Droplets Self-Draining on the Horizontal Slippery Surface for Real-Time Anti-/De-Icing
Corresponding Author: Lei Jiang
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 60
Abstract
Undesired ice accumulation on infrastructure and transportation systems leads to catastrophic events and significant economic losses. Although various anti-icing surfaces with photothermal effects can initially prevent icing, any thawy droplets remaining on the horizontal surface can quickly re-freezing once the light diminishes. To address these challenges, we have developed a self-draining slippery surface (SDSS) that enables the thawy droplets to self-remove on the horizontal surface, thereby facilitating real-time anti-icing with the aid of sunlight (100 mW cm−2). This is achieved by sandwiching a thin pyroelectric layer between slippery surface and photothermal film. Due to the synergy between the photothermal and pyroelectric layers, the SDSS not only maintains a high surface temperature of 19.8 ± 2.2 °C at the low temperature ( −20.0 ± 1.0 °C), but also generates amount of charge through thermoelectric coupling. Thus, as cold droplets dropped on the SDSS, electrostatic force pushes the droplets off the charged surface because of the charge transfer mechanism. Even if the surface freezes overnight, the ice can melt and drain off the SDSS within 10 min of exposure to sunlight at −20.0 ± 1.0 °C, leaving a clean surface. This work provides a new perspective on the anti-icing system in the real-world environments.
Highlights:
1 Self-draining slippery surface with light-thermal-electric synergy were fabricated to auto anti/de-icing even on horizontal devices.
2 The synergy of photothermal conversion and thermoelectric coupling enables the ice melting, and self-draining of thawy droplets at the same time, avoiding the risk of re-freezing.
3 The processes of no matter in ice melting or droplets repulsion on horizontal surface need no additional energy input, just with assistance of sunlight.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- F. Chu, S. Li, C. Zhao, Y. Feng, Y. Lin et al., Interfacial ice sprouting during salty water droplet freezing. Nat. Commun. 15(1), 2249 (2024). https://doi.org/10.1038/s41467-024-46518-y
- F. Chu, Z. Hu, Y. Feng, N.-C. Lai, X. Wu et al., Advanced anti-icing strategies and technologies by macrostructured photothermal storage superhydrophobic surfaces. Adv. Mater. 36(31), 2402897 (2024). https://doi.org/10.1002/adma.202402897
- L. Liu, S. Chen, Y. Hu, W. Pan, T. Dong et al., Anti-/deicing membranes with damage detection and fast healing. Adv. Funct. Mater. 34(40), 2404760 (2024). https://doi.org/10.1002/adfm.202404760
- Z. Wang, Z. Zhao, G. Wen, Y. Zhu, J. Chen et al., Fracture-promoted ultraslippery ice detachment interface for long-lasting anti-icing. ACS Nano 17(14), 13724–13733 (2023). https://doi.org/10.1021/acsnano.3c03023
- W. Niu, G.Y. Chen, H. Xu, X. Liu, J. Sun, Highly transparent and self-healable solar thermal anti-/deicing surfaces: when ultrathin MXene multilayers marry a solid slippery self-cleaning coating. Adv. Mater. 34(10), 2108232 (2022). https://doi.org/10.1002/adma.202108232
- Y. Wu, L. Dong, X. Shu, Y. Yang, P. Feng et al., Recent advancements in photothermal anti-icing/deicing materials. Chem. Eng. J. 469, 143924 (2023). https://doi.org/10.1016/j.cej.2023.143924
- P. Guo, R. Jin, Z. Teng, K. Liu, L. Jiang et al., Photoelectric synergy solid slippery surface for all-day contactless evaporation. Chem. Eng. J. 497, 154784 (2024). https://doi.org/10.1016/j.cej.2024.154784
- G. Wang, F. Ma, L. Zhu, P. Zhu, L. Tang et al., Bioinspired slippery surfaces for liquid manipulation from tiny droplet to bulk fluid. Adv. Mater. 36(37), 2311489 (2024). https://doi.org/10.1002/adma.202311489
- J. Shi, S. Ke, F. Wang, W. Wang, C. Wang, Recent advances in photothermal anti-/de-icing materials. Chem. Eng. J. 481, 148265 (2024). https://doi.org/10.1016/j.cej.2023.148265
- Y. Ru, R. Fang, Z. Gu, L. Jiang, M. Liu, Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem. Int. Ed. 59(29), 11876–11880 (2020). https://doi.org/10.1002/anie.202004122
- Z. Zhang, X.-Y. Liu, Control of ice nucleation: freezing and antifreeze strategies. Chem. Soc. Rev. 47(18), 7116–7139 (2018). https://doi.org/10.1039/C8CS00626A
- T. Hao, D. Wang, X. Chen, A. Jazzar, P. Shi et al., Photothermal strategies for ice accretion prevention and ice removal. Appl. Phys. Rev. 10(2), 021317 (2023). https://doi.org/10.1063/5.0148288
- S. Xuan, L. Zhuo, G. Li, Q. Zeng, J. Liu et al., Micro/nano hierarchical crater-like structure surface with mechanical durability and low-adhesion for anti-icing/deicing. Small 20(43), 2404979 (2024). https://doi.org/10.1002/smll.202404979
- Z. Ji, X. Huang, X. Wang, H. Sheng, L. Tian et al., Local mechanical sintered thermal liquid bridge for anti-/ de-icing surface with thermal management and temperature warning. Chem. Eng. J. 512, 162337 (2025). https://doi.org/10.1016/j.cej.2025.162337
- M. Hou, Z. Jiang, W. Sun, Z. Chen, F. Chu et al., Efficient photothermal anti-/deicing enabled by 3D Cu(2–x) S encapsulated phase change materials mixed superhydrophobic coatings. Adv. Mater. 36(3), e2310312 (2024). https://doi.org/10.1002/adma.202310312
- S. Wu, Y. Du, Y. Alsaid, D. Wu, M. Hua et al., Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. U.S.A. 117(21), 11240–11246 (2020). https://doi.org/10.1073/pnas.2001972117
- C. Yang, Z. Li, Y. Huang, K. Wang, Y. Long et al., Continuous roll-to-roll production of carbon nanops from candle soot. Nano Lett. 21(7), 3198–3204 (2021). https://doi.org/10.1021/acs.nanolett.1c00452
- F. Chen, Y. Wang, Y. Tian, D. Zhang, J. Song et al., Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 51(20), 8476–8583 (2022). https://doi.org/10.1039/D0CS01033B
- S. Cheng, P. Guo, X. Wang, P. Che, X. Han et al., Photothermal slippery surface showing rapid self-repairing and exceptional anti-icing/deicing property. Chem. Eng. J. 431, 133411 (2022). https://doi.org/10.1016/j.cej.2021.133411
- L. Wang, D. Li, G. Jiang, X. Hu, R. Peng et al., Dual-energy-barrier stable superhydrophobic structures for long icing delay. ACS Nano 18(19), 12489–12502 (2024). https://doi.org/10.1021/acsnano.4c02051
- J. Yang, G. Liu, K. Zhang, P. Li, H. Yan et al., Sunflower-inspired superhydrophobic surface with composite structured microcone array for anisotropy liquid/ice manipulation. Small 20(52), 2403420 (2024). https://doi.org/10.1002/smll.202403420
- L. Wang, Q. Gong, S. Zhan, L. Jiang, Y. Zheng, Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 28(35), 7729–7735 (2016). https://doi.org/10.1002/adma.201602480
- X. Wang, X. Huang, L. Tian, Z. Ji, H. Sheng et al., Hyperbranched vanillin-based composite coating: achieve efficient icephobicity in high humidity and dynamic environments. Adv. Funct. Mater. 35(9), 2415952 (2025). https://doi.org/10.1002/adfm.202415952
- M. Zhou, L. Zhang, L. Zhong, M. Chen, L. Zhu et al., Robust photothermal icephobic surface with mechanical durability of multi-bioinspired structures. Adv. Mater. 36(3), 2305322 (2024). https://doi.org/10.1002/adma.202305322
- Y. Su, J. He, Rational design of highly comprehensive liquid-like coatings with enhanced transparency, concerted multi-function, and excellent durability: a ternary cooperative strategy. Adv. Mater. 36(35), 2405767 (2024). https://doi.org/10.1002/adma.202405767
- W. Pan, Q. Wang, J. Ma, W. Xu, J. Sun et al., Solid-like slippery coating with highly comprehensive performance. Adv. Funct. Mater. 33(31), 2302311 (2023). https://doi.org/10.1002/adfm.202302311
- L. Zhou, A. Liu, L. Zhou, Y. Li, J. Kang et al., Facilely fabricated self-lubricated photothermal coating with long-term durability and external-replenishing property for anti-icing/deicing. ACS Appl. Mater. Interfaces 14(6), 8537–8548 (2022). https://doi.org/10.1021/acsami.1c21220
- H. Zhan, Y. Xia, Y. Liu, H. Sun, W. Ge et al., Sustainable droplet manipulation on ultrafast lubricant self-mediating photothermal slippery surfaces. Adv. Funct. Mater. 33(9), 2211317 (2023). https://doi.org/10.1002/adfm.202211317
- L. Wang, C. Zhang, Y. Zhang, C. Shen, Z. Xin et al., Bionic fluorine-free multifunctional photothermal surface for anti/de/driving-icing and droplet manipulation. Adv. Sci. 11(46), 2409631 (2024). https://doi.org/10.1002/advs.202409631
- Y. Zhuo, J. Chen, S. Xiao, T. Li, F. Wang et al., Gels as emerging anti-icing materials: a mini review. Mater. Horiz. 8(12), 3266–3280 (2021). https://doi.org/10.1039/D1MH00910A
- J. Pyeon, S.M. Park, J. Kim, J.-H. Kim, Y.-J. Yoon et al., Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing. Nat. Commun. 14(1), 8096 (2023). https://doi.org/10.1038/s41467-023-43511-9
- S. Li, Y. Hou, M. Kappl, W. Steffen, J. Liu et al., Vapor lubrication for reducing water and ice adhesion on poly(dimethylsiloxane) brushes. Adv. Mater. 34(34), 2203242 (2022). https://doi.org/10.1002/adma.202203242
- X. Cheng, R. Zhao, S. Wang, J. Meng, Liquid-like surfaces with enhanced de-wettability and durability: from structural designs to potential applications. Adv. Mater. 36(38), 2407315 (2024). https://doi.org/10.1002/adma.202407315
- L. Wang, Z. Tian, G. Jiang, X. Luo, C. Chen et al., Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 13(1), 378 (2022). https://doi.org/10.1038/s41467-022-28036-x
- X. Yan, S.C.Y. Au, S.C. Chan, Y.L. Chan, N.C. Leung et al., Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures. Nat. Commun. 15(1), 1567 (2024). https://doi.org/10.1038/s41467-024-45928-2
- H. Zhang, G. Zhao, S. Wu, Y. Alsaid, W. Zhao et al., Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proc. Natl. Acad. Sci. U.S.A. 118(18), e2100978118 (2021). https://doi.org/10.1073/pnas.2100978118
- J. Jiang, Y. Shen, Y. Xu, Z. Wang, J. Tao et al., An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation. Nat. Commun. 15(1), 777 (2024). https://doi.org/10.1038/s41467-024-45078-5
- X. Tang, W. Li, L. Wang, Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 16(10), 1106–1112 (2021). https://doi.org/10.1038/s41565-021-00945-w
- S. Tan, X. Han, Y. Sun, P. Guo, X. Sun et al., Light-induced dynamic manipulation of liquid metal droplets in the ambient atmosphere. ACS Nano 18(11), 8484–8495 (2024). https://doi.org/10.1021/acsnano.4c00690
- Q. Sun, D. Wang, Y. Li, J. Zhang, S. Ye et al., Surface charge printing for programmed droplet transport. Nat. Mater. 18(9), 936–941 (2019). https://doi.org/10.1038/s41563-019-0440-2
- X. Han, R. Jin, Y. Sun, K. Han, P. Che et al., Infinite self-propulsion of circularly on/discharged droplets. Adv. Mater. 36(18), 2311729 (2024). https://doi.org/10.1002/adma.202311729
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- X. Han, S. Tan, R. Jin, L. Jiang, L. Heng, Noncontact charge shielding knife for liquid microfluidics. J. Am. Chem. Soc. 145(11), 6420–6427 (2023). https://doi.org/10.1021/jacs.2c13674
- S.-Y. Zhang, J.-G. Guo, Long range self-transport of liquid droplets driven by electric field and roughness gradient. Chem. Eng. J. 499, 156630 (2024). https://doi.org/10.1016/j.cej.2024.156630
- F. Wang, Y. Sun, G. Zong, W. Liang, B. Yang et al., Electrothermally assisted surface charge density gradient printing to drive droplet transport. ACS Appl. Mater. Interfaces 14(2), 3526–3535 (2022). https://doi.org/10.1021/acsami.1c21452
- H. Zhan, Z. Yuan, Y. Li, L. Zhang, H. Liang et al., Versatile bubble maneuvering on photopyroelectric slippery surfaces. Nat. Commun. 14(1), 6158 (2023). https://doi.org/10.1038/s41467-023-41918-y
- W. Li, X. Tang, L. Wang, Photopyroelectric microfluidics. Sci. Adv. 6(38), eabc1693 (2020). https://doi.org/10.1126/sciadv.abc1693
- F. Wang, M. Liu, C. Liu, Q. Zhao, T. Wang et al., Light-induced charged slippery surfaces. Sci. Adv. 8(27), eabp9369 (2022). https://doi.org/10.1126/sciadv.abp9369
- X. Han, S. Tan, Q. Wang, X. Zuo, L. Heng et al., Noncontact microfluidics of highly viscous liquids for accurate self-splitting and pipetting. Adv. Mater. 36(27), 2402779 (2024). https://doi.org/10.1002/adma.202402779
References
F. Chu, S. Li, C. Zhao, Y. Feng, Y. Lin et al., Interfacial ice sprouting during salty water droplet freezing. Nat. Commun. 15(1), 2249 (2024). https://doi.org/10.1038/s41467-024-46518-y
F. Chu, Z. Hu, Y. Feng, N.-C. Lai, X. Wu et al., Advanced anti-icing strategies and technologies by macrostructured photothermal storage superhydrophobic surfaces. Adv. Mater. 36(31), 2402897 (2024). https://doi.org/10.1002/adma.202402897
L. Liu, S. Chen, Y. Hu, W. Pan, T. Dong et al., Anti-/deicing membranes with damage detection and fast healing. Adv. Funct. Mater. 34(40), 2404760 (2024). https://doi.org/10.1002/adfm.202404760
Z. Wang, Z. Zhao, G. Wen, Y. Zhu, J. Chen et al., Fracture-promoted ultraslippery ice detachment interface for long-lasting anti-icing. ACS Nano 17(14), 13724–13733 (2023). https://doi.org/10.1021/acsnano.3c03023
W. Niu, G.Y. Chen, H. Xu, X. Liu, J. Sun, Highly transparent and self-healable solar thermal anti-/deicing surfaces: when ultrathin MXene multilayers marry a solid slippery self-cleaning coating. Adv. Mater. 34(10), 2108232 (2022). https://doi.org/10.1002/adma.202108232
Y. Wu, L. Dong, X. Shu, Y. Yang, P. Feng et al., Recent advancements in photothermal anti-icing/deicing materials. Chem. Eng. J. 469, 143924 (2023). https://doi.org/10.1016/j.cej.2023.143924
P. Guo, R. Jin, Z. Teng, K. Liu, L. Jiang et al., Photoelectric synergy solid slippery surface for all-day contactless evaporation. Chem. Eng. J. 497, 154784 (2024). https://doi.org/10.1016/j.cej.2024.154784
G. Wang, F. Ma, L. Zhu, P. Zhu, L. Tang et al., Bioinspired slippery surfaces for liquid manipulation from tiny droplet to bulk fluid. Adv. Mater. 36(37), 2311489 (2024). https://doi.org/10.1002/adma.202311489
J. Shi, S. Ke, F. Wang, W. Wang, C. Wang, Recent advances in photothermal anti-/de-icing materials. Chem. Eng. J. 481, 148265 (2024). https://doi.org/10.1016/j.cej.2023.148265
Y. Ru, R. Fang, Z. Gu, L. Jiang, M. Liu, Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem. Int. Ed. 59(29), 11876–11880 (2020). https://doi.org/10.1002/anie.202004122
Z. Zhang, X.-Y. Liu, Control of ice nucleation: freezing and antifreeze strategies. Chem. Soc. Rev. 47(18), 7116–7139 (2018). https://doi.org/10.1039/C8CS00626A
T. Hao, D. Wang, X. Chen, A. Jazzar, P. Shi et al., Photothermal strategies for ice accretion prevention and ice removal. Appl. Phys. Rev. 10(2), 021317 (2023). https://doi.org/10.1063/5.0148288
S. Xuan, L. Zhuo, G. Li, Q. Zeng, J. Liu et al., Micro/nano hierarchical crater-like structure surface with mechanical durability and low-adhesion for anti-icing/deicing. Small 20(43), 2404979 (2024). https://doi.org/10.1002/smll.202404979
Z. Ji, X. Huang, X. Wang, H. Sheng, L. Tian et al., Local mechanical sintered thermal liquid bridge for anti-/ de-icing surface with thermal management and temperature warning. Chem. Eng. J. 512, 162337 (2025). https://doi.org/10.1016/j.cej.2025.162337
M. Hou, Z. Jiang, W. Sun, Z. Chen, F. Chu et al., Efficient photothermal anti-/deicing enabled by 3D Cu(2–x) S encapsulated phase change materials mixed superhydrophobic coatings. Adv. Mater. 36(3), e2310312 (2024). https://doi.org/10.1002/adma.202310312
S. Wu, Y. Du, Y. Alsaid, D. Wu, M. Hua et al., Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. U.S.A. 117(21), 11240–11246 (2020). https://doi.org/10.1073/pnas.2001972117
C. Yang, Z. Li, Y. Huang, K. Wang, Y. Long et al., Continuous roll-to-roll production of carbon nanops from candle soot. Nano Lett. 21(7), 3198–3204 (2021). https://doi.org/10.1021/acs.nanolett.1c00452
F. Chen, Y. Wang, Y. Tian, D. Zhang, J. Song et al., Robust and durable liquid-repellent surfaces. Chem. Soc. Rev. 51(20), 8476–8583 (2022). https://doi.org/10.1039/D0CS01033B
S. Cheng, P. Guo, X. Wang, P. Che, X. Han et al., Photothermal slippery surface showing rapid self-repairing and exceptional anti-icing/deicing property. Chem. Eng. J. 431, 133411 (2022). https://doi.org/10.1016/j.cej.2021.133411
L. Wang, D. Li, G. Jiang, X. Hu, R. Peng et al., Dual-energy-barrier stable superhydrophobic structures for long icing delay. ACS Nano 18(19), 12489–12502 (2024). https://doi.org/10.1021/acsnano.4c02051
J. Yang, G. Liu, K. Zhang, P. Li, H. Yan et al., Sunflower-inspired superhydrophobic surface with composite structured microcone array for anisotropy liquid/ice manipulation. Small 20(52), 2403420 (2024). https://doi.org/10.1002/smll.202403420
L. Wang, Q. Gong, S. Zhan, L. Jiang, Y. Zheng, Robust anti-icing performance of a flexible superhydrophobic surface. Adv. Mater. 28(35), 7729–7735 (2016). https://doi.org/10.1002/adma.201602480
X. Wang, X. Huang, L. Tian, Z. Ji, H. Sheng et al., Hyperbranched vanillin-based composite coating: achieve efficient icephobicity in high humidity and dynamic environments. Adv. Funct. Mater. 35(9), 2415952 (2025). https://doi.org/10.1002/adfm.202415952
M. Zhou, L. Zhang, L. Zhong, M. Chen, L. Zhu et al., Robust photothermal icephobic surface with mechanical durability of multi-bioinspired structures. Adv. Mater. 36(3), 2305322 (2024). https://doi.org/10.1002/adma.202305322
Y. Su, J. He, Rational design of highly comprehensive liquid-like coatings with enhanced transparency, concerted multi-function, and excellent durability: a ternary cooperative strategy. Adv. Mater. 36(35), 2405767 (2024). https://doi.org/10.1002/adma.202405767
W. Pan, Q. Wang, J. Ma, W. Xu, J. Sun et al., Solid-like slippery coating with highly comprehensive performance. Adv. Funct. Mater. 33(31), 2302311 (2023). https://doi.org/10.1002/adfm.202302311
L. Zhou, A. Liu, L. Zhou, Y. Li, J. Kang et al., Facilely fabricated self-lubricated photothermal coating with long-term durability and external-replenishing property for anti-icing/deicing. ACS Appl. Mater. Interfaces 14(6), 8537–8548 (2022). https://doi.org/10.1021/acsami.1c21220
H. Zhan, Y. Xia, Y. Liu, H. Sun, W. Ge et al., Sustainable droplet manipulation on ultrafast lubricant self-mediating photothermal slippery surfaces. Adv. Funct. Mater. 33(9), 2211317 (2023). https://doi.org/10.1002/adfm.202211317
L. Wang, C. Zhang, Y. Zhang, C. Shen, Z. Xin et al., Bionic fluorine-free multifunctional photothermal surface for anti/de/driving-icing and droplet manipulation. Adv. Sci. 11(46), 2409631 (2024). https://doi.org/10.1002/advs.202409631
Y. Zhuo, J. Chen, S. Xiao, T. Li, F. Wang et al., Gels as emerging anti-icing materials: a mini review. Mater. Horiz. 8(12), 3266–3280 (2021). https://doi.org/10.1039/D1MH00910A
J. Pyeon, S.M. Park, J. Kim, J.-H. Kim, Y.-J. Yoon et al., Plasmonic metasurfaces of cellulose nanocrystal matrices with quadrants of aligned gold nanorods for photothermal anti-icing. Nat. Commun. 14(1), 8096 (2023). https://doi.org/10.1038/s41467-023-43511-9
S. Li, Y. Hou, M. Kappl, W. Steffen, J. Liu et al., Vapor lubrication for reducing water and ice adhesion on poly(dimethylsiloxane) brushes. Adv. Mater. 34(34), 2203242 (2022). https://doi.org/10.1002/adma.202203242
X. Cheng, R. Zhao, S. Wang, J. Meng, Liquid-like surfaces with enhanced de-wettability and durability: from structural designs to potential applications. Adv. Mater. 36(38), 2407315 (2024). https://doi.org/10.1002/adma.202407315
L. Wang, Z. Tian, G. Jiang, X. Luo, C. Chen et al., Spontaneous dewetting transitions of droplets during icing & melting cycle. Nat. Commun. 13(1), 378 (2022). https://doi.org/10.1038/s41467-022-28036-x
X. Yan, S.C.Y. Au, S.C. Chan, Y.L. Chan, N.C. Leung et al., Unraveling the role of vaporization momentum in self-jumping dynamics of freezing supercooled droplets at reduced pressures. Nat. Commun. 15(1), 1567 (2024). https://doi.org/10.1038/s41467-024-45928-2
H. Zhang, G. Zhao, S. Wu, Y. Alsaid, W. Zhao et al., Solar anti-icing surface with enhanced condensate self-removing at extreme environmental conditions. Proc. Natl. Acad. Sci. U.S.A. 118(18), e2100978118 (2021). https://doi.org/10.1073/pnas.2100978118
J. Jiang, Y. Shen, Y. Xu, Z. Wang, J. Tao et al., An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation. Nat. Commun. 15(1), 777 (2024). https://doi.org/10.1038/s41467-024-45078-5
X. Tang, W. Li, L. Wang, Furcated droplet motility on crystalline surfaces. Nat. Nanotechnol. 16(10), 1106–1112 (2021). https://doi.org/10.1038/s41565-021-00945-w
S. Tan, X. Han, Y. Sun, P. Guo, X. Sun et al., Light-induced dynamic manipulation of liquid metal droplets in the ambient atmosphere. ACS Nano 18(11), 8484–8495 (2024). https://doi.org/10.1021/acsnano.4c00690
Q. Sun, D. Wang, Y. Li, J. Zhang, S. Ye et al., Surface charge printing for programmed droplet transport. Nat. Mater. 18(9), 936–941 (2019). https://doi.org/10.1038/s41563-019-0440-2
X. Han, R. Jin, Y. Sun, K. Han, P. Che et al., Infinite self-propulsion of circularly on/discharged droplets. Adv. Mater. 36(18), 2311729 (2024). https://doi.org/10.1002/adma.202311729
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578(7795), 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
X. Han, S. Tan, R. Jin, L. Jiang, L. Heng, Noncontact charge shielding knife for liquid microfluidics. J. Am. Chem. Soc. 145(11), 6420–6427 (2023). https://doi.org/10.1021/jacs.2c13674
S.-Y. Zhang, J.-G. Guo, Long range self-transport of liquid droplets driven by electric field and roughness gradient. Chem. Eng. J. 499, 156630 (2024). https://doi.org/10.1016/j.cej.2024.156630
F. Wang, Y. Sun, G. Zong, W. Liang, B. Yang et al., Electrothermally assisted surface charge density gradient printing to drive droplet transport. ACS Appl. Mater. Interfaces 14(2), 3526–3535 (2022). https://doi.org/10.1021/acsami.1c21452
H. Zhan, Z. Yuan, Y. Li, L. Zhang, H. Liang et al., Versatile bubble maneuvering on photopyroelectric slippery surfaces. Nat. Commun. 14(1), 6158 (2023). https://doi.org/10.1038/s41467-023-41918-y
W. Li, X. Tang, L. Wang, Photopyroelectric microfluidics. Sci. Adv. 6(38), eabc1693 (2020). https://doi.org/10.1126/sciadv.abc1693
F. Wang, M. Liu, C. Liu, Q. Zhao, T. Wang et al., Light-induced charged slippery surfaces. Sci. Adv. 8(27), eabp9369 (2022). https://doi.org/10.1126/sciadv.abp9369
X. Han, S. Tan, Q. Wang, X. Zuo, L. Heng et al., Noncontact microfluidics of highly viscous liquids for accurate self-splitting and pipetting. Adv. Mater. 36(27), 2402779 (2024). https://doi.org/10.1002/adma.202402779