M. Qamar, Modulation to favorable surface adsorption energy for oxygen evolution reaction intermediates over carbon-tunable alloys towards sustainable hydrogen production. Mater. Renew. Sustain. Energy 11(3), 169–213 (2022). https://doi.org/10.1007/s40243-022-00214-3
J. Milikić, A. Nastasić, M. Martins, C.A.C. Sequeira, B. Šljukić, Air cathodes and bifunctional oxygen electrocatalysts for aqueous metal–air batteries. Batteries 9(8), 394 (2023). https://doi.org/10.3390/batteries9080394
J. Li, Oxygen evolution reaction in energy conversion and storage: design strategies under and beyond the energy scaling relationship. Nano-Micro Lett. 14(1), 112 (2022). https://doi.org/10.1007/s40820-022-00857-x
D. Zha, R. Wang, S. Tian, Z.-J. Jiang, Z. Xu et al., Defect engineering and carbon supporting to achieve Ni-doped CoP3 with high catalytic activities for overall water splitting. Nano-Micro Lett. 16(1), 250 (2024). https://doi.org/10.1007/s40820-024-01471-9
X. Lyu, X. Gu, G. Li, H. Chen, H. Hou et al., Hierarchical porous carbon anchored atomic/clustered cobalt for boosting oxygen reduction electrocatalysis. ChemCatChem 14(24), e202201192 (2022). https://doi.org/10.1002/cctc.202201192
L. Sun, M. Feng, Y. Peng, X. Zhao, Y. Shao et al., Constructing oxygen vacancies by doping Mo into spinel Co3O4 to trigger a fast oxide path mechanism for acidic oxygen evolution reaction. J. Mater. Chem. A 12(15), 8796–8804 (2024). https://doi.org/10.1039/D4TA00655K
N. Han, W. Zhang, W. Guo, H. Pan, B. Jiang et al., Designing oxide catalysts for oxygen electrocatalysis: insights from mechanism to application. Nano-Micro Lett. 15(1), 185 (2023). https://doi.org/10.1007/s40820-023-01152-z
X. Rong, J. Parolin, A.M. Kolpak, A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6(2), 1153–1158 (2016). https://doi.org/10.1021/acscatal.5b02432
J.S. Yoo, X. Rong, Y. Liu, A.M. Kolpak, Role of lattice oxygen participation in understanding trends in the oxygen evolution reaction on perovskites. ACS Catal. 8(5), 4628–4636 (2018). https://doi.org/10.1021/acscatal.8b00612
J. Guo, H. Liu, D. Li, J. Wang, X. Djitcheu et al., A minireview on the synthesis of single atom catalysts. RSC Adv. 12(15), 9373–9394 (2022). https://doi.org/10.1039/d2ra00657j
M. Du, B. Chu, Q. Wang, C. Li, Y. Lu et al., Dual Fe/I single-atom electrocatalyst for high-performance oxygen reduction and wide-temperature quasi-solid-state Zn-air batteries. Adv. Mater. 36(47), 2412978 (2024). https://doi.org/10.1002/adma.202412978
X. Shi, P. Sun, X. Wang, W. Xiang, Y. Wei et al., High-performance rechargeable zinc-air batteries enabled by cobalt iron anchored on nitrogen-doped carbon matrix as bifunctional electrocatalyst. J. Colloid Interface Sci. 679, 1029–1039 (2025). https://doi.org/10.1016/j.jcis.2024.10.129
Y. Liu, W. Zhang, Large-scale synthesis of functional single-atom catalysts. Commun. Chem. 6(1), 36 (2023). https://doi.org/10.1038/s42004-023-00834-4
Y. Du, Z. Zhong, Z. Shi, L. Zhou, S. Pan et al., Dual-ligand engineered CoNi alloy/N-doped carbon nanotubes bifunctional ORR/OER electrocatalyst for long-lifespan rechargeable Zn-air batteries. J. Colloid Interface Sci. 683, 631–640 (2025). https://doi.org/10.1016/j.jcis.2024.12.036
V. Jose, J.M.V. Nsanzimana, H. Hu, J. Choi, X. Wang et al., Highly efficient oxygen reduction reaction activity of N-doped carbon–cobalt boride heterointerfaces. Adv. Energy Mater. 11(17), 2100157 (2021). https://doi.org/10.1002/aenm.202100157
Y. Duan, B. Li, K. Yang, Z. Gong, X. Peng et al., Ultrahigh energy and power density in Ni-Zn aqueous battery via superoxide-activated three-electron transfer. Nano-Micro Lett. 17(1), 79 (2024). https://doi.org/10.1007/s40820-024-01586-z
N. Liu, Y. Li, W. Liu, Z. Liang, B. Liao et al., Engineering bipolar doping in a Janus dual-atom catalyst for photo-enhanced rechargeable Zn-air battery. Nano-Micro Lett. 17(1), 203 (2025). https://doi.org/10.1007/s40820-025-01707-2
C. Xu, J. Wu, L. Chen, Y. Gong, B. Mao et al., Boric acid-assisted pyrolysis for high-loading single-atom catalysts to boost oxygen reduction reaction in Zn-air batteries. Energy Environ. Mater. 7(2), e12569 (2024). https://doi.org/10.1002/eem2.12569
W.W. Zhang, Y. Wang, Y.C. Li, L.L. Sun, X.Y. Zhang, First-principles calculations insight into non-noble-metal bifunctional electrocatalysts for zinc–air batteries. Appl. Energy 391, 125925 (2025). https://doi.org/10.1016/j.apenergy.2025.125925
S. Mitchell, J. Pérez-Ramírez, Single atom catalysis: a decade of stunning progress and the promise for a bright future. Nat. Commun. 11(1), 4302 (2020). https://doi.org/10.1038/s41467-020-18182-5
T. Bai, D. Li, S. Xiao, F. Ji, S. Zhang et al., Recent progress on single-atom catalysts for lithium–air battery applications. Energy Environ. Sci. 16(4), 1431–1465 (2023). https://doi.org/10.1039/d2ee02949a
P. Zhang, K. Chen, J. Li, M. Wang, M. Li et al., Bifunctional single atom catalysts for rechargeable zinc–air batteries: from dynamic mechanism to rational design. Adv. Mater. 35(35), 2303243 (2023). https://doi.org/10.1002/adma.202303243
Y. Chen, T. He, Q. Liu, Y. Hu, H. Gu et al., Highly durable iron single-atom catalysts for low-temperature zinc-air batteries by electronic regulation of adjacent iron nanoclusters. Appl. Catal. B Environ. 323, 122163 (2023). https://doi.org/10.1016/j.apcatb.2022.122163
X. Zhang, Y. Liu, X. Zhao, Z. Cheng, X. Mu, Recent advances and perspectives of high-entropy alloys as electrocatalysts for metal-air batteries. Energy Fuels 38(20), 19236–19252 (2024). https://doi.org/10.1021/acs.energyfuels.4c03386
X. Yang, L. Xu, Y. Li, Do we achieve “1 + 1 > 2” in dual-atom or dual-single-atom catalysts? Coord. Chem. Rev. 516, 215961 (2024). https://doi.org/10.1016/j.ccr.2024.215961
S. Qin, K. Li, M. Cao, W. Liu, Z. Huang et al., Fe-Co-Ni ternary single-atom electrocatalyst and stable quasi-solid-electrolyte enabling high-efficiency zinc-air batteries. Nano Res. Energy 3(3), e9120122 (2024). https://doi.org/10.26599/nre.2024.9120122
J.-E. Tsai, W.-X. Hong, H. Pourzolfaghar, W.-H. Wang, Y.-Y. Li, A Fe-Ni-Zn triple single-atom catalyst for efficient oxygen reduction and oxygen evolution reaction in rechargeable Zn-air batteries. Chem. Eng. J. 460, 141868 (2023). https://doi.org/10.1016/j.cej.2023.141868
Y. Ma, H. Fan, C. Wu, M. Zhang, J. Yu et al., An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon 185, 526–535 (2021). https://doi.org/10.1016/j.carbon.2021.09.044
R. Li, D. Wang, Superiority of dual-atom catalysts in electrocatalysis: one step further than single-atom catalysts. Adv. Energy Mater. 12(9), 2103564 (2022). https://doi.org/10.1002/aenm.202103564
J. Chen, H. Li, C. Fan, Q. Meng, Y. Tang et al., Dual single-atomic Ni-N4 and Fe-N4 sites constructing Janus hollow graphene for selective oxygen electrocatalysis. Adv. Mater. 32(30), 2003134 (2020). https://doi.org/10.1002/adma.202003134
X. Li, G. Han, S. Lou, Z. Qiang, J. Zhu et al., Tailoring lithium-peroxide reaction kinetics with CuN2C2 single-atom moieties for lithium-oxygen batteries. Nano Energy 93, 106810 (2022). https://doi.org/10.1016/j.nanoen.2021.106810
J. Li, C. Chen, L. Xu, Y. Zhang, W. Wei et al., Challenges and perspectives of single-atom-based catalysts for electrochemical reactions. JACS Au 3(3), 736–755 (2023). https://doi.org/10.1021/jacsau.3c00001
Q. Wang, Y. Xue, S. Sun, S. Yan, H. Miao et al., Facile synthesis of ternary spinel Co–Mn–Ni nanorods as efficient bi-functional oxygen catalysts for rechargeable zinc-air batteries. J. Power. Sources 435, 226761 (2019). https://doi.org/10.1016/j.jpowsour.2019.226761
Z. Abedi, D. Leistenschneider, W. Chen, D.G. Ivey, Spinel type Mn−Co oxide coated carbon fibers as efficient bifunctional electrocatalysts for zinc-air batteries. Batter. Supercaps 5(2), e202100339 (2022). https://doi.org/10.1002/batt.202100339
X. Zhang, Q. Liu, S. Liu, E. Wang, Manganese-doped cobalt spinel oxide as bifunctional oxygen electrocatalyst toward high-stable rechargeable Zn-air battery. Electrochim. Acta 437, 141477 (2023). https://doi.org/10.1016/j.electacta.2022.141477
P. Saha, S. Shaheen Shah, M. Ali, M. Nasiruzzaman Shaikh, M.A. Aziz et al., Cobalt oxide-based electrocatalysts with bifunctionality for high-performing rechargeable zinc-air batteries. Chem. Rec. 24(1), e202300216 (2024). https://doi.org/10.1002/tcr.202300216
R.R. Ayyaluri, B.N. Vamsi Krishna, O.R. Ankinapalli, Y.J. Lee, L. Natarajan et al., MnCo2O4/Mn2O3 nanorod architectures as bifunctional electrocatalyst material for rechargeable zinc–air batteries. ACS Sustain. Chem. Eng. 12(29), 10765–10775 (2024). https://doi.org/10.1021/acssuschemeng.4c01477
S. Kosasang, H. Gatemala, N. Ma, P. Chomkhuntod, M. Sawangphruk, Trimetallic spinel-type cobalt nickel-doped manganese oxides as bifunctional electrocatalysts for Zn-air batteries. Batter. Supercaps 3(7), 631–637 (2020). https://doi.org/10.1002/batt.202000006
J. González-Morales, M. Aparicio, N.C. Rosero-Navarro, J. Mosa, A stable rechargeable aqueous Zn–oxygen battery with Mn-based bifunctional electrocatalysts. ACS Appl. Energy Mater. 7(16), 7096–7109 (2024). https://doi.org/10.1021/acsaem.4c01506
X. Zheng, A.M. Zuria, M. Mohamedi, Tailored self-supported co, Ni/MnO2 Nanorods@Hierarchical carbon spheres chains as advanced electrocatalysts for rechargeable Zn-air battery and self-driven water splitting. ACS Electrochem. 1(2), 216–229 (2025). https://doi.org/10.1021/acselectrochem.4c00066
X. Zheng, A.M. Zuria, M. Mohamedi, Hybrid carbon sphere chain-MnO2 nanorods as bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Inorg. Chem. 62(2), 989–1000 (2023). https://doi.org/10.1021/acs.inorgchem.2c03916
T. Maiyalagan, K.A. Jarvis, S. Therese, P.J. Ferreira, A. Manthiram, Spinel-type lithium cobalt oxide as a bifunctional electrocatalyst for the oxygen evolution and oxygen reduction reactions. Nat. Commun. 5, 3949 (2014). https://doi.org/10.1038/ncomms4949
Y. Xu, A. Sumboja, A. Groves, T. Ashton, Y. Zong et al., Enhancing bifunctional catalytic activity of cobalt–nickel sulfide spinel nanocatalysts through transition metal doping and its application in secondary zinc–air batteries. RSC Adv. 10(68), 41871–41882 (2020). https://doi.org/10.1039/D0RA08363A
L.B. Liu, C. Yi, H.C. Mi, S.L. Zhang, X.Z. Fu et al., Perovskite oxides toward oxygen evolution reaction: intellectual design strategies, properties and perspectives. Electrochem. Energy Rev. 7(1), 14 (2024). https://doi.org/10.1007/s41918-023-00209-2
C. Sun, J.A. Alonso, J. Bian, Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 11(2), 2000459 (2021). https://doi.org/10.1002/aenm.202000459
J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, Y. Shao-Horn, A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334(6061), 1383–1385 (2011). https://doi.org/10.1126/science.1212858
Y. Deng, J. Du, Y. Zhu, L. Zhao, H. Wang et al., Interface engineering of Ruddlesden-Popper perovskite/CeO2/carbon heterojunction for rechargeable zinc-air batteries. J. Colloid Interface Sci. 653, 1775–1784 (2024). https://doi.org/10.1016/j.jcis.2023.09.138
H. Zhou, W. Zhao, J. Yan, Y. Zheng, Bifunctional catalytic activity of LaCoO3 perovskite air electrode for rechargeable Zn–air batteries boosted by molybdenum doping. J. Power. Sources 597, 234104 (2024). https://doi.org/10.1016/j.jpowsour.2024.234104
D.U. Lee, M.G. Park, H.W. Park, M.H. Seo, V. Ismayilov et al., Highly active Co-doped LaMnO3 perovskite oxide and N-doped carbon nanotube hybrid bi-functional catalyst for rechargeable zinc–air batteries. Electrochem. Commun. 60, 38–41 (2015). https://doi.org/10.1016/j.elecom.2015.08.001
B.-Z. Hsu, J.-K. Lai, Y.-H. Lee, La-based perovskites for capacity enhancement of Li-O2 batteries. Front. Chem. 11, 1264593 (2023). https://doi.org/10.3389/fchem.2023.1264593
Y. Li, M. Chen, M. Chu, X. Wang, Y. Wang et al., Mono-doped carbon nanofiber aerogel as a high-performance electrode material for rechargeable zinc-air batteries. ChemElectroChem 8(5), 829–838 (2021). https://doi.org/10.1002/celc.202001593
H. Zhou, W. Zhao, Z. Lu, S. He, B. Yin et al., Ba-doped LaCoO3 perovskite as novel bifunctional electrocatalyst for zinc–air batteries. Electrochim. Acta 462, 142757 (2023). https://doi.org/10.1016/j.electacta.2023.142757
Y. Zhu, W. Zhou, J. Yu, Y. Chen, M. Liu et al., Enhancing electrocatalytic activity of perovskite oxides by tuning cation deficiency for oxygen reduction and evolution reactions. Chem. Mater. 28(6), 1691–1697 (2016). https://doi.org/10.1021/acs.chemmater.5b04457
Z. Li, L. Lv, J. Wang, X. Ao, Y. Ruan et al., Engineering phosphorus-doped LaFeO3-δ perovskite oxide as robust bifunctional oxygen electrocatalysts in alkaline solutions. Nano Energy 47, 199–209 (2018). https://doi.org/10.1016/j.nanoen.2018.02.051
Q. Wang, Y. Xue, S. Sun, S. Li, H. Miao et al., La0.8Sr0.2Co1-xMnxO3 perovskites as efficient bi-functional cathode catalysts for rechargeable zinc-air batteries. Electrochim. Acta 254, 14–24 (2017). https://doi.org/10.1016/j.electacta.2017.09.034
Q. Zheng, Y. Zhang, C. Wang, C. Zhang, Y. Guo, CoO enhanced oxygen evolution kinetics of LaMnO3 perovskite as a potential cathode for rechargeable Zn-air batteries. Energy Fuels 36(2), 1091–1099 (2022). https://doi.org/10.1021/acs.energyfuels.1c03869
X.X. Li, Y. Wang, Y.C. Li, Y. Liang, Durable bifunctional electrocatalyst for cathode of zinc-air battery: surface pre-reconstruction of La0.7Sr0.3MnO3 perovskite by iron ions. J. Alloys Compd. 976, 173398 (2024). https://doi.org/10.1016/j.jallcom.2023.173398
L. Gui, Z. Wang, K. Zhang, B. He, Y. Liu et al., Oxygen vacancies-rich Ce0.9Gd0.1O2-δ decorated Pr0.5Ba0.5CoO3-δ bifunctional catalyst for efficient and long-lasting rechargeable Zn-air batteries. Appl. Catal. B Environ. 266, 118656 (2020). https://doi.org/10.1016/j.apcatb.2020.118656
F. Li, N. Mushtaq, T. Su, Y. Cui, J. Huang et al., NCNT grafted perovskite oxide as an active bifunctional electrocatalyst for rechargeable zinc-air battery. Mater. Today Nano 21, 100287 (2023). https://doi.org/10.1016/j.mtnano.2022.100287
T. Erdil, C. Toparli, B-site effect on high-entropy perovskite oxide as a bifunctional electrocatalyst for rechargeable zinc–air batteries. ACS Appl. Energy Mater. 6(21), 11255–11267 (2023). https://doi.org/10.1021/acsaem.3c02149
Z. Shui, H. Tian, S. Yu, H. Xiao, W. Zhao et al., La0.75Sr0.25MnO3- based perovskite oxides as efficient and durable bifunctional oxygen electrocatalysts in rechargeable Zn-air batteries. Sci. China Mater. 66(3), 1002–1012 (2023). https://doi.org/10.1007/s40843-022-2203-5
W.G. Hardin, D.A. Slanac, X. Wang, S. Dai, K.P. Johnston et al., Highly active, nonprecious metal perovskite electrocatalysts for bifunctional metal-air battery electrodes. J. Phys. Chem. Lett. 4(8), 1254–1259 (2013). https://doi.org/10.1021/jz400595z
K.H. Park, D.Y. Kim, J.Y. Kim, M. Kim, G.-T. Yun et al., Fabrication of highly monodisperse and small-grain platinum hole–cylinder nanops as a cathode catalyst for Li–O2 batteries. ACS Appl. Energy Mater. 4(3), 2514–2521 (2021). https://doi.org/10.1021/acsaem.0c03082
N. Algethami, H.I. Alkhammash, F. Sultana, M. Mushtaq, A. Zaman et al., Preparation of RuO2/CNTs by atomic layer deposition and its application as binder free cathode for polymer based Li-O2 battery. Int. J. Electrochem. Sci. 17(9), 220967 (2022). https://doi.org/10.20964/2022.09.62
Y. Cong, Z. Geng, Y. Sun, L. Yuan, X. Wang et al., Cation segregation of A-site deficiency perovskite La0.85FeO3-δ nanops toward high-performance cathode catalysts for rechargeable Li-O2 battery. ACS Appl. Mater. Interfaces 10(30), 25465–25472 (2018). https://doi.org/10.1021/acsami.8b07924
Z. Wang, X. Peng, S. Guo, M. Sun, J. Cheng et al., Ultraviolet light-assisted Ag@La0.6Sr0.4Fe0.9Mn0.1O3 nanohybrids: a facile and versatile method for preparation of highly stable catalysts in Li-O2 batteries. ACS Appl. Energy Mater. 4(9), 9376–9383 (2021). https://doi.org/10.1021/acsaem.1c01572
S. Guo, L. Zou, M. Sun, Z. Wang, S. Han et al., Enhancing the bifunctional catalytic performance of porous La0.9Mn0.6Ni0.4O3–δ Nanofibers for Li–O2 Batteries through exsolution of Ni nanops. ACS Appl. Energy Mater. 3(10), 10015–10022 (2020). https://doi.org/10.1021/acsaem.0c01691
Z. Wang, Y. You, J. Yuan, Y.-X. Yin, Y.-T. Li et al., Nickel-doped La0.8Sr0.2Mn1-xNixO3 nanops containing abundant oxygen vacancies as an optimized bifunctional catalyst for oxygen cathode in rechargeable lithium-air batteries. ACS Appl. Mater. Interfaces 8(10), 6520–6528 (2016). https://doi.org/10.1021/acsami.6b00296
H. Kim, Y.S. Lim, J.H. Kim, Highly porous structured Sr-doped La2NiO4/NiO composite cathode with interconnected pores for lithium-oxygen batteries. Chem. Eng. J. 431, 134278 (2022). https://doi.org/10.1016/j.cej.2021.134278
Q. Qiu, Z.-Z. Pan, P. Yao, J. Yuan, C. Xia et al., A 98.2% energy efficiency Li-O2 battery using a LaNi-0.5Co0.5O3 perovskite cathode with extremely fast oxygen reduction and evolution kinetics. Chem. Eng. J. 452, 139608 (2023). https://doi.org/10.1016/j.cej.2022.139608
G. Liu, H. Chen, L. Xia, S. Wang, L.-X. Ding et al., Hierarchical mesoporous/macroporous perovskite La0.5Sr0.5CoO3-x nanotubes: a bifunctional catalyst with enhanced activity and cycle stability for rechargeable lithium oxygen batteries. ACS Appl. Mater. Interfaces 7(40), 22478–22486 (2015). https://doi.org/10.1021/acsami.5b06587
Y. Cong, Z. Geng, Q. Zhu, H. Hou, X. Wu et al., Cation-exchange-induced metal and alloy dual-exsolution in perovskite ferrite oxides boosting the performance of Li-O2 battery. Angew. Chem. Int. Ed. 60(43), 23380–23387 (2021). https://doi.org/10.1002/anie.202110116
Z. Zhang, K. Tan, Y. Gong, H. Wang, R. Wang et al., An integrated bifunctional catalyst of metal-sulfide/perovskite oxide for lithium-oxygen batteries. J. Power. Sources 437, 226908 (2019). https://doi.org/10.1016/j.jpowsour.2019.226908
D. Du, R. Zheng, M. He, C. Zhao, B. Zhou et al., A-site cationic defects induced electronic structure regulation of LaMnO3 perovskite boosts oxygen electrode reactions in aprotic lithium–oxygen batteries. Energy Storage Mater. 43, 293–304 (2021). https://doi.org/10.1016/j.ensm.2021.09.011
C. Gong, L. Zhao, S. Li, H. Wang, Y. Gong et al., Atomic layered deposition iron oxide on perovskite LaNiO3 as an efficient and robust bi-functional catalyst for lithium oxygen batteries. Electrochim. Acta 281, 338–347 (2018). https://doi.org/10.1016/j.electacta.2018.05.161
R. Li, J. Long, M. Li, D. Du, L. Ren et al., Sulfur-doped LaNiO3 perovskite oxides with enriched anionic vacancies and manipulated orbital occupancy facilitating oxygen electrode reactions in lithium-oxygen batteries. Mater. Today Chem. 24, 100889 (2022). https://doi.org/10.1016/j.mtchem.2022.100889
H. Hou, Y. Cong, Q. Zhu, Z. Geng, X. Wang et al., Fluorine induced surface reconstruction of perovskite ferrite oxide as cathode catalyst for prolong-life Li-O2 battery. Chem. Eng. J. 448, 137684 (2022). https://doi.org/10.1016/j.cej.2022.137684
G. Kothandam, G. Singh, X. Guan, J.M. Lee, K. Ramadass et al., Recent advances in carbon-based electrodes for energy storage and conversion. Adv. Sci. 10(18), 2301045 (2023). https://doi.org/10.1002/advs.202301045
V.-T. Nguyen, K. Cho, Y. Choi, B. Hwang, Y.-K. Park et al., Biomass-derived materials for energy storage and electrocatalysis: recent advances and future perspectives. Biochar 6(1), 96 (2024). https://doi.org/10.1007/s42773-024-00388-1
M.A. Alemu, M. Zegeye Getie, H. Mulugeta Wassie, M. Shitye Alem, A.A. Assegie et al., Biomass-derived metal-free heteroatom doped nanostructured carbon electrocatalysts for high-performance rechargeable lithium–air batteries. Green Chem. 26(23), 11427–11443 (2024). https://doi.org/10.1039/D4GC02551B
J. Guo, Y. Yao, X. Yan, X. Meng, Q. Wang et al., Emerging carbon-based catalysts for the oxygen reduction reaction: insights into mechanisms and applications. Inorganics 12(12), 303 (2024). https://doi.org/10.3390/inorganics12120303
C. Peng, J. Chen, M. Jin, X. Bi, C. Yi et al., Effect of the carbon on the electrochemical performance of rechargeable Zn-air batteries. Int. J. Hydrog. Energy 48(13), 5313–5322 (2023). https://doi.org/10.1016/j.ijhydene.2022.10.240
Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng et al., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
Z. Li, Y. Yao, Y. Niu, W. Zhang, B. Chen et al., Multi-heteroatom-doped hollow carbon tubes as robust electrocatalysts for the oxygen reduction reaction, oxygen and hydrogen evolution reaction. Chem. Eng. J. 418, 129321 (2021). https://doi.org/10.1016/j.cej.2021.129321
P. Li, H. Jang, J. Zhang, M. Tian, S. Chen et al., A metal-free N and P-codoped carbon nanosphere as bifunctional electrocatalyst for rechargeable zinc-air batteries. ChemElectroChem 6(2), 393–397 (2019). https://doi.org/10.1002/celc.201801419
V. Sankar Devi, P. Elumalai, Selenium heteroatom-doped mesoporous carbon as an efficient air-breathing electrode for rechargeable lithium–oxygen batteries. New J. Chem. 47(5), 2189–2201 (2023). https://doi.org/10.1039/D2NJ05679H
S. Chen, H.-M. Yan, J. Tseng, S. Ge, X. Li et al., Synthesis of metal-nitrogen-carbon electrocatalysts with atomically regulated nitrogen-doped polycyclic aromatic hydrocarbons. J. Am. Chem. Soc. 146(20), 13703–13708 (2024). https://doi.org/10.1021/jacs.4c01770
D. Sun, Y. Shen, W. Zhang, L. Yu, Z. Yi et al., A solution-phase bifunctional catalyst for lithium-oxygen batteries. J. Am. Chem. Soc. 136(25), 8941–8946 (2014). https://doi.org/10.1021/ja501877e
S.K. Yadav, D. Deckenbach, S. Yadav, C. Njel, V. Trouillet et al., CoFe2O4@N-CNH as bifunctional hybrid catalysts for rechargeable zinc-air batteries. Adv. Mater. Interfaces 11(28), 2400415 (2024). https://doi.org/10.1002/admi.202400415
T.-H. Chen, C.-S. Ni, C.-Y. Lai, S. Gull, Y.-C. Chu et al., Enhanced oxygen evolution and power density of Co/Zn@NC@MWCNTs for the application of zinc-air batteries. J. Colloid Interface Sci. 679, 119–131 (2025). https://doi.org/10.1016/j.jcis.2024.09.187
B.N. Vamsi Krishna, O.R. Ankinapalli, A.R. Reddy, J.S. Yu, Strong carbon layer-encapsulated cobalt tin sulfide-based nanoporous material as a bifunctional electrocatalyst for zinc–air batteries. Small 20(32), 2311176 (2024). https://doi.org/10.1002/smll.202311176
Y.-F. Yao, W.-Y. Xie, S.-J. Huang, J.-S. Ye, H.-Y. Liu et al., Pyrolysis-free cobalt porphyrin coordination polymer as electrocatalyst for Zn-air batteries and water splitting. J. Electroanal. Chem. 952, 117987 (2024). https://doi.org/10.1016/j.jelechem.2023.117987
C.-X. Zhao, J.-N. Liu, B.-Q. Li, D. Ren, X. Chen et al., Multiscale construction of bifunctional electrocatalysts for long-lifespan rechargeable zinc–air batteries. Adv. Funct. Mater. 30(36), 2003619 (2020). https://doi.org/10.1002/adfm.202003619
F. Dong, M. Wu, Z. Chen, X. Liu, G. Zhang et al., Atomically dispersed transition metal-nitrogen-carbon bifunctional oxygen electrocatalysts for zinc-air batteries: recent advances and future perspectives. Nano-Micro Lett. 14(1), 36 (2021). https://doi.org/10.1007/s40820-021-00768-3
J. Yang, Y. Wang, X. Zhao, J. Kang, X. Zhou et al., Atomically dispersed Fe-N4 bridged with MoOx clusters as a bifunctional electrocatalyst for rechargeable Zn-air battery. Adv. Funct. Mater. 35(9), 2416215 (2025). https://doi.org/10.1002/adfm.202416215
S. Shahzadi, M. Akhtar, M. Arshad, M.H. Ijaz, M.R.S.A. Janjua, A review on synthesis of MOF-derived carbon composites: innovations in electrochemical, environmental and electrocatalytic technologies. RSC Adv. 14(38), 27575–27607 (2024). https://doi.org/10.1039/D4RA05183A
B. Li, L. Hong, C. Jing, X. Yue, H. Huang et al., A review of series transition metal-based MOFs materials and derivatives for electrocatalytic oxygen evolution. Microporous Mesoporous Mater. 365, 112836 (2024). https://doi.org/10.1016/j.micromeso.2023.112836
J. Du, F. Zhang, L. Jiang, Z. Guo, H. Song, Enhanced cobalt MOF electrocatalyst for oxygen evolution reaction via morphology regulation. Inorg. Chem. Commun. 158, 111661 (2023). https://doi.org/10.1016/j.inoche.2023.111661
L. Magnier, G. Cossard, V. Martin, C. Pascal, V. Roche et al., Fe-Ni-based alloys as highly active and low-cost oxygen evolution reaction catalyst in alkaline media. Nat. Mater. 23(2), 252–261 (2024). https://doi.org/10.1038/s41563-023-01744-5
Y. Liu, Q. Yan, F. Ge, X. Duan, T. Wu et al., Size-confined Co nanops embedded in ultrathin carbon nanosheets for enhanced oxygen electrocatalysis in Zn–air batteries. J. Mater. Chem. A 13(6), 4513–4520 (2025). https://doi.org/10.1039/D4TA07845D
Y. Wu, J. Chen, J. Liu, L. Zhang, R. Abazari et al., Iron phthalocyanine coupled with Co-Nx sites in carbon nanostraws for Zn-Air batteries. Chem. Eng. J. 503, 158343 (2025). https://doi.org/10.1016/j.cej.2024.158343
G. Yerlikaya, M. Farsak, Enhancing lithium-air battery performance through CoPc@CNT composites: electrochemical analysis and insights. J. Energy Storage 73, 108991 (2023). https://doi.org/10.1016/j.est.2023.108991
S.S. Shah, M.A. Aziz, P.I. Rasool, N.Z.K. Mohmand, A.J. Khan et al., Electrochemical synergy and future prospects: advancements and challenges in MXene and MOFs composites for hybrid supercapacitors. Sustain. Mater. Technol. 39, e00814 (2024). https://doi.org/10.1016/j.susmat.2023.e00814
Q. Zhao, L. Bao, H. Wang, D. Dou, Y. Cong et al., Bimetallic Co–Ni alloy nanops loaded on nitrogen-doped wrinkled carbon nanospheres as high-performance bifunctionalORR/OERelectrocatalyst in alkaline media. Ionics 30(8), 4797–4810 (2024). https://doi.org/10.1007/s11581-024-05478-5
M. Cui, Y. Zhang, B. Xu, F. Xu, J. Chen et al., High-entropy alloy nanomaterials for electrocatalysis. Chem. Commun. 60(87), 12615–12632 (2024). https://doi.org/10.1039/d4cc04075a
C. Madan, S.R. Jha, N.K. Katiyar, A. Singh, R. Mitra et al., Understanding the evolution of catalytically active multi-metal sites in a bifunctional high-entropy alloy electrocatalyst for zinc–air battery application. Energy Adv. 2(12), 2055–2068 (2023). https://doi.org/10.1039/D3YA00356F
Z. Jin, X. Zhou, Y. Hu, X. Tang, K. Hu et al., A fourteen-component high-entropy alloy@oxide bifunctional electrocatalyst with a record-low ΔE of 0.61 V for highly reversible Zn–air batteries. Chem. Sci. 13(41), 12056–12064 (2022). https://doi.org/10.1039/D2SC04461G
T. Erdil, C. Ozgur, U. Geyikci, E. Lokcu, C. Toparli, Earth-abundant divalent cation high-entropy spinel ferrites as bifunctional electrocatalysts for oxygen evolution and reduction reactions. ACS Appl. Energy Mater. 7(18), 7775–7786 (2024). https://doi.org/10.1021/acsaem.4c01227
X. Wang, Q. Dong, H. Qiao, Z. Huang, M.T. Saray et al., Continuous synthesis of hollow high-entropy nanops for energy and catalysis applications. Adv. Mater. 32(46), 2002853 (2020). https://doi.org/10.1002/adma.202002853
L. Tao, M. Sun, Y. Zhou, M. Luo, F. Lv et al., A general synthetic method for high-entropy alloy subnanometer ribbons. J. Am. Chem. Soc. 144(23), 10582–10590 (2022). https://doi.org/10.1021/jacs.2c03544
Z. Fang, S. Li, Y. Zhang, Y. Wang, K. Meng et al., The DFT and machine learning method accelerated the discovery of DMSCs with high ORR and OER catalytic activities. J. Phys. Chem. Lett. 15(1), 281–289 (2024). https://doi.org/10.1021/acs.jpclett.3c02938
T.X. Nguyen, C.-H. Lee, J.-H. Sun, C.-K. Peng, W.-H. Chu et al., Synergistic modulation of electronic structure in high entropy perovskite oxide for enhanced bifuntional oxygen evolution/reduction reactions and its mechanistic insights via in situ analyses and density functional theory calculation. Chem. Eng. J. 511, 161731 (2025). https://doi.org/10.1016/j.cej.2025.161731
A.R. Kottaichamy, J. Tzadikov, A. Pedersen, J. Barrio, G. Mark et al., A rechargeable Zn–air battery with high energy efficiency enabled by a hydrogen peroxide bifunctional catalyst. Adv. Energy Mater. 14(47), 2470208 (2024). https://doi.org/10.1002/aenm.202470208
M. Batool, O. Sanumi, J. Jankovic, Application of artificial intelligence in the materials science, with a special focus on fuel cells and electrolyzers. Energy AI 18, 100424 (2024). https://doi.org/10.1016/j.egyai.2024.100424