Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries
Corresponding Author: Bao Yu Xia
Nano-Micro Letters,
Vol. 13 (2021), Article Number: 137
Abstract
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries (ZABs). Owing to the high specific surface area, controllable pore size and unsaturated metal active sites, metal–organic frameworks (MOFs) derivatives have been widely studied as oxygen electrocatalysts in ZABs. To date, many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs. In this review, the latest progress of the MOF-derived non-noble metal–oxygen electrocatalysts in ZABs is reviewed. The performance of these MOF-derived catalysts toward oxygen reduction, and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials, single-atom catalysts, metal cluster/carbon composites and metal compound/carbon composites. Moreover, we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal–oxygen electrocatalysts and their structure-performance relationship. Finally, the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs.
Highlights:
1 This review summarizes the recent progress and application of different metal-organic frameworks (MOFs)-derived non-noble metal materials for zinc-air batteries in the past few years.
2 This work gives extensive insights in understanding the relationship between design strategies and structure-activity relationship.
3 The challenges and prospects of MOF-derived oxygen electrocatalysts for zinc-air batteries are proposed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.M. Omer, Energy, environment and sustainable development. Renew. Sust. Energy Rev. 12, 2265–2300 (2008). https://doi.org/10.1016/j.rser.2007.05.001
- H.-X. Zhong, Q. Zhang, J. Wang, X.-B. Zhang, X.-L. Wei et al., Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst. ACS Catal. 8, 3965–3970 (2018). https://doi.org/10.1021/acscatal.8b00467
- Y. Wang, M.M. Shi, D. Bao, F.L. Meng, Q. Zhang et al., Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem. Int. Ed. 58, 9464–9469 (2019). https://doi.org/10.1002/anie.201903969
- Q. Zhang, H. Zhong, F. Meng, D. Bao, X. Zhang et al., Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 11, 1294–1300 (2018). https://doi.org/10.1007/s12274-017-1743-8
- L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
- S. Tominaka, H. Nishizeko, J. Mizuno, T.J.E. Osaka, E. Science, Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate. Energy Environ. Sci. 2, 1074–1077 (2009). https://doi.org/10.1039/b915389f
- Z.M. Bhat, T. Ravikumar, M.C. Devendrachari, A.R. Kottaichamy, S.P. Shafi et al., Fuel exhaling fuel cell. J. Phys. Chem. Lett. 9, 388–392 (2018). https://doi.org/10.1021/acs.jpclett.7b03100
- H. Zhao, A.F. Burke, Optimization of fuel cell system operating conditions for fuel cell vehicles. J. Power Sources 186, 408–416 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.032
- W. Zong, C. Yang, L. Mo, Y. Ouyang, H. Guo et al., Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. Nano Energy 77, 105189 (2020). https://doi.org/10.1016/j.nanoen.2020.105189
- C. Wei, R.R. Rao, J. Peng, B. Huang, I.E.L. Stephens et al., Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019). https://doi.org/10.1002/adma.201806296
- L. Huang, S. Zaman, Z. Wang, H. Niu, B. You et al., Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. Chim. Sin. 37(9), 2009035 (2020). https://doi.org/10.3866/pku.Whxb202009035
- A. Yoshino, The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012). https://doi.org/10.1002/anie.201105006
- C.J. Yao, Z. Wu, J. Xie, F. Yu, W. Guo et al., Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13, 2457–2463 (2020). https://doi.org/10.1002/cssc.201903007
- E.W.-G. Diau, Next-generation solar cells and conversion of solar energy. ACS Energy Lett. 2, 334–335 (2017). https://doi.org/10.1021/acsenergylett.6b00645
- L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. 13, 1–17 (2021). https://doi.org/10.1007/s40820-021-00604-8
- Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu et al., A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019). https://doi.org/10.1002/aenm.201901081
- B. Guo, R. Ma, Z. Li, S. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn-air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
- W. Zong, N. Chui, Z. Tian, Y. Li, C. Yang et al., Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv. Sci. 8, 2004142 (2021). https://doi.org/10.1002/advs.202004142
- X. Duan, N. Pan, C. Sun, K. Zhang, X. Zhu et al., MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting. J. Energy Chem. 56, 290–298 (2021). https://doi.org/10.1016/j.jechem.2020.08.007
- J. Jiao, Y. Pan, B. Wang, W. Yang, S. Liu et al., Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core-shell electrocatalysts for rechargeable zinc–air batteries. J. Energy Chem. 53, 364–371 (2021). https://doi.org/10.1016/j.jechem.2020.05.032
- L. Li, Z.W. Chang, X.B. Zhang, Recent progress on the development of metal-air batteries. Adv. Sustain. Syst. 1, 1700036 (2017). https://doi.org/10.1002/adsu.201700036
- W. Yu, W. Shang, P. Tan, B. Chen, Z. Wu et al., Toward a new generation of low cost, efficient, and durable metal-air flow batteries. J. Mater. Chem. A 7, 26744–26768 (2019). https://doi.org/10.1039/C9TA10658H
- J.L. Ma, F.L. Meng, Y. Yu, D.P. Liu, J.M. Yan et al., Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li–Na alloy-O2 batteries. Nat. Chem. 11, 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
- J.-J. Xu, X.-B. Zhang, Li-air batteries: decouple to stabilize. Nat. Energy 2, 1–2 (2017). https://doi.org/10.1038/nenergy.2017.133
- Y.B. Yin, X.Y. Yang, Z.W. Chang, Y.H. Zhu, T. Liu et al., A water-/fireproof flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator. Adv. Mater. 30, 1703791 (2018). https://doi.org/10.1002/adma.201703791
- W. Zhang, L. Sun, J.M.V. Nsanzimana, X. Wang, Lithiation/delithiation synthesis of few layer silicene nanosheets for rechargeable Li–O2 batteries. Adv. Mater. 30, 1705523 (2018). https://doi.org/10.1002/adma.201705523
- J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu et al., Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691
- F.L. Meng, K.H. Liu, Y. Zhang, M.M. Shi, X.B. Zhang et al., Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 14, 1703843 (2018). https://doi.org/10.1002/smll.201703843
- A.I. Douka, H. Yang, L. Huang, S. Zaman, T. Yue et al., Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 3, 12067 (2020). https://doi.org/10.1002/eom2.12067
- P. Cai, Y. Li, J. Chen, J. Jia, G. Wang et al., An asymmetric-electrolyte Zn-air battery with ultrahigh power density and energy density. ChemElectroChem 5, 589–592 (2018). https://doi.org/10.1002/celc.201701269
- X. Cai, L. Lai, J. Lin, Z. Shen, Recent advances in air electrodes for Zn-air batteries: electrocatalysis and structural design. Mater. Horizons 4, 945–976 (2017). https://doi.org/10.1039/C7MH00358G
- X. Han, X. Li, J. White, C. Zhong, Y. Deng et al., Metal-air batteries: from static to flow system. Adv. Energy Mater. 8, 1801396 (2018). https://doi.org/10.1002/aenm.201801396
- L. Li, J. He, Y. Wang, X. Lv, X. Gu et al., Metal-organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. J. Mater. Chem. A 7, 1964–1988 (2019). https://doi.org/10.1039/C8TA11704G
- W. Fang, L. Huang, S. Zaman, Z. Wang, Y. Han et al., Recent progress on two-dimensional electrocatalysis. Chem. Res. Chin. Univ. 36, 611–621 (2020). https://doi.org/10.1007/s40242-020-0182-3
- S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3, 1800211 (2019). https://doi.org/10.1002/smtd.201800211
- M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem. Int. Ed. 58, 15188–15205 (2019). https://doi.org/10.1002/anie.201902229
- H. Zhong, K. Liu, Q. Zhang, F. Meng, D. Bao et al., Copper tetrazolate based metal-organic frameworks as highly efficient catalysts for artificially chemical and electrochemical CO2 conversion. Nano Select 1, 311–319 (2020). https://doi.org/10.1002/nano.202000041
- F.X.L.I. Xamena, A. Abad, A. Corma, H. Garcia, MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J. Catal. 250, 294–298 (2007). https://doi.org/10.1016/j.jcat.2007.06.004
- S. Jin, How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 4, 1443–1445 (2019). https://doi.org/10.1021/acsenergylett.9b01134
- S. Yang, L. Peng, S. Bulut, W.L. Queen, Recent advances of MOFs and MOF-derived materials in thermally driven organic transformations. Chem. Eur. J. 25, 2161–2178 (2019). https://doi.org/10.1002/chem.201803157
- B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
- X.F. Lu, B.Y. Xia, S.Q. Zang, X.W.D. Lou, Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 4634–4650 (2020). https://doi.org/10.1002/anie.201910309
- X. Tian, X.F. Lu, B.Y. Xia, X.W. Lou, Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4, 45–68 (2020). https://doi.org/10.1016/j.joule.2019.12.014
- J. Pan, X.L. Tian, S. Zaman, Z. Dong, H. Liu et al., Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batteries Supercaps 2, 336–347 (2018). https://doi.org/10.1002/batt.201800082
- Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30, 1906081 (2019). https://doi.org/10.1002/adfm.201906081
- H. Yang, X. Han, A.I. Douka, L. Huang, L. Gong et al., Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2007602 (2020). https://doi.org/10.1002/adfm.202007602
- X. Liu, T. Yue, K. Qi, Y. Qiu, B.Y. Xia et al., Metal-organic framework membranes: from synthesis to electrocatalytic applications. Chin. Chem. Lett. 31, 2189–2201 (2020). https://doi.org/10.1016/j.cclet.2019.12.009
- Y. Yan, Y. Xu, B. Zhao, Y. Xu, Y. Gao et al., Bifunctional nickel ferrite-decorated carbon nanotube arrays as free-standing air electrode for rechargeable Zn-air batteries. J. Mater. Chem. A 8, 5070–5077 (2020). https://doi.org/10.1039/d0ta00554a
- A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 32, 2002170 (2020). https://doi.org/10.1002/adma.202002170
- G. Chen, Y. Xu, L. Huang, A.I. Douka, B.Y. Xia, Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Energy Chem. 55, 183–189 (2021). https://doi.org/10.1016/j.jechem.2020.07.012
- S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You et al., Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 2016977 (2021). https://doi.org/10.1002/anie.202016977
- S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Mechanochemistry: toward green synthesis of metal-organic frameworks. Mater. Today (In press, 2021). https://doi.org/10.1016/j.mattod.2021.01.008
- Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang et al., Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 60, 8472–8476 (2021). https://doi.org/10.1002/anie.202016024
- Y. Yang, X. Zhang, S. Kanchanakungwankul, Z. Lu, H. Noh et al., Unexpected “spontaneous” evolution of catalytic, MOF-supported single Cu(II) cations to catalytic, MOF-supported Cu(0) nanoparticles. J. Am. Chem. Soc. 142, 21169–21177 (2020). https://doi.org/10.1021/jacs.0c10367
- S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
- X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13, 4536–4563 (2020). https://doi.org/10.1039/D0EE02800B
- J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017). https://doi.org/10.1002/adma.201604685
- M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo et al., Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J. Mater. Chem. A 6, 10918–10925 (2018). https://doi.org/10.1039/C8TA02416B
- Y. Li, H. Dai, Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
- S. Kuyuldar, D.T. Genna, C. Burda, On the potential for nanoscale metal-organic frameworks for energy applications. J. Mater. Chem. A 7, 21545–21576 (2019). https://doi.org/10.1039/c9ta09896h
- D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou et al., Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 30, 1908167 (2019). https://doi.org/10.1002/adfm.201908167
- K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang et al., Facile synthesis of two-dimensional Fe/Co metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 2102632 (2021). https://doi.org/10.1002/anie.202102632
- Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
- J. Liu, Y. Gao, X. Tang, K. Zhan, B. Zhao et al., Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 8, 19254–19261 (2020). https://doi.org/10.1039/d0ta07616c
- J.M.V. Nsanzimana, L. Gong, R. Dangol, V. Reddu, V. Jose et al., Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 9, 1901503 (2019). https://doi.org/10.1002/aenm.201901503
- Y. Xu, Y. Yan, T. He, K. Zhan, J. Yang et al., Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 145, 201–208 (2019). https://doi.org/10.1016/j.carbon.2019.01.011
- Q. Guan, Y. Li, X. Bi, J. Yang, J. Zhou et al., Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 9, 1901434 (2019). https://doi.org/10.1002/aenm.201901434
- B. Zhu, D. Xia, R. Zou, Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coord. Chem. Rev. 376, 430–448 (2018). https://doi.org/10.1016/j.ccr.2018.07.020
- R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal-organic frameworks for batteries. Joule 2, 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019
- T. Mehtab, G. Yasin, M. Arif, M. Shakeel, R.M. Korai et al., Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage 21, 632–646 (2019). https://doi.org/10.1016/j.est.2018.12.025
- L. Zou, C.C. Hou, Q. Wang, Y.S. Wei, Z. Liu et al., A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem. Int. Ed. 59, 19627–19632 (2020). https://doi.org/10.1002/anie.202004737
- X. Wang, X.Y. Li, C.B. Ouyang, Z. Li, S. Dou et al., Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4, 9370–9374 (2016). https://doi.org/10.1039/C6TA03015G
- M. Zhang, D. Wu, Y. Ye, L. Wu, Z. Yao et al., Thermal conversion of MOF@MOF: synthesis of an N-doped carbon material with excellent ORR performance. ChemPlusChem 83, 1044–1051 (2018). https://doi.org/10.1002/cplu.201800392
- A. Aijaz, N. Fujiwara, Q. Xu, From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136, 6790–6793 (2014). https://doi.org/10.1021/ja5003907
- W. Zhang, Z.Y. Wu, H.L. Jiang, S.H. Yu, Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014). https://doi.org/10.1021/ja5084128
- H.X. Zhong, J. Wang, Y.W. Zhang, W.L. Xu, W. Xing et al., ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed. 53, 14235–14239 (2014). https://doi.org/10.1002/anie.201408990
- X. Wang, J. Zhou, H. Fu, W. Li, X. Fan et al., MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064–14070 (2014). https://doi.org/10.1039/c4ta01506a
- M. Wu, K. Wang, M. Yi, Y. Tong, Y. Wang et al., A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species. ACS Catal. 7, 6082–6088 (2017). https://doi.org/10.1021/acscatal.7b01649
- L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014). https://doi.org/10.1039/c4nr00348a
- M. Yang, X. Hu, Z. Fang, L. Sun, Z. Yuan et al., Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li-S batteries: highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 27, 1701971 (2017). https://doi.org/10.1002/adfm.201701971
- L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019). https://doi.org/10.1016/j.carbon.2019.02.006
- P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun et al., ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7, 442–450 (2014). https://doi.org/10.1039/c3ee42799d
- Y. Lv, L. Yang, D. Cao, Nitrogen and fluorine-codoped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 9, 32859–32867 (2017). https://doi.org/10.1021/acsami.7b11371
- J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.J. Liu, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. USA 112, 10629–10634 (2015). https://doi.org/10.1073/pnas.1507159112
- Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng et al., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
- J. Li, Y. Chen, Y. Tang, S. Li, H. Dong et al., Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2, 6316–6319 (2014). https://doi.org/10.1039/c3ta15335e
- X. Wen, Q. Zhang, J. Guan, Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 409, 213214 (2020). https://doi.org/10.1016/j.ccr.2020.213214
- J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a
- C. Lu, R. Fang, X. Chen, Single-atom catalytic materials for advanced battery systems. Adv. Mater. 32, 1906548 (2020). https://doi.org/10.1002/adma.201906548
- Q. Wang, X. Huang, Z.L. Zhao, M. Wang, B. Xiang et al., Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 142, 7425–7433 (2020). https://doi.org/10.1021/jacs.9b12642
- K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M=Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
- H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343
- L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2018). https://doi.org/10.1002/adma.201703663
- L. Jiao, H.-L. Jiang, Metal-organic-framework-based single-atom catalysts for energy applications. Chem 5, 786–804 (2019). https://doi.org/10.1016/j.chempr.2018.12.011
- Y. Lin, P. Liu, E. Velasco, G. Yao, Z. Tian et al., Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 31, 1808193 (2019). https://doi.org/10.1002/adma.201808193
- X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong et al., Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.201901109
- P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
- Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan et al., Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x
- W. Sun, L. Du, Q. Tan, J. Zhou, Y. Hu et al., Engineering of nitrogen coordinated single cobalt atom moieties for oxygen electroreduction. ACS Appl. Mater. Interfaces 11, 41258–41266 (2019). https://doi.org/10.1021/acsami.9b11830
- Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60, 3212–3221 (2020). https://doi.org/10.1002/anie.202012798
- H. Liu, M.Q. Wang, Z.Y. Chen, H. Chen, M.W. Xu et al., Design and synthesis of Co-N-C porous catalyst derived from metal organic complexes for highly effective ORR. Dalton Trans. 46, 15646–15650 (2017). https://doi.org/10.1039/c7dt03279j
- S. Dilpazir, H. He, Z. Li, M. Wang, P. Lu et al., Cobalt single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl. Energy Mater. 1, 3283–3291 (2018). https://doi.org/10.1021/acsaem.8b00490
- W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 8, 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556
- D. Ji, L. Fan, L. Li, S. Peng, D. Yu et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267
- Y. Li, R. Cao, L. Li, X. Tang, T. Chu et al., Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting. Small 16, 1906735 (2020). https://doi.org/10.1002/smll.201906735
- Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
- Y. Zhu, B. Zhang, X. Liu, D.W. Wang, D.S. Su, Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 10673–10677 (2014). https://doi.org/10.1002/anie.201405314
- X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou et al., Self-templated hierarchically porous carbon nanorods embedded with atomic Fe–N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31, 2008085 (2020). https://doi.org/10.1002/adfm.202008085
- L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12, 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
- Y. Han, Q.K. Li, K. Ye, Y. Luo, J. Jiang et al., Impact of active site density on oxygen reduction reactions using monodispersed Fe–N–C single-atom catalysts. ACS Appl. Mater. Interfaces 12, 15271–15278 (2020). https://doi.org/10.1021/acsami.0c01206
- J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 29, 1808872 (2019). https://doi.org/10.1002/adfm.201808872
- C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 132, 7454–7459 (2020). https://doi.org/10.1002/anie.202002665
- Z. Lin, H. Huang, L. Cheng, Y. Yang, R. Zhang et al., Atomically dispersed Mn within carbon frameworks as high-performance oxygen reduction electrocatalysts for zinc-air battery. ACS Sustain. Chem. Eng. 8, 427–434 (2019). https://doi.org/10.1021/acssuschemeng.9b05713
- X. Han, T. Zhang, W. Chen, B. Dong, G. Meng et al., Mn–N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 11, 2002753 (2020). https://doi.org/10.1002/aenm.202002753
- J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017). https://doi.org/10.1002/adma.201605838
- S. Bhattacharyya, C. Das, T.K. Maji, MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Adv. 8, 26728–26754 (2018). https://doi.org/10.1039/c8ra05102j
- S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu et al., Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29, 1700874 (2017). https://doi.org/10.1002/adma.201700874
- X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan et al., MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 11, 25976–25985 (2019). https://doi.org/10.1021/acsami.9b07436
- M. Qiao, Y. Wang, X. Mamat, A. Chen, G. Zou et al., Rational design of hierarchical, porous, Co-supported, N-doped carbon architectures as electrocatalyst for oxygen reduction. Chemsuschem 13, 741–748 (2020). https://doi.org/10.1002/cssc.201903053
- M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431
- W. Xie, J. Li, Y. Song, S. Li, J. Li et al., Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 12, 1–14 (2020). https://doi.org/10.1007/s40820-020-00435-z
- Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo et al., Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn-air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
- J. Wu, L. Hu, N. Wang, Y. Li, D. Zhao et al., Surface confinement assisted synthesis of nitrogen-rich hollow carbon cages with Co nanoparticles as breathable electrodes for Zn-air batteries. Appl. Catal. B-Environ. 254, 55–65 (2019). https://doi.org/10.1016/j.apcatb.2019.04.064
- Q. Lai, J. Zhu, Y. Zhao, Y. Liang, J. He et al., MOF-based metal-doping-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn-air batteries. Small 13, 1700740 (2017). https://doi.org/10.1002/smll.201700740
- X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding et al., Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 11, 15662–15669 (2019). https://doi.org/10.1021/acsami.9b02859
- S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 12, 727–738 (2019). https://doi.org/10.1039/c8ee02679c
- Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 28, 1802596 (2018). https://doi.org/10.1002/adfm.201802596
- A. Pendashteh, S.M.F. Vilela, I. Krivtsov, D. Ávila-Brande, J. Palma et al., Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries. J. Power Sources 427, 299–308 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.074
- C. Zhang, H. Yang, D. Zhong, Y. Xu, Y. Wang et al., A yolk-shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. J. Mater. Chem. A 8, 9536–9544 (2020). https://doi.org/10.1039/d0ta00962h
- Y. Jiang, Y.P. Deng, R. Liang, J. Fu, R. Gao et al., d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 11, 5858 (2020). https://doi.org/10.1038/s41467-020-19709-6
- B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu et al., MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 27, 1700795 (2017). https://doi.org/10.1002/adfm.201700795
- T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28, 1705048 (2018). https://doi.org/10.1002/adfm.201705048
- Y. Xu, Z. Huang, B. Wang, Z. Liang, C. Zhang et al., A two-dimensional multi-shelled metal-organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem. Commun. 55, 14805–14808 (2019). https://doi.org/10.1039/c9cc08250f
- J. Tan, T. Thomas, J. Liu, L. Yang, L. Pan et al., Rapid microwave-assisted preparation of high-performance bifunctional Ni3Fe/Co-N-C for rechargeable Zn-air battery. Chem. Eng. J. 395, 125151 (2020). https://doi.org/10.1016/j.cej.2020.125151
- K. Li, W. Chen, Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Mater. Today Energy 100638 (2021). https://doi.org/10.1016/j.mtener.2021.100638
- C. Li, M. Wu, R. Liu, High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B-Environ. 244, 150–158 (2019). https://doi.org/10.1016/j.apcatb.2018.11.039
- W. Niu, Y. Yang, Amorphous MOF introduced N-doped graphene: an efficient and versatile electrocatalyst for zinc-air battery and water splitting. ACS Appl. Energy Mater. 1, 2440–2445 (2018). https://doi.org/10.1021/acsaem.8b00594
- L. Yang, S. Feng, G. Xu, B. Wei, L. Zhang, Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries. ACS Sustain. Chem. Eng. 7, 5462–5475 (2019). https://doi.org/10.1021/acssuschemeng.8b06624
- C.C. Hou, L. Zou, Q. Xu, A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 31, 1904689 (2019). https://doi.org/10.1002/adma.201904689
- M. Wu, B. Guo, A. Nie, R. Liu, Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. J. Colloid Interface Sci. 561, 585–592 (2020). https://doi.org/10.1016/j.jcis.2019.11.033
- D. Chen, Z. Li, Y. Zhou, X. Ma, H. Lin et al., Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction. Chem. Commun. 56, 4898–4901 (2020). https://doi.org/10.1039/d0cc00895h
- Q. Shao, J. Liu, Q. Wu, Q. Li, H.-G. Wang et al., In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-air battery. Nano-Micro Lett. 11, 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
- Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00526-x
- D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 44 (2020). https://doi.org/10.1007/s40820-020-00522-1
- S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du et al., Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 32, 2002235 (2020). https://doi.org/10.1002/adma.202002235
- S. Chen, S. Chen, B. Zhang, J. Zhang, Bifunctional oxygen electrocatalysis of N, S-codoped porous carbon with interspersed hollow CoO nanoparticles for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 11, 16720–16728 (2019). https://doi.org/10.1021/acsami.9b02819
- S. Dou, X. Li, L. Tao, J. Huo, S. Wang, Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 52, 9727–9730 (2016). https://doi.org/10.1039/C6CC05244D
- Z. Guo, F. Wang, Y. Xia, J. Li, A.G. Tamirat et al., In situ encapsulation of core-shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 6, 1443–1453 (2018). https://doi.org/10.1039/c7ta09958d
- D. Ji, L. Fan, L. Tao, Y. Sun, M. Li et al., The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem. Int. Ed. 58, 13840–13844 (2019). https://doi.org/10.1002/anie.201908736
- H. Liu, Z. Mai, X. Xu, Y. Wang, A Co-MOF-derived oxygen-vacancy-rich Co3O4-based composite as a cathode material for hybrid Zn batteries. Dalton Trans. 49, 2880–2887 (2020). https://doi.org/10.1039/c9dt04682h
- N. Sikdar, B. Konkena, J. Masa, W. Schuhmann, T.K. Maji, Co3O4@Co/NCNT nanostructure derived from a dicyanamide-based metal-organic framework as an efficient bi-functional electrocatalyst for oxygen reduction and evolution reactions. Chem. Eur. J. 23, 18049–18056 (2017). https://doi.org/10.1002/chem.201704211
- T. Singh, C. Das, N. Bothra, N. Sikdar, S. Das et al., MOF derived Co3O4@Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting. Inorg. Chem. 59, 3160–3170 (2020). https://doi.org/10.1021/acs.inorgchem.9b03516
- J.-T. Ren, G.-G. Yuan, C.-C. Weng, Z.-Y. Yuan, Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 6, 707–718 (2017). https://doi.org/10.1021/acssuschemeng.7b03034
- C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu et al., Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017). https://doi.org/10.1002/adma.201704117
- Y. Zhong, Z. Pan, X. Wang, J. Yang, Y. Qiu et al., Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 6, 1802243 (2019). https://doi.org/10.1002/advs.201802243
- Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang et al., Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J. Mater. Chem. A 6, 9716–9722 (2018). https://doi.org/10.1039/c8ta01859f
- X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 31, 1902339 (2019). https://doi.org/10.1002/adma.201902339
- H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 10, 22311–22319 (2018). https://doi.org/10.1021/acsami.8b06272
- S. Liu, X. Zhang, G. Wang, Y. Zhang, H. Zhang, High-efficiency Co/CoxSy@S, N-codoped porous carbon electrocatalysts fabricated from controllably grown sulfur- and nitrogen-including cobalt-based MOFs for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 9, 34269–34278 (2017). https://doi.org/10.1021/acsami.7b11101
- J.-Y. Zhao, R. Wang, S. Wang, Y.-R. Lv, H. Xu et al., Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 7, 7389–7395 (2019). https://doi.org/10.1039/c8ta12116h
- I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel et al., Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 27, 1702300 (2017). https://doi.org/10.1002/adfm.201702300
- H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 (2020). https://doi.org/10.1002/adma.202003649
- D.D. Babu, Y. Huang, G. Anandhababu, M.A. Ghausi, Y. Wang, Mixed-metal-organic framework self-template synthesis of porous hybrid oxyphosphides for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 38621–38628 (2017). https://doi.org/10.1021/acsami.7b13359
- Y. Hao, Y. Xu, W. Liu, X. Sun, Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Mater. Horizons 5, 108–115 (2018). https://doi.org/10.1039/c7mh00706j
- Y.-S. Wei, M. Zhang, M. Kitta, Z. Liu, S. Horike et al., A single-crystal open-capsule metal-organic framework. J. Am. Chem. Soc. 141, 7906–7916 (2019). https://doi.org/10.1021/jacs.9b02417
- C.-L. Zhang, J.-T. Liu, H. Li, L. Qin, F.-H. Cao et al., The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B-Environ. 261, 118224 (2020). https://doi.org/10.1016/j.apcatb.2019.118224
- J.-T. Liu, Y. Xie, Q. Gao, F.-H. Cao, L. Qin et al., 1D MOF-derived N-doped porous carbon nanofibers encapsulated with Fe3C nanoparticles for efficient bifunctional electrocatalysis. Eur. J. Inorg. Chem. 2020, 581–589 (2020). https://doi.org/10.1002/ejic.201901244
- G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong et al., Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy Environ. Sci. 13, 2849–2855 (2020). https://doi.org/10.1039/d0ee01613f
- F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
- Y. Wang, Q. Cao, C. Guan, C. Cheng, Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries. Small 16, 2002902 (2020). https://doi.org/10.1002/smll.202002902
- C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang et al., Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Stor. Mater. 16, 243–250 (2019). https://doi.org/10.1016/j.ensm.2018.06.001
- Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu et al., In-situ enriching active sites on co-doped Fe–Co4N@N–C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B-Environ. 256, 117893 (2019). https://doi.org/10.1016/j.apcatb.2019.117893
- T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao et al., In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn-air batteries. J. Mater. Chem. A 5, 7001–7014 (2017). https://doi.org/10.1039/c7ta01453h
- H. Wu, J. Wang, J. Yan, Z. Wu, W. Jin, MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co–Fe–P–Se as efficient bifunctional OER/ORR catalysts. Nanoscale 11, 20144–20150 (2019). https://doi.org/10.1039/c9nr05744g
- Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao et al., NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 7, 1700467 (2017). https://doi.org/10.1002/aenm.201700467
- Y. Qian, T. An, E. Sarnello, Z. Liu, T. Li et al., Janus electrocatalysts containing MOF-derived carbon networks and NiFe-LDH nanoplates for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2, 1784–1792 (2019). https://doi.org/10.1021/acsaem.8b01923
- D. Chen, X. Chen, Z. Cui, G. Li, B. Han et al., Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 399, 125718 (2020). https://doi.org/10.1016/j.cej.2020.125718
- J.P. Guerrette, S.J. Percival, B. Zhang, Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J. Am. Chem. Soc. 135, 855–861 (2013). https://doi.org/10.1021/ja310401b
- J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic et al., Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682–688 (2014). https://doi.org/10.1039/c3ee43683g
- Z.-Q. Cao, M.-Z. Wu, H.-B. Hu, G.-J. Liang, C.-Y. Zhi, Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn-air battery. NPG Asia Mater. 10, 670–684 (2018). https://doi.org/10.1038/s41427-018-0063-0
- J.-C. Dong, X.-G. Zhang, V. Briega-Martos, X. Jin, J. Yang et al., In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2018). https://doi.org/10.1038/s41560-018-0292-z
- S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020). https://doi.org/10.1038/s41560-020-00709-1
References
A.M. Omer, Energy, environment and sustainable development. Renew. Sust. Energy Rev. 12, 2265–2300 (2008). https://doi.org/10.1016/j.rser.2007.05.001
H.-X. Zhong, Q. Zhang, J. Wang, X.-B. Zhang, X.-L. Wei et al., Engineering ultrathin C3N4 quantum dots on graphene as a metal-free water reduction electrocatalyst. ACS Catal. 8, 3965–3970 (2018). https://doi.org/10.1021/acscatal.8b00467
Y. Wang, M.M. Shi, D. Bao, F.L. Meng, Q. Zhang et al., Generating defect-rich bismuth for enhancing the rate of nitrogen electroreduction to ammonia. Angew. Chem. Int. Ed. 58, 9464–9469 (2019). https://doi.org/10.1002/anie.201903969
Q. Zhang, H. Zhong, F. Meng, D. Bao, X. Zhang et al., Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 11, 1294–1300 (2018). https://doi.org/10.1007/s12274-017-1743-8
L. Zhao, Z. Liu, D. Chen, F. Liu, Z. Yang et al., Laser synthesis and microfabrication of micro/nanostructured materials toward energy conversion and storage. Nano-Micro Lett. 13, 49 (2021). https://doi.org/10.1007/s40820-020-00577-0
S. Tominaka, H. Nishizeko, J. Mizuno, T.J.E. Osaka, E. Science, Bendable fuel cells: on-chip fuel cell on a flexible polymer substrate. Energy Environ. Sci. 2, 1074–1077 (2009). https://doi.org/10.1039/b915389f
Z.M. Bhat, T. Ravikumar, M.C. Devendrachari, A.R. Kottaichamy, S.P. Shafi et al., Fuel exhaling fuel cell. J. Phys. Chem. Lett. 9, 388–392 (2018). https://doi.org/10.1021/acs.jpclett.7b03100
H. Zhao, A.F. Burke, Optimization of fuel cell system operating conditions for fuel cell vehicles. J. Power Sources 186, 408–416 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.032
W. Zong, C. Yang, L. Mo, Y. Ouyang, H. Guo et al., Elucidating dual-defect mechanism in rhenium disulfide nanosheets with multi-dimensional ion transport channels for ultrafast sodium storage. Nano Energy 77, 105189 (2020). https://doi.org/10.1016/j.nanoen.2020.105189
C. Wei, R.R. Rao, J. Peng, B. Huang, I.E.L. Stephens et al., Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019). https://doi.org/10.1002/adma.201806296
L. Huang, S. Zaman, Z. Wang, H. Niu, B. You et al., Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. Chim. Sin. 37(9), 2009035 (2020). https://doi.org/10.3866/pku.Whxb202009035
A. Yoshino, The birth of the lithium-ion battery. Angew. Chem. Int. Ed. 51, 5798–5800 (2012). https://doi.org/10.1002/anie.201105006
C.J. Yao, Z. Wu, J. Xie, F. Yu, W. Guo et al., Two-dimensional (2D) covalent organic framework as efficient cathode for binder-free lithium-ion battery. Chemsuschem 13, 2457–2463 (2020). https://doi.org/10.1002/cssc.201903007
E.W.-G. Diau, Next-generation solar cells and conversion of solar energy. ACS Energy Lett. 2, 334–335 (2017). https://doi.org/10.1021/acsenergylett.6b00645
L. Yin, Y. Li, X. Yao, Y. Wang, L. Jia et al., MXenes for solar cells. Nano-Micro Lett. 13, 1–17 (2021). https://doi.org/10.1007/s40820-021-00604-8
Q. Zhu, D. Zhao, M. Cheng, J. Zhou, K.A. Owusu et al., A new view of supercapacitors: integrated supercapacitors. Adv. Energy Mater. 9, 1901081 (2019). https://doi.org/10.1002/aenm.201901081
B. Guo, R. Ma, Z. Li, S. Guo, J. Luo et al., Hierarchical N-doped porous carbons for Zn-air batteries and supercapacitors. Nano-Micro Lett. 12, 20 (2020). https://doi.org/10.1007/s40820-019-0364-z
W. Zong, N. Chui, Z. Tian, Y. Li, C. Yang et al., Ultrafine MoP nanoparticle splotched nitrogen-doped carbon nanosheets enabling high-performance 3D-printed potassium-ion hybrid capacitors. Adv. Sci. 8, 2004142 (2021). https://doi.org/10.1002/advs.202004142
X. Duan, N. Pan, C. Sun, K. Zhang, X. Zhu et al., MOF-derived Co-MOF, O-doped carbon as trifunctional electrocatalysts to enable highly efficient Zn-air batteries and water-splitting. J. Energy Chem. 56, 290–298 (2021). https://doi.org/10.1016/j.jechem.2020.08.007
J. Jiao, Y. Pan, B. Wang, W. Yang, S. Liu et al., Melamine-assisted pyrolytic synthesis of bifunctional cobalt-based core-shell electrocatalysts for rechargeable zinc–air batteries. J. Energy Chem. 53, 364–371 (2021). https://doi.org/10.1016/j.jechem.2020.05.032
L. Li, Z.W. Chang, X.B. Zhang, Recent progress on the development of metal-air batteries. Adv. Sustain. Syst. 1, 1700036 (2017). https://doi.org/10.1002/adsu.201700036
W. Yu, W. Shang, P. Tan, B. Chen, Z. Wu et al., Toward a new generation of low cost, efficient, and durable metal-air flow batteries. J. Mater. Chem. A 7, 26744–26768 (2019). https://doi.org/10.1039/C9TA10658H
J.L. Ma, F.L. Meng, Y. Yu, D.P. Liu, J.M. Yan et al., Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li–Na alloy-O2 batteries. Nat. Chem. 11, 64–70 (2019). https://doi.org/10.1038/s41557-018-0166-9
J.-J. Xu, X.-B. Zhang, Li-air batteries: decouple to stabilize. Nat. Energy 2, 1–2 (2017). https://doi.org/10.1038/nenergy.2017.133
Y.B. Yin, X.Y. Yang, Z.W. Chang, Y.H. Zhu, T. Liu et al., A water-/fireproof flexible lithium-oxygen battery achieved by synergy of novel architecture and multifunctional separator. Adv. Mater. 30, 1703791 (2018). https://doi.org/10.1002/adma.201703791
W. Zhang, L. Sun, J.M.V. Nsanzimana, X. Wang, Lithiation/delithiation synthesis of few layer silicene nanosheets for rechargeable Li–O2 batteries. Adv. Mater. 30, 1705523 (2018). https://doi.org/10.1002/adma.201705523
J. Pan, Y.Y. Xu, H. Yang, Z. Dong, H. Liu et al., Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 5, 1700691 (2018). https://doi.org/10.1002/advs.201700691
F.L. Meng, K.H. Liu, Y. Zhang, M.M. Shi, X.B. Zhang et al., Recent advances toward the rational design of efficient bifunctional air electrodes for rechargeable Zn-air batteries. Small 14, 1703843 (2018). https://doi.org/10.1002/smll.201703843
A.I. Douka, H. Yang, L. Huang, S. Zaman, T. Yue et al., Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 3, 12067 (2020). https://doi.org/10.1002/eom2.12067
P. Cai, Y. Li, J. Chen, J. Jia, G. Wang et al., An asymmetric-electrolyte Zn-air battery with ultrahigh power density and energy density. ChemElectroChem 5, 589–592 (2018). https://doi.org/10.1002/celc.201701269
X. Cai, L. Lai, J. Lin, Z. Shen, Recent advances in air electrodes for Zn-air batteries: electrocatalysis and structural design. Mater. Horizons 4, 945–976 (2017). https://doi.org/10.1039/C7MH00358G
X. Han, X. Li, J. White, C. Zhong, Y. Deng et al., Metal-air batteries: from static to flow system. Adv. Energy Mater. 8, 1801396 (2018). https://doi.org/10.1002/aenm.201801396
L. Li, J. He, Y. Wang, X. Lv, X. Gu et al., Metal-organic frameworks: a promising platform for constructing non-noble electrocatalysts for the oxygen-reduction reaction. J. Mater. Chem. A 7, 1964–1988 (2019). https://doi.org/10.1039/C8TA11704G
W. Fang, L. Huang, S. Zaman, Z. Wang, Y. Han et al., Recent progress on two-dimensional electrocatalysis. Chem. Res. Chin. Univ. 36, 611–621 (2020). https://doi.org/10.1007/s40242-020-0182-3
S. Dou, X. Wang, S. Wang, Rational design of transition metal-based materials for highly efficient electrocatalysis. Small Methods 3, 1800211 (2019). https://doi.org/10.1002/smtd.201800211
M.Y. Masoomi, A. Morsali, A. Dhakshinamoorthy, H. Garcia, Mixed-metal MOFs: unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem. Int. Ed. 58, 15188–15205 (2019). https://doi.org/10.1002/anie.201902229
H. Zhong, K. Liu, Q. Zhang, F. Meng, D. Bao et al., Copper tetrazolate based metal-organic frameworks as highly efficient catalysts for artificially chemical and electrochemical CO2 conversion. Nano Select 1, 311–319 (2020). https://doi.org/10.1002/nano.202000041
F.X.L.I. Xamena, A. Abad, A. Corma, H. Garcia, MOFs as catalysts: activity, reusability and shape-selectivity of a Pd-containing MOF. J. Catal. 250, 294–298 (2007). https://doi.org/10.1016/j.jcat.2007.06.004
S. Jin, How to effectively utilize MOFs for electrocatalysis. ACS Energy Lett. 4, 1443–1445 (2019). https://doi.org/10.1021/acsenergylett.9b01134
S. Yang, L. Peng, S. Bulut, W.L. Queen, Recent advances of MOFs and MOF-derived materials in thermally driven organic transformations. Chem. Eur. J. 25, 2161–2178 (2019). https://doi.org/10.1002/chem.201803157
B.Y. Xia, Y. Yan, N. Li, H.B. Wu, X.W. Lou et al., A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 1, 15006 (2016). https://doi.org/10.1038/nenergy.2015.6
X.F. Lu, B.Y. Xia, S.Q. Zang, X.W.D. Lou, Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 59, 4634–4650 (2020). https://doi.org/10.1002/anie.201910309
X. Tian, X.F. Lu, B.Y. Xia, X.W. Lou, Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 4, 45–68 (2020). https://doi.org/10.1016/j.joule.2019.12.014
J. Pan, X.L. Tian, S. Zaman, Z. Dong, H. Liu et al., Recent progress on transition metal oxides as bifunctional catalysts for lithium-air and zinc-air batteries. Batteries Supercaps 2, 336–347 (2018). https://doi.org/10.1002/batt.201800082
Y. Xu, P. Deng, G. Chen, J. Chen, Y. Yan et al., 2D nitrogen-doped carbon nanotubes/graphene hybrid as bifunctional oxygen electrocatalyst for long-life rechargeable Zn-air batteries. Adv. Funct. Mater. 30, 1906081 (2019). https://doi.org/10.1002/adfm.201906081
H. Yang, X. Han, A.I. Douka, L. Huang, L. Gong et al., Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2007602 (2020). https://doi.org/10.1002/adfm.202007602
X. Liu, T. Yue, K. Qi, Y. Qiu, B.Y. Xia et al., Metal-organic framework membranes: from synthesis to electrocatalytic applications. Chin. Chem. Lett. 31, 2189–2201 (2020). https://doi.org/10.1016/j.cclet.2019.12.009
Y. Yan, Y. Xu, B. Zhao, Y. Xu, Y. Gao et al., Bifunctional nickel ferrite-decorated carbon nanotube arrays as free-standing air electrode for rechargeable Zn-air batteries. J. Mater. Chem. A 8, 5070–5077 (2020). https://doi.org/10.1039/d0ta00554a
A.I. Douka, Y. Xu, H. Yang, S. Zaman, Y. Yan et al., A zeolitic-imidazole frameworks-derived interconnected macroporous carbon matrix for efficient oxygen electrocatalysis in rechargeable zinc-air batteries. Adv. Mater. 32, 2002170 (2020). https://doi.org/10.1002/adma.202002170
G. Chen, Y. Xu, L. Huang, A.I. Douka, B.Y. Xia, Continuous nitrogen-doped carbon nanotube matrix for boosting oxygen electrocatalysis in rechargeable Zn-air batteries. J. Energy Chem. 55, 183–189 (2021). https://doi.org/10.1016/j.jechem.2020.07.012
S. Zaman, L. Huang, A.I. Douka, H. Yang, B. You et al., Oxygen reduction electrocatalysts toward practical fuel cells: progress and perspectives. Angew. Chem. Int. Ed. 2016977 (2021). https://doi.org/10.1002/anie.202016977
S. Głowniak, B. Szczęśniak, J. Choma, M. Jaroniec, Mechanochemistry: toward green synthesis of metal-organic frameworks. Mater. Today (In press, 2021). https://doi.org/10.1016/j.mattod.2021.01.008
Z. Liang, H. Guo, G. Zhou, K. Guo, B. Wang et al., Metal-organic-framework-supported molecular electrocatalysis for the oxygen reduction reaction. Angew. Chem. Int. Ed. Engl. 60, 8472–8476 (2021). https://doi.org/10.1002/anie.202016024
Y. Yang, X. Zhang, S. Kanchanakungwankul, Z. Lu, H. Noh et al., Unexpected “spontaneous” evolution of catalytic, MOF-supported single Cu(II) cations to catalytic, MOF-supported Cu(0) nanoparticles. J. Am. Chem. Soc. 142, 21169–21177 (2020). https://doi.org/10.1021/jacs.0c10367
S. Bai, X. Liu, K. Zhu, S. Wu, H. Zhou, Metal-organic framework-based separator for lithium-sulfur batteries. Nat. Energy 1, 16094 (2016). https://doi.org/10.1038/nenergy.2016.94
X. Zhu, C. Hu, R. Amal, L. Dai, X. Lu, Heteroatom-doped carbon catalysts for zinc-air batteries: progress, mechanism, and opportunities. Energy Environ. Sci. 13, 4536–4563 (2020). https://doi.org/10.1039/D0EE02800B
J. Fu, Z.P. Cano, M.G. Park, A. Yu, M. Fowler et al., Electrically rechargeable zinc-air batteries: progress, challenges, and perspectives. Adv. Mater. 29, 1604685 (2017). https://doi.org/10.1002/adma.201604685
M. Wu, Y. Wang, Z. Wei, L. Wang, M. Zhuo et al., Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc-air batteries. J. Mater. Chem. A 6, 10918–10925 (2018). https://doi.org/10.1039/C8TA02416B
Y. Li, H. Dai, Recent advances in zinc–air batteries. Chem. Soc. Rev. 43, 5257–5275 (2014). https://doi.org/10.1039/C4CS00015C
S. Kuyuldar, D.T. Genna, C. Burda, On the potential for nanoscale metal-organic frameworks for energy applications. J. Mater. Chem. A 7, 21545–21576 (2019). https://doi.org/10.1039/c9ta09896h
D. Ren, J. Ying, M. Xiao, Y.P. Deng, J. Ou et al., Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries. Adv. Funct. Mater. 30, 1908167 (2019). https://doi.org/10.1002/adfm.201908167
K. Ge, S. Sun, Y. Zhao, K. Yang, S. Wang et al., Facile synthesis of two-dimensional Fe/Co metal-organic framework for efficient oxygen evolution electrocatalysis. Angew. Chem. Int. Ed. 2102632 (2021). https://doi.org/10.1002/anie.202102632
Z.-F. Huang, J. Song, Y. Du, S. Xi, S. Dou et al., Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019). https://doi.org/10.1038/s41560-019-0355-9
J. Liu, Y. Gao, X. Tang, K. Zhan, B. Zhao et al., Metal-organic framework-derived hierarchical ultrathin CoP nanosheets for overall water splitting. J. Mater. Chem. A 8, 19254–19261 (2020). https://doi.org/10.1039/d0ta07616c
J.M.V. Nsanzimana, L. Gong, R. Dangol, V. Reddu, V. Jose et al., Tailoring of metal boride morphology via anion for efficient water oxidation. Adv. Energy Mater. 9, 1901503 (2019). https://doi.org/10.1002/aenm.201901503
Y. Xu, Y. Yan, T. He, K. Zhan, J. Yang et al., Supercritical CO2-Assisted synthesis of NiFe2O4/vertically-aligned carbon nanotube arrays hybrid as a bifunctional electrocatalyst for efficient overall water splitting. Carbon 145, 201–208 (2019). https://doi.org/10.1016/j.carbon.2019.01.011
Q. Guan, Y. Li, X. Bi, J. Yang, J. Zhou et al., Dendrite-free flexible fiber-shaped Zn battery with long cycle life in water and air. Adv. Energy Mater. 9, 1901434 (2019). https://doi.org/10.1002/aenm.201901434
B. Zhu, D. Xia, R. Zou, Metal-organic frameworks and their derivatives as bifunctional electrocatalysts. Coord. Chem. Rev. 376, 430–448 (2018). https://doi.org/10.1016/j.ccr.2018.07.020
R. Zhao, Z. Liang, R. Zou, Q. Xu, Metal-organic frameworks for batteries. Joule 2, 2235–2259 (2018). https://doi.org/10.1016/j.joule.2018.09.019
T. Mehtab, G. Yasin, M. Arif, M. Shakeel, R.M. Korai et al., Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J. Energy Storage 21, 632–646 (2019). https://doi.org/10.1016/j.est.2018.12.025
L. Zou, C.C. Hou, Q. Wang, Y.S. Wei, Z. Liu et al., A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem. Int. Ed. 59, 19627–19632 (2020). https://doi.org/10.1002/anie.202004737
X. Wang, X.Y. Li, C.B. Ouyang, Z. Li, S. Dou et al., Nonporous MOF-derived dopant-free mesoporous carbon as an efficient metal-free electrocatalyst for the oxygen reduction reaction. J. Mater. Chem. A 4, 9370–9374 (2016). https://doi.org/10.1039/C6TA03015G
M. Zhang, D. Wu, Y. Ye, L. Wu, Z. Yao et al., Thermal conversion of MOF@MOF: synthesis of an N-doped carbon material with excellent ORR performance. ChemPlusChem 83, 1044–1051 (2018). https://doi.org/10.1002/cplu.201800392
A. Aijaz, N. Fujiwara, Q. Xu, From metal-organic framework to nitrogen-decorated nanoporous carbons: high CO2 uptake and efficient catalytic oxygen reduction. J. Am. Chem. Soc. 136, 6790–6793 (2014). https://doi.org/10.1021/ja5003907
W. Zhang, Z.Y. Wu, H.L. Jiang, S.H. Yu, Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis. J. Am. Chem. Soc. 136, 14385–14388 (2014). https://doi.org/10.1021/ja5084128
H.X. Zhong, J. Wang, Y.W. Zhang, W.L. Xu, W. Xing et al., ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed. 53, 14235–14239 (2014). https://doi.org/10.1002/anie.201408990
X. Wang, J. Zhou, H. Fu, W. Li, X. Fan et al., MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2, 14064–14070 (2014). https://doi.org/10.1039/c4ta01506a
M. Wu, K. Wang, M. Yi, Y. Tong, Y. Wang et al., A facile activation strategy for an MOF-derived metal-free oxygen reduction reaction catalyst: direct access to optimized pore structure and nitrogen species. ACS Catal. 7, 6082–6088 (2017). https://doi.org/10.1021/acscatal.7b01649
L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian et al., Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 6, 6590–6602 (2014). https://doi.org/10.1039/c4nr00348a
M. Yang, X. Hu, Z. Fang, L. Sun, Z. Yuan et al., Bifunctional MOF-derived carbon photonic crystal architectures for advanced Zn-air and Li-S batteries: highly exposed graphitic nitrogen matters. Adv. Funct. Mater. 27, 1701971 (2017). https://doi.org/10.1002/adfm.201701971
L. Chai, L. Zhang, X. Wang, L. Xu, C. Han et al., Bottom-up synthesis of MOF-derived hollow N-doped carbon materials for enhanced ORR performance. Carbon 146, 248–256 (2019). https://doi.org/10.1016/j.carbon.2019.02.006
P. Zhang, F. Sun, Z. Xiang, Z. Shen, J. Yun et al., ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 7, 442–450 (2014). https://doi.org/10.1039/c3ee42799d
Y. Lv, L. Yang, D. Cao, Nitrogen and fluorine-codoped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction in fuel cells. ACS Appl. Mater. Interfaces 9, 32859–32867 (2017). https://doi.org/10.1021/acsami.7b11371
J. Shui, C. Chen, L. Grabstanowicz, D. Zhao, D.J. Liu, Highly efficient nonprecious metal catalyst prepared with metal-organic framework in a continuous carbon nanofibrous network. Proc. Natl. Acad. Sci. USA 112, 10629–10634 (2015). https://doi.org/10.1073/pnas.1507159112
Y. Qian, Z. Hu, X. Ge, S. Yang, Y. Peng et al., A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-Air batteries. Carbon 111, 641–650 (2017). https://doi.org/10.1016/j.carbon.2016.10.046
J. Li, Y. Chen, Y. Tang, S. Li, H. Dong et al., Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2, 6316–6319 (2014). https://doi.org/10.1039/c3ta15335e
X. Wen, Q. Zhang, J. Guan, Applications of metal-organic framework-derived materials in fuel cells and metal-air batteries. Coord. Chem. Rev. 409, 213214 (2020). https://doi.org/10.1016/j.ccr.2020.213214
J. Song, C. Wei, Z.F. Huang, C. Liu, L. Zeng et al., A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020). https://doi.org/10.1039/c9cs00607a
C. Lu, R. Fang, X. Chen, Single-atom catalytic materials for advanced battery systems. Adv. Mater. 32, 1906548 (2020). https://doi.org/10.1002/adma.201906548
Q. Wang, X. Huang, Z.L. Zhao, M. Wang, B. Xiang et al., Ultrahigh-loading of Ir single atoms on NiO matrix to dramatically enhance oxygen evolution reaction. J. Am. Chem. Soc. 142, 7425–7433 (2020). https://doi.org/10.1021/jacs.9b12642
K. Chen, S. Kim, M. Je, H. Choi, Z. Shi et al., Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M=Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nano-Micro Lett. 13, 60 (2021). https://doi.org/10.1007/s40820-020-00581-4
H. Zhang, G. Liu, L. Shi, J. Ye, Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018). https://doi.org/10.1002/aenm.201701343
L. Jiao, Y. Wang, H.L. Jiang, Q. Xu, Metal-organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2018). https://doi.org/10.1002/adma.201703663
L. Jiao, H.-L. Jiang, Metal-organic-framework-based single-atom catalysts for energy applications. Chem 5, 786–804 (2019). https://doi.org/10.1016/j.chempr.2018.12.011
Y. Lin, P. Liu, E. Velasco, G. Yao, Z. Tian et al., Fabricating single-atom catalysts from chelating metal in open frameworks. Adv. Mater. 31, 1808193 (2019). https://doi.org/10.1002/adma.201808193
X. Han, X. Ling, Y. Wang, T. Ma, C. Zhong et al., Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries. Angew. Chem. Int. Ed. 58, 5359–5364 (2019). https://doi.org/10.1002/anie.201901109
P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin et al., Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts. Angew. Chem. Int. Ed. 55, 10800–10805 (2016). https://doi.org/10.1002/anie.201604802
Y. Qu, Z. Li, W. Chen, Y. Lin, T. Yuan et al., Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 1, 781–786 (2018). https://doi.org/10.1038/s41929-018-0146-x
W. Sun, L. Du, Q. Tan, J. Zhou, Y. Hu et al., Engineering of nitrogen coordinated single cobalt atom moieties for oxygen electroreduction. ACS Appl. Mater. Interfaces 11, 41258–41266 (2019). https://doi.org/10.1021/acsami.9b11830
Y. Chen, R. Gao, S. Ji, H. Li, K. Tang et al., Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: enhanced oxygen reduction performance. Angew. Chem. Int. Ed. 60, 3212–3221 (2020). https://doi.org/10.1002/anie.202012798
H. Liu, M.Q. Wang, Z.Y. Chen, H. Chen, M.W. Xu et al., Design and synthesis of Co-N-C porous catalyst derived from metal organic complexes for highly effective ORR. Dalton Trans. 46, 15646–15650 (2017). https://doi.org/10.1039/c7dt03279j
S. Dilpazir, H. He, Z. Li, M. Wang, P. Lu et al., Cobalt single atoms immobilized N-doped carbon nanotubes for enhanced bifunctional catalysis toward oxygen reduction and oxygen evolution reactions. ACS Appl. Energy Mater. 1, 3283–3291 (2018). https://doi.org/10.1021/acsaem.8b00490
W. Zang, A. Sumboja, Y. Ma, H. Zhang, Y. Wu et al., Single Co atoms anchored in porous N-doped carbon for efficient zinc-air battery cathodes. ACS Catal. 8, 8961–8969 (2018). https://doi.org/10.1021/acscatal.8b02556
D. Ji, L. Fan, L. Li, S. Peng, D. Yu et al., Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 31, 1808267 (2019). https://doi.org/10.1002/adma.201808267
Y. Li, R. Cao, L. Li, X. Tang, T. Chu et al., Simultaneously integrating single atomic cobalt sites and Co9S8 nanoparticles into hollow carbon nanotubes as trifunctional electrocatalysts for Zn-air batteries to drive water splitting. Small 16, 1906735 (2020). https://doi.org/10.1002/smll.201906735
Y. Chen, S. Ji, S. Zhao, W. Chen, J. Dong et al., Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 9, 5422 (2018). https://doi.org/10.1038/s41467-018-07850-2
Y. Zhu, B. Zhang, X. Liu, D.W. Wang, D.S. Su, Unravelling the structure of electrocatalytically active Fe-N complexes in carbon for the oxygen reduction reaction. Angew. Chem. Int. Ed. 53, 10673–10677 (2014). https://doi.org/10.1002/anie.201405314
X. Gong, J. Zhu, J. Li, R. Gao, Q. Zhou et al., Self-templated hierarchically porous carbon nanorods embedded with atomic Fe–N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries. Adv. Funct. Mater. 31, 2008085 (2020). https://doi.org/10.1002/adfm.202008085
L. Ma, S. Chen, Z. Pei, Y. Huang, G. Liang et al., Single-site active iron-based bifunctional oxygen catalyst for a compressible and rechargeable zinc-air battery. ACS Nano 12, 1949–1958 (2018). https://doi.org/10.1021/acsnano.7b09064
Y. Han, Q.K. Li, K. Ye, Y. Luo, J. Jiang et al., Impact of active site density on oxygen reduction reactions using monodispersed Fe–N–C single-atom catalysts. ACS Appl. Mater. Interfaces 12, 15271–15278 (2020). https://doi.org/10.1021/acsami.0c01206
J. Han, X. Meng, L. Lu, J. Bian, Z. Li et al., Single-atom Fe–Nx–C as an efficient electrocatalyst for zinc-air batteries. Adv. Funct. Mater. 29, 1808872 (2019). https://doi.org/10.1002/adfm.201808872
C.C. Hou, L. Zou, L. Sun, K. Zhang, Z. Liu et al., Single-atom iron catalysts on overhang-eave carbon cages for high-performance oxygen reduction reaction. Angew. Chem. Int. Ed. 132, 7454–7459 (2020). https://doi.org/10.1002/anie.202002665
Z. Lin, H. Huang, L. Cheng, Y. Yang, R. Zhang et al., Atomically dispersed Mn within carbon frameworks as high-performance oxygen reduction electrocatalysts for zinc-air battery. ACS Sustain. Chem. Eng. 8, 427–434 (2019). https://doi.org/10.1021/acssuschemeng.9b05713
X. Han, T. Zhang, W. Chen, B. Dong, G. Meng et al., Mn–N4 oxygen reduction electrocatalyst: operando investigation of active sites and high performance in zinc-air battery. Adv. Energy Mater. 11, 2002753 (2020). https://doi.org/10.1002/aenm.202002753
J. Wang, F. Xu, H. Jin, Y. Chen, Y. Wang, Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications. Adv. Mater. 29, 1605838 (2017). https://doi.org/10.1002/adma.201605838
S. Bhattacharyya, C. Das, T.K. Maji, MOF derived carbon based nanocomposite materials as efficient electrocatalysts for oxygen reduction and oxygen and hydrogen evolution reactions. RSC Adv. 8, 26728–26754 (2018). https://doi.org/10.1039/c8ra05102j
S. Liu, Z. Wang, S. Zhou, F. Yu, M. Yu et al., Metal-organic-framework-derived hybrid carbon nanocages as a bifunctional electrocatalyst for oxygen reduction and evolution. Adv. Mater. 29, 1700874 (2017). https://doi.org/10.1002/adma.201700874
X. Chen, N. Wang, K. Shen, Y. Xie, Y. Tan et al., MOF-derived isolated Fe atoms implanted in N-doped 3D hierarchical carbon as an efficient ORR electrocatalyst in both alkaline and acidic media. ACS Appl. Mater. Interfaces 11, 25976–25985 (2019). https://doi.org/10.1021/acsami.9b07436
M. Qiao, Y. Wang, X. Mamat, A. Chen, G. Zou et al., Rational design of hierarchical, porous, Co-supported, N-doped carbon architectures as electrocatalyst for oxygen reduction. Chemsuschem 13, 741–748 (2020). https://doi.org/10.1002/cssc.201903053
M. Zhang, Q. Dai, H. Zheng, M. Chen, L. Dai, Novel MOF-derived Co@N-C bifunctional catalysts for highly efficient Zn-air batteries and water splitting. Adv. Mater. 30, 1705431 (2018). https://doi.org/10.1002/adma.201705431
W. Xie, J. Li, Y. Song, S. Li, J. Li et al., Hierarchical carbon microtube@nanotube core-shell structure for high-performance oxygen electrocatalysis and Zn-air battery. Nano-Micro Lett. 12, 1–14 (2020). https://doi.org/10.1007/s40820-020-00435-z
Q. Niu, B. Chen, J. Guo, J. Nie, X. Guo et al., Flexible, porous, and metal-heteroatom-doped carbon nanofibers as efficient ORR electrocatalysts for Zn-air battery. Nano-Micro Lett. 11, 8 (2019). https://doi.org/10.1007/s40820-019-0238-4
J. Wu, L. Hu, N. Wang, Y. Li, D. Zhao et al., Surface confinement assisted synthesis of nitrogen-rich hollow carbon cages with Co nanoparticles as breathable electrodes for Zn-air batteries. Appl. Catal. B-Environ. 254, 55–65 (2019). https://doi.org/10.1016/j.apcatb.2019.04.064
Q. Lai, J. Zhu, Y. Zhao, Y. Liang, J. He et al., MOF-based metal-doping-induced synthesis of hierarchical porous Cu–N/C oxygen reduction electrocatalysts for Zn-air batteries. Small 13, 1700740 (2017). https://doi.org/10.1002/smll.201700740
X. Zheng, Y. Cao, D. Liu, M. Cai, J. Ding et al., Bimetallic metal-organic-framework/reduced graphene oxide composites as bifunctional electrocatalysts for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 11, 15662–15669 (2019). https://doi.org/10.1021/acsami.9b02859
S.S. Shinde, C.H. Lee, J.-Y. Jung, N.K. Wagh, S.-H. Kim et al., Unveiling dual-linkage 3D hexaiminobenzene metal–organic frameworks towards long-lasting advanced reversible Zn-air batteries. Energy Environ. Sci. 12, 727–738 (2019). https://doi.org/10.1039/c8ee02679c
Z. Wang, H. Jin, T. Meng, K. Liao, W. Meng et al., Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 28, 1802596 (2018). https://doi.org/10.1002/adfm.201802596
A. Pendashteh, S.M.F. Vilela, I. Krivtsov, D. Ávila-Brande, J. Palma et al., Bimetal zeolitic imidazolate framework (ZIF-9) derived nitrogen-doped porous carbon as efficient oxygen electrocatalysts for rechargeable Zn-air batteries. J. Power Sources 427, 299–308 (2019). https://doi.org/10.1016/j.jpowsour.2019.04.074
C. Zhang, H. Yang, D. Zhong, Y. Xu, Y. Wang et al., A yolk-shell structured metal-organic framework with encapsulated iron-porphyrin and its derived bimetallic nitrogen-doped porous carbon for an efficient oxygen reduction reaction. J. Mater. Chem. A 8, 9536–9544 (2020). https://doi.org/10.1039/d0ta00962h
Y. Jiang, Y.P. Deng, R. Liang, J. Fu, R. Gao et al., d-Orbital steered active sites through ligand editing on heterometal imidazole frameworks for rechargeable zinc-air battery. Nat. Commun. 11, 5858 (2020). https://doi.org/10.1038/s41467-020-19709-6
B. Chen, X. He, F. Yin, H. Wang, D.-J. Liu et al., MO-Co@N-doped carbon (M = Zn or Co): vital roles of inactive Zn and highly efficient activity toward oxygen reduction/evolution reactions for rechargeable Zn-air battery. Adv. Funct. Mater. 27, 1700795 (2017). https://doi.org/10.1002/adfm.201700795
T. Wang, Z. Kou, S. Mu, J. Liu, D. He et al., 2D dual-metal zeolitic-imidazolate-framework-(ZIF)-derived bifunctional air electrodes with ultrahigh electrochemical properties for rechargeable zinc-air batteries. Adv. Funct. Mater. 28, 1705048 (2018). https://doi.org/10.1002/adfm.201705048
Y. Xu, Z. Huang, B. Wang, Z. Liang, C. Zhang et al., A two-dimensional multi-shelled metal-organic framework and its derived bimetallic N-doped porous carbon for electrocatalytic oxygen reduction. Chem. Commun. 55, 14805–14808 (2019). https://doi.org/10.1039/c9cc08250f
J. Tan, T. Thomas, J. Liu, L. Yang, L. Pan et al., Rapid microwave-assisted preparation of high-performance bifunctional Ni3Fe/Co-N-C for rechargeable Zn-air battery. Chem. Eng. J. 395, 125151 (2020). https://doi.org/10.1016/j.cej.2020.125151
K. Li, W. Chen, Recent progress in high-entropy alloys for catalysts: synthesis, applications, and prospects. Mater. Today Energy 100638 (2021). https://doi.org/10.1016/j.mtener.2021.100638
C. Li, M. Wu, R. Liu, High-performance bifunctional oxygen electrocatalysts for zinc-air batteries over mesoporous Fe/Co–N–C nanofibers with embedding FeCo alloy nanoparticles. Appl. Catal. B-Environ. 244, 150–158 (2019). https://doi.org/10.1016/j.apcatb.2018.11.039
W. Niu, Y. Yang, Amorphous MOF introduced N-doped graphene: an efficient and versatile electrocatalyst for zinc-air battery and water splitting. ACS Appl. Energy Mater. 1, 2440–2445 (2018). https://doi.org/10.1021/acsaem.8b00594
L. Yang, S. Feng, G. Xu, B. Wei, L. Zhang, Electrospun MOF-based FeCo nanoparticles embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient bifunctional catalyst for oxygen reduction and oxygen evolution reactions in zinc-air batteries. ACS Sustain. Chem. Eng. 7, 5462–5475 (2019). https://doi.org/10.1021/acssuschemeng.8b06624
C.C. Hou, L. Zou, Q. Xu, A hydrangea-like superstructure of open carbon cages with hierarchical porosity and highly active metal sites. Adv. Mater. 31, 1904689 (2019). https://doi.org/10.1002/adma.201904689
M. Wu, B. Guo, A. Nie, R. Liu, Tailored architectures of FeNi alloy embedded in N-doped carbon as bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. J. Colloid Interface Sci. 561, 585–592 (2020). https://doi.org/10.1016/j.jcis.2019.11.033
D. Chen, Z. Li, Y. Zhou, X. Ma, H. Lin et al., Fe3Pt intermetallic nanoparticles anchored on N-doped mesoporous carbon for the highly efficient oxygen reduction reaction. Chem. Commun. 56, 4898–4901 (2020). https://doi.org/10.1039/d0cc00895h
Q. Shao, J. Liu, Q. Wu, Q. Li, H.-G. Wang et al., In situ coupling strategy for anchoring monodisperse Co9S8 nanoparticles on S and N dual-doped graphene as a bifunctional electrocatalyst for rechargeable Zn-air battery. Nano-Micro Lett. 11, 4 (2019). https://doi.org/10.1007/s40820-018-0231-3
Y. Tian, L. Xu, M. Li, D. Yuan, X. Liu et al., Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-air batteries. Nano-Micro Lett. 13, 15 (2020). https://doi.org/10.1007/s40820-020-00526-x
D. Adekoya, S. Qian, X. Gu, W. Wen, D. Li et al., DFT-guided design and fabrication of carbon-nitride-based materials for energy storage devices: a review. Nano-Micro Lett. 13, 44 (2020). https://doi.org/10.1007/s40820-020-00522-1
S.L. Zhang, B.Y. Guan, X.F. Lu, S. Xi, Y. Du et al., Metal atom-doped Co3O4 hierarchical nanoplates for electrocatalytic oxygen evolution. Adv. Mater. 32, 2002235 (2020). https://doi.org/10.1002/adma.202002235
S. Chen, S. Chen, B. Zhang, J. Zhang, Bifunctional oxygen electrocatalysis of N, S-codoped porous carbon with interspersed hollow CoO nanoparticles for rechargeable Zn-air batteries. ACS Appl. Mater. Interfaces 11, 16720–16728 (2019). https://doi.org/10.1021/acsami.9b02819
S. Dou, X. Li, L. Tao, J. Huo, S. Wang, Cobalt nanoparticle-embedded carbon nanotube/porous carbon hybrid derived from MOF-encapsulated Co3O4 for oxygen electrocatalysis. Chem. Commun. 52, 9727–9730 (2016). https://doi.org/10.1039/C6CC05244D
Z. Guo, F. Wang, Y. Xia, J. Li, A.G. Tamirat et al., In situ encapsulation of core-shell-structured Co@Co3O4 into nitrogen-doped carbon polyhedra as a bifunctional catalyst for rechargeable Zn–air batteries. J. Mater. Chem. A 6, 1443–1453 (2018). https://doi.org/10.1039/c7ta09958d
D. Ji, L. Fan, L. Tao, Y. Sun, M. Li et al., The Kirkendall effect for engineering oxygen vacancy of hollow Co3O4 nanoparticles toward high-performance portable zinc-air batteries. Angew. Chem. Int. Ed. 58, 13840–13844 (2019). https://doi.org/10.1002/anie.201908736
H. Liu, Z. Mai, X. Xu, Y. Wang, A Co-MOF-derived oxygen-vacancy-rich Co3O4-based composite as a cathode material for hybrid Zn batteries. Dalton Trans. 49, 2880–2887 (2020). https://doi.org/10.1039/c9dt04682h
N. Sikdar, B. Konkena, J. Masa, W. Schuhmann, T.K. Maji, Co3O4@Co/NCNT nanostructure derived from a dicyanamide-based metal-organic framework as an efficient bi-functional electrocatalyst for oxygen reduction and evolution reactions. Chem. Eur. J. 23, 18049–18056 (2017). https://doi.org/10.1002/chem.201704211
T. Singh, C. Das, N. Bothra, N. Sikdar, S. Das et al., MOF derived Co3O4@Co/NCNT nanocomposite for electrochemical hydrogen evolution, flexible zinc-air batteries, and overall water splitting. Inorg. Chem. 59, 3160–3170 (2020). https://doi.org/10.1021/acs.inorgchem.9b03516
J.-T. Ren, G.-G. Yuan, C.-C. Weng, Z.-Y. Yuan, Rationally designed Co3O4-C nanowire arrays on Ni foam derived from metal organic framework as reversible oxygen evolution electrodes with enhanced performance for Zn-air batteries. ACS Sustain. Chem. Eng. 6, 707–718 (2017). https://doi.org/10.1021/acssuschemeng.7b03034
C. Guan, A. Sumboja, H. Wu, W. Ren, X. Liu et al., Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 29, 1704117 (2017). https://doi.org/10.1002/adma.201704117
Y. Zhong, Z. Pan, X. Wang, J. Yang, Y. Qiu et al., Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 6, 1802243 (2019). https://doi.org/10.1002/advs.201802243
Y.-N. Chen, Y. Guo, H. Cui, Z. Xie, X. Zhang et al., Bifunctional electrocatalysts of MOF-derived Co-N/C on bamboo-like MnO nanowires for high-performance liquid- and solid-state Zn-air batteries. J. Mater. Chem. A 6, 9716–9722 (2018). https://doi.org/10.1039/c8ta01859f
X.F. Lu, Y. Chen, S. Wang, S. Gao, X.W.D. Lou, Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv. Mater. 31, 1902339 (2019). https://doi.org/10.1002/adma.201902339
H. Zou, B. He, P. Kuang, J. Yu, K. Fan, Metal-organic framework-derived nickel-cobalt sulfide on ultrathin Mxene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 10, 22311–22319 (2018). https://doi.org/10.1021/acsami.8b06272
S. Liu, X. Zhang, G. Wang, Y. Zhang, H. Zhang, High-efficiency Co/CoxSy@S, N-codoped porous carbon electrocatalysts fabricated from controllably grown sulfur- and nitrogen-including cobalt-based MOFs for rechargeable zinc-air batteries. ACS Appl. Mater. Interfaces 9, 34269–34278 (2017). https://doi.org/10.1021/acsami.7b11101
J.-Y. Zhao, R. Wang, S. Wang, Y.-R. Lv, H. Xu et al., Metal-organic framework-derived Co9S8 embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. J. Mater. Chem. A 7, 7389–7395 (2019). https://doi.org/10.1039/c8ta12116h
I.S. Amiinu, Z. Pu, X. Liu, K.A. Owusu, H.G.R. Monestel et al., Multifunctional Mo-N/C@MoS2 electrocatalysts for HER, OER, ORR, and Zn-air batteries. Adv. Funct. Mater. 27, 1702300 (2017). https://doi.org/10.1002/adfm.201702300
H. Liu, J. Guan, S. Yang, Y. Yu, R. Shao et al., Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv. Mater. 32, 2003649 (2020). https://doi.org/10.1002/adma.202003649
D.D. Babu, Y. Huang, G. Anandhababu, M.A. Ghausi, Y. Wang, Mixed-metal-organic framework self-template synthesis of porous hybrid oxyphosphides for efficient oxygen evolution reaction. ACS Appl. Mater. Interfaces 9, 38621–38628 (2017). https://doi.org/10.1021/acsami.7b13359
Y. Hao, Y. Xu, W. Liu, X. Sun, Co/CoP embedded in a hairy nitrogen-doped carbon polyhedron as an advanced tri-functional electrocatalyst. Mater. Horizons 5, 108–115 (2018). https://doi.org/10.1039/c7mh00706j
Y.-S. Wei, M. Zhang, M. Kitta, Z. Liu, S. Horike et al., A single-crystal open-capsule metal-organic framework. J. Am. Chem. Soc. 141, 7906–7916 (2019). https://doi.org/10.1021/jacs.9b02417
C.-L. Zhang, J.-T. Liu, H. Li, L. Qin, F.-H. Cao et al., The controlled synthesis of Fe3C/Co/N-doped hierarchically structured carbon nanotubes for enhanced electrocatalysis. Appl. Catal. B-Environ. 261, 118224 (2020). https://doi.org/10.1016/j.apcatb.2019.118224
J.-T. Liu, Y. Xie, Q. Gao, F.-H. Cao, L. Qin et al., 1D MOF-derived N-doped porous carbon nanofibers encapsulated with Fe3C nanoparticles for efficient bifunctional electrocatalysis. Eur. J. Inorg. Chem. 2020, 581–589 (2020). https://doi.org/10.1002/ejic.201901244
G. Chen, T. Wang, P. Liu, Z. Liao, H. Zhong et al., Promoted oxygen reduction kinetics on nitrogen-doped hierarchically porous carbon by engineering proton-feeding centers. Energy Environ. Sci. 13, 2849–2855 (2020). https://doi.org/10.1039/d0ee01613f
F. Meng, H. Zhong, D. Bao, J. Yan, X. Zhang, In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn-air batteries. J. Am. Chem. Soc. 138, 10226–10231 (2016). https://doi.org/10.1021/jacs.6b05046
Y. Wang, Q. Cao, C. Guan, C. Cheng, Recent advances on self-supported arrayed bifunctional oxygen electrocatalysts for flexible solid-state Zn-air batteries. Small 16, 2002902 (2020). https://doi.org/10.1002/smll.202002902
C. Guan, A. Sumboja, W. Zang, Y. Qian, H. Zhang et al., Decorating Co/CoNx nanoparticles in nitrogen-doped carbon nanoarrays for flexible and rechargeable zinc-air batteries. Energy Stor. Mater. 16, 243–250 (2019). https://doi.org/10.1016/j.ensm.2018.06.001
Q. Xu, H. Jiang, Y. Li, D. Liang, Y. Hu et al., In-situ enriching active sites on co-doped Fe–Co4N@N–C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B-Environ. 256, 117893 (2019). https://doi.org/10.1016/j.apcatb.2019.117893
T. Meng, J. Qin, S. Wang, D. Zhao, B. Mao et al., In situ coupling of Co0.85Se and N-doped carbon via one-step selenization of metal–organic frameworks as a trifunctional catalyst for overall water splitting and Zn-air batteries. J. Mater. Chem. A 5, 7001–7014 (2017). https://doi.org/10.1039/c7ta01453h
H. Wu, J. Wang, J. Yan, Z. Wu, W. Jin, MOF-derived two-dimensional N-doped carbon nanosheets coupled with Co–Fe–P–Se as efficient bifunctional OER/ORR catalysts. Nanoscale 11, 20144–20150 (2019). https://doi.org/10.1039/c9nr05744g
Q. Wang, L. Shang, R. Shi, X. Zhang, Y. Zhao et al., NiFe layered double hydroxide nanoparticles on Co, N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 7, 1700467 (2017). https://doi.org/10.1002/aenm.201700467
Y. Qian, T. An, E. Sarnello, Z. Liu, T. Li et al., Janus electrocatalysts containing MOF-derived carbon networks and NiFe-LDH nanoplates for rechargeable zinc-air batteries. ACS Appl. Energy Mater. 2, 1784–1792 (2019). https://doi.org/10.1021/acsaem.8b01923
D. Chen, X. Chen, Z. Cui, G. Li, B. Han et al., Dual-active-site hierarchical architecture containing NiFe-LDH and ZIF-derived carbon-based framework composite as efficient bifunctional oxygen electrocatalysts for durable rechargeable Zn-air batteries. Chem. Eng. J. 399, 125718 (2020). https://doi.org/10.1016/j.cej.2020.125718
J.P. Guerrette, S.J. Percival, B. Zhang, Fluorescence coupling for direct imaging of electrocatalytic heterogeneity. J. Am. Chem. Soc. 135, 855–861 (2013). https://doi.org/10.1021/ja310401b
J.A. Haber, Y. Cai, S. Jung, C. Xiang, S. Mitrovic et al., Discovering Ce-rich oxygen evolution catalysts, from high throughput screening to water electrolysis. Energy Environ. Sci. 7, 682–688 (2014). https://doi.org/10.1039/c3ee43683g
Z.-Q. Cao, M.-Z. Wu, H.-B. Hu, G.-J. Liang, C.-Y. Zhi, Monodisperse Co9S8 nanoparticles in situ embedded within N, S-codoped honeycomb-structured porous carbon for bifunctional oxygen electrocatalyst in a rechargeable Zn-air battery. NPG Asia Mater. 10, 670–684 (2018). https://doi.org/10.1038/s41427-018-0063-0
J.-C. Dong, X.-G. Zhang, V. Briega-Martos, X. Jin, J. Yang et al., In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2018). https://doi.org/10.1038/s41560-018-0292-z
S. Zhao, C. Tan, C.-T. He, P. An, F. Xie et al., Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020). https://doi.org/10.1038/s41560-020-00709-1