Ionic Liquid-Enhanced Assembly of Nanomaterials for Highly Stable Flexible Transparent Electrodes
Corresponding Author: Lei Jiang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 140
Abstract
The controlled assembly of nanomaterials has demonstrated significant potential in advancing technological devices. However, achieving highly efficient and low-loss assembly technique for nanomaterials, enabling the creation of hierarchical structures with distinctive functionalities, remains a formidable challenge. Here, we present a method for nanomaterial assembly enhanced by ionic liquids, which enables the fabrication of highly stable, flexible, and transparent electrodes featuring an organized layered structure. The utilization of hydrophobic and nonvolatile ionic liquids facilitates the production of stable interfaces with water, effectively preventing the sedimentation of 1D/2D nanomaterials assembled at the interface. Furthermore, the interfacially assembled nanomaterial monolayer exhibits an alternate self-climbing behavior, enabling layer-by-layer transfer and the formation of a well-ordered MXene-wrapped silver nanowire network film. The resulting composite film not only demonstrates exceptional photoelectric performance with a sheet resistance of 9.4 Ω sq−1 and 93% transmittance, but also showcases remarkable environmental stability and mechanical flexibility. Particularly noteworthy is its application in transparent electromagnetic interference shielding materials and triboelectric nanogenerator devices. This research introduces an innovative approach to manufacture and tailor functional devices based on ordered nanomaterials.
Highlights:
1 We present a method that utilizes ionic liquid-enhanced nanomaterial assembly to fabricate highly stable and large-area MXene-silver nanowire electrodes with ordered layered structures.
2 This approach emphasizes the use of hydrophobic and nonvolatile ionic liquids, which form stable interfaces with water by reducing interface energy, preventing the sedimentation loss of nanomaterials during assembly.
3 The prepared electrodes not only exhibit excellent optoelectronic properties (9.4 Ω sq−1 sheet resistance and 93% transmittance), but also have exceptional antioxidant capacity.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021). https://doi.org/10.1002/adfm.202010155
- S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan et al., Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11, 4346–4357 (2017). https://doi.org/10.1021/acsnano.7b01714
- X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
- J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921–9926 (2017). https://doi.org/10.1021/jacs.7b03227
- H. Kim, M. Seo, J.-W. Kim, D.-K. Kwon, S.-E. Choi et al., Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 29, 1901061 (2019). https://doi.org/10.1002/adfm.201901061
- C. Qu, X. Yu, Y. Xu, S. Zhang, H. Liu et al., A sensing and display system on wearable fabric based on patterned silver nanowires. Nano Energy 104, 107965 (2022). https://doi.org/10.1016/j.nanoen.2022.107965
- L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 434, 134751 (2022). https://doi.org/10.1016/j.cej.2022.134751
- W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao et al., Highly conductive, air-stable silver Nanowire@Iongel composite films toward flexible transparent electrodes. Adv. Mater. 28, 7167–7172 (2016). https://doi.org/10.1002/adma.201600358
- J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang et al., Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, 2874–2878 (2012). https://doi.org/10.1002/adma.201200055
- H.-S. Lim, J.-M. Oh, J.-W. Kim, One-way continuous deposition of monolayer MXene nanosheets for the formation of two confronting transparent electrodes in flexible capacitive photodetector. ACS Appl. Mater. Interfaces 13, 25400–25409 (2021). https://doi.org/10.1021/acsami.1c05769
- H.-M. Sim, H.-K. Kim, Highly flexible Ag nanowire network covered by a graphene oxide nanosheet for high-performance flexible electronics and anti-bacterial applications. Sci. Technol. Adv. Mater. 22, 794–807 (2021). https://doi.org/10.1080/14686996.2021.1963640
- D. Wen, X. Wang, L. Liu, C. Hu, C. Sun et al., Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 13, 17766–17780 (2021). https://doi.org/10.1021/acsami.1c00724
- R. Li, X. Ma, J. Li, J. Cao, H. Gao et al., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 12, 1587 (2021). https://doi.org/10.1038/s41467-021-21852-7
- J.-W. Liu, J.-L. Wang, Z.-H. Wang, W.-R. Huang, S.-H. Yu, Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477–13482 (2014). https://doi.org/10.1002/anie.201408298
- J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Wetting-induced climbing for transferring interfacially assembled large-area ultrathin pristine graphene film. Adv. Mater. 31, e1806742 (2019). https://doi.org/10.1002/adma.201806742
- G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen et al., Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016). https://doi.org/10.1002/aenm.201501882
- F. Yin, H. Lu, H. Pan, H. Ji, S. Pei et al., Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep. 9, 2403 (2019). https://doi.org/10.1038/s41598-019-38931-x
- T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). https://doi.org/10.1002/adma.201906769
- C. Ma, H. Liu, C. Teng, L. Li, Y. Zhu et al., Wetting-induced fabrication of graphene hybrid with conducting polymers for high-performance flexible transparent electrodes. ACS Appl. Mater. Interfaces 12, 55372–55381 (2020). https://doi.org/10.1021/acsami.0c15734
- Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740–750 (2022). https://doi.org/10.1021/acs.nanolett.1c04185
- Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017). https://doi.org/10.1016/j.carbon.2016.12.092
- S.-K. Duan, Q.-L. Niu, J.-F. Wei, J.-B. He, Y.-A. Yin et al., Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes. Phys. Chem. Chem. Phys. 17, 8106–8112 (2015). https://doi.org/10.1039/C4CP05989A
- L. Chang, X. Zhang, Y. Ding, H. Liu, M. Liu et al., Ionogel/copper grid composites for high-performance, ultra-stable flexible transparent electrodes. ACS Appl. Mater. Interfaces 10, 29010–29018 (2018). https://doi.org/10.1021/acsami.8b09023
- Z. Wang, X. Sun, Z. Guo, R. Xi, L. Xu et al., Fabrication of submicron linewidth silver grid/ionogel hybrid films for highly stable flexible transparent electrodes via asymmetric wettability template-assisted self-assembly. Chem. Eng. J. 469, 144065 (2023). https://doi.org/10.1016/j.cej.2023.144065
- A. Khan, V.H. Nguyen, D. Muñoz-Rojas, S. Aghazadehchors, C. Jiménez et al., Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 10, 19208–19217 (2018). https://doi.org/10.1021/acsami.8b03079
- S.R. Das, Q. Nian, M. Saei, S. Jin, D. Back et al., Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 9, 11121–11133 (2015). https://doi.org/10.1021/acsnano.5b04628
- Y. Kim, T.I. Ryu, K.-H. Ok, M.-G. Kwak, S. Park et al., Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015). https://doi.org/10.1002/adfm.201501046
- M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
- S. Bai, X. Guo, X. Zhang, X. Zhao, H. Yang, Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part A Appl. Sci. Manuf. 149, 106545 (2021). https://doi.org/10.1016/j.compositesa.2021.106545
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
- H. Tang, H. Feng, H. Wang, X. Wan, J. Liang et al., Highly conducting MXene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 11, 25330–25337 (2019). https://doi.org/10.1021/acsami.9b04113
- M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
- Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
- R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2T x MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
- Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong et al., A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017). https://doi.org/10.1002/adma.201605099
- Q. Tan, L. Yuan, G. Liang, A. Gu, Flexible, transparent, strong and high dielectric constant composite film based on polyionic liquid coated silver nanowire hybrid. Appl. Surf. Sci. 576, 151827 (2022). https://doi.org/10.1016/j.apsusc.2021.151827
- F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides MXenes. Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
- X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode. Adv. Mater. 32, e1908478 (2020). https://doi.org/10.1002/adma.201908478
- Y. Tang, W. He, G. Zhou, S. Wang, X. Yang et al., A new approach causing the patterns fabricated by silver nanops to be conductive without sintering. Nanotechnology 23, 355304 (2012). https://doi.org/10.1088/0957-4484/23/35/355304
- H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.-W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 7, 1087–1110 (2019). https://doi.org/10.1039/C8TC04423F
- W.Y. Jin, M.M. Ovhal, H.B. Lee, B. Tyagi, J.W. Kang, Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications. Adv. Energy Mater. 11(4), 2003509 (2020). https://doi.org/10.1002/aenm.202003509
- K.-J. Ko, H.B. Lee, J.-W. Kang, Flexible, wearable organic light-emitting fibers based on PEDOT: PSS/Ag-fiber embedded hybrid electrodes for large-area textile lighting. Adv. Mater. Technol. 5, 2000168 (2020). https://doi.org/10.1002/admt.202000168
- Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu et al., Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. 215, 109023 (2021). https://doi.org/10.1016/j.compscitech.2021.109023
- M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 14520–14531 (2022). https://doi.org/10.1021/acsami.1c23515
- Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
- L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2T x MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
- H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035
References
J. Han, J. Yang, W. Gao, H. Bai, Ice-templated, large-area silver nanowire pattern for flexible transparent electrode. Adv. Funct. Mater. 31, 2010155 (2021). https://doi.org/10.1002/adfm.202010155
S. Cho, S. Kang, A. Pandya, R. Shanker, Z. Khan et al., Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens. ACS Nano 11, 4346–4357 (2017). https://doi.org/10.1021/acsnano.7b01714
X. Shi, Y. Zuo, P. Zhai, J. Shen, Y. Yang et al., Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021). https://doi.org/10.1038/s41586-021-03295-8
J.-L. Wang, Y.-R. Lu, H.-H. Li, J.-W. Liu, S.-H. Yu, Large area co-assembly of nanowires for flexible transparent smart windows. J. Am. Chem. Soc. 139, 9921–9926 (2017). https://doi.org/10.1021/jacs.7b03227
H. Kim, M. Seo, J.-W. Kim, D.-K. Kwon, S.-E. Choi et al., Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire–single-walled carbon nanotube composite. Adv. Funct. Mater. 29, 1901061 (2019). https://doi.org/10.1002/adfm.201901061
C. Qu, X. Yu, Y. Xu, S. Zhang, H. Liu et al., A sensing and display system on wearable fabric based on patterned silver nanowires. Nano Energy 104, 107965 (2022). https://doi.org/10.1016/j.nanoen.2022.107965
L. Zhang, X. Zhang, H. Zhang, L. Xu, D. Wang et al., Semi-embedded robust MXene/AgNW sensor with self-healing, high sensitivity and a wide range for motion detection. Chem. Eng. J. 434, 134751 (2022). https://doi.org/10.1016/j.cej.2022.134751
W. Xiong, H. Liu, Y. Chen, M. Zheng, Y. Zhao et al., Highly conductive, air-stable silver Nanowire@Iongel composite films toward flexible transparent electrodes. Adv. Mater. 28, 7167–7172 (2016). https://doi.org/10.1002/adma.201600358
J. Wang, M. Liang, Y. Fang, T. Qiu, J. Zhang et al., Rod-coating: towards large-area fabrication of uniform reduced graphene oxide films for flexible touch screens. Adv. Mater. 24, 2874–2878 (2012). https://doi.org/10.1002/adma.201200055
H.-S. Lim, J.-M. Oh, J.-W. Kim, One-way continuous deposition of monolayer MXene nanosheets for the formation of two confronting transparent electrodes in flexible capacitive photodetector. ACS Appl. Mater. Interfaces 13, 25400–25409 (2021). https://doi.org/10.1021/acsami.1c05769
H.-M. Sim, H.-K. Kim, Highly flexible Ag nanowire network covered by a graphene oxide nanosheet for high-performance flexible electronics and anti-bacterial applications. Sci. Technol. Adv. Mater. 22, 794–807 (2021). https://doi.org/10.1080/14686996.2021.1963640
D. Wen, X. Wang, L. Liu, C. Hu, C. Sun et al., Inkjet printing transparent and conductive MXene (Ti3C2Tx) films: a strategy for flexible energy storage devices. ACS Appl. Mater. Interfaces 13, 17766–17780 (2021). https://doi.org/10.1021/acsami.1c00724
R. Li, X. Ma, J. Li, J. Cao, H. Gao et al., Flexible and high-performance electrochromic devices enabled by self-assembled 2D TiO2/MXene heterostructures. Nat. Commun. 12, 1587 (2021). https://doi.org/10.1038/s41467-021-21852-7
J.-W. Liu, J.-L. Wang, Z.-H. Wang, W.-R. Huang, S.-H. Yu, Manipulating nanowire assembly for flexible transparent electrodes. Angew. Chem. Int. Ed. 53, 13477–13482 (2014). https://doi.org/10.1002/anie.201408298
J. Wang, C. Teng, Y. Jiang, Y. Zhu, L. Jiang, Wetting-induced climbing for transferring interfacially assembled large-area ultrathin pristine graphene film. Adv. Mater. 31, e1806742 (2019). https://doi.org/10.1002/adma.201806742
G. Cai, P. Darmawan, M. Cui, J. Wang, J. Chen et al., Highly stable transparent conductive silver grid/PEDOT: PSS electrodes for integrated bifunctional flexible electrochromic supercapacitors. Adv. Energy Mater. 6, 1501882 (2016). https://doi.org/10.1002/aenm.201501882
F. Yin, H. Lu, H. Pan, H. Ji, S. Pei et al., Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring. Sci. Rep. 9, 2403 (2019). https://doi.org/10.1038/s41598-019-38931-x
T. Yun, H. Kim, A. Iqbal, Y.S. Cho, G.S. Lee et al., Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 32, e1906769 (2020). https://doi.org/10.1002/adma.201906769
C. Ma, H. Liu, C. Teng, L. Li, Y. Zhu et al., Wetting-induced fabrication of graphene hybrid with conducting polymers for high-performance flexible transparent electrodes. ACS Appl. Mater. Interfaces 12, 55372–55381 (2020). https://doi.org/10.1021/acsami.0c15734
Q. Fan, J. Miao, X. Liu, X. Zuo, W. Zhang et al., Biomimetic hierarchically silver nanowire interwoven MXene mesh for flexible transparent electrodes and invisible camouflage electronics. Nano Lett. 22, 740–750 (2022). https://doi.org/10.1021/acs.nanolett.1c04185
Y. Han, Y. Liu, L. Han, J. Lin, P. Jin, High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding. Carbon 115, 34–42 (2017). https://doi.org/10.1016/j.carbon.2016.12.092
S.-K. Duan, Q.-L. Niu, J.-F. Wei, J.-B. He, Y.-A. Yin et al., Water-bath assisted convective assembly of aligned silver nanowire films for transparent electrodes. Phys. Chem. Chem. Phys. 17, 8106–8112 (2015). https://doi.org/10.1039/C4CP05989A
L. Chang, X. Zhang, Y. Ding, H. Liu, M. Liu et al., Ionogel/copper grid composites for high-performance, ultra-stable flexible transparent electrodes. ACS Appl. Mater. Interfaces 10, 29010–29018 (2018). https://doi.org/10.1021/acsami.8b09023
Z. Wang, X. Sun, Z. Guo, R. Xi, L. Xu et al., Fabrication of submicron linewidth silver grid/ionogel hybrid films for highly stable flexible transparent electrodes via asymmetric wettability template-assisted self-assembly. Chem. Eng. J. 469, 144065 (2023). https://doi.org/10.1016/j.cej.2023.144065
A. Khan, V.H. Nguyen, D. Muñoz-Rojas, S. Aghazadehchors, C. Jiménez et al., Stability enhancement of silver nanowire networks with conformal ZnO coatings deposited by atmospheric pressure spatial atomic layer deposition. ACS Appl. Mater. Interfaces 10, 19208–19217 (2018). https://doi.org/10.1021/acsami.8b03079
S.R. Das, Q. Nian, M. Saei, S. Jin, D. Back et al., Single-layer graphene as a barrier layer for intense UV laser-induced damages for silver nanowire network. ACS Nano 9, 11121–11133 (2015). https://doi.org/10.1021/acsnano.5b04628
Y. Kim, T.I. Ryu, K.-H. Ok, M.-G. Kwak, S. Park et al., Inverted layer-by-layer fabrication of an ultraflexible and transparent Ag nanowire/conductive polymer composite electrode for use in high-performance organic solar cells. Adv. Funct. Mater. 25, 4580–4589 (2015). https://doi.org/10.1002/adfm.201501046
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu et al., Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4248–4253 (2011). https://doi.org/10.1002/adma.201102306
S. Bai, X. Guo, X. Zhang, X. Zhao, H. Yang, Ti3C2Tx MXene-AgNW composite flexible transparent conductive films for EMI shielding. Compos. Part A Appl. Sci. Manuf. 149, 106545 (2021). https://doi.org/10.1016/j.compositesa.2021.106545
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding. ACS Nano 14, 16643–16653 (2020). https://doi.org/10.1021/acsnano.0c01635
H. Tang, H. Feng, H. Wang, X. Wan, J. Liang et al., Highly conducting MXene-silver nanowire transparent electrodes for flexible organic solar cells. ACS Appl. Mater. Interfaces 11, 25330–25337 (2019). https://doi.org/10.1021/acsami.9b04113
M. Cheng, M. Ying, R. Zhao, L. Ji, H. Li et al., Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 16, 16996–17007 (2022). https://doi.org/10.1021/acsnano.2c07111
Z. Zeng, M. Chen, H. Jin, W. Li, X. Xue et al., Thin and flexible multi-walled carbon nanotube/waterborne polyurethane composites with high-performance electromagnetic interference shielding. Carbon 96, 768–777 (2016). https://doi.org/10.1016/j.carbon.2015.10.004
R. Liu, M. Miao, Y. Li, J. Zhang, S. Cao et al., Ultrathin biomimetic polymeric Ti3C2T x MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 10, 44787–44795 (2018). https://doi.org/10.1021/acsami.8b18347
Y. Cao, T.G. Morrissey, E. Acome, S.I. Allec, B.M. Wong et al., A transparent, self-healing, highly stretchable ionic conductor. Adv. Mater. 29, 1605099 (2017). https://doi.org/10.1002/adma.201605099
Q. Tan, L. Yuan, G. Liang, A. Gu, Flexible, transparent, strong and high dielectric constant composite film based on polyionic liquid coated silver nanowire hybrid. Appl. Surf. Sci. 576, 151827 (2022). https://doi.org/10.1016/j.apsusc.2021.151827
F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S. Man Hong et al., Electromagnetic interference shielding with 2D transition metal carbides MXenes. Science 353, 1137–1140 (2016). https://doi.org/10.1126/science.aag2421
X. Chen, G. Xu, G. Zeng, H. Gu, H. Chen et al., Realizing ultrahigh mechanical flexibility and >15% efficiency of flexible organic solar cells via a welding flexible transparent electrode. Adv. Mater. 32, e1908478 (2020). https://doi.org/10.1002/adma.201908478
Y. Tang, W. He, G. Zhou, S. Wang, X. Yang et al., A new approach causing the patterns fabricated by silver nanops to be conductive without sintering. Nanotechnology 23, 355304 (2012). https://doi.org/10.1088/0957-4484/23/35/355304
H.B. Lee, W.-Y. Jin, M.M. Ovhal, N. Kumar, J.-W. Kang, Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review. J. Mater. Chem. C 7, 1087–1110 (2019). https://doi.org/10.1039/C8TC04423F
W.Y. Jin, M.M. Ovhal, H.B. Lee, B. Tyagi, J.W. Kang, Scalable, all-printed photocapacitor fibers and modules based on metal-embedded flexible transparent conductive electrodes for self-charging wearable applications. Adv. Energy Mater. 11(4), 2003509 (2020). https://doi.org/10.1002/aenm.202003509
K.-J. Ko, H.B. Lee, J.-W. Kang, Flexible, wearable organic light-emitting fibers based on PEDOT: PSS/Ag-fiber embedded hybrid electrodes for large-area textile lighting. Adv. Mater. Technol. 5, 2000168 (2020). https://doi.org/10.1002/admt.202000168
Y. Cheng, Y. Lu, M. Xia, L. Piao, Q. Liu et al., Flexible and lightweight MXene/silver nanowire/polyurethane composite foam films for highly efficient electromagnetic interference shielding and photothermal conversion. Compos. Sci. Technol. 215, 109023 (2021). https://doi.org/10.1016/j.compscitech.2021.109023
M. Zhu, X. Yan, Y. Lei, J. Guo, Y. Xu et al., An ultrastrong and antibacterial silver nanowire/aligned cellulose scaffold composite film for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 14, 14520–14531 (2022). https://doi.org/10.1021/acsami.1c23515
Q. Song, F. Ye, X. Yin, W. Li, H. Li et al., Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 29, 1701583 (2017). https://doi.org/10.1002/adma.201701583
L. Liang, G. Han, Y. Li, B. Zhao, B. Zhou et al., Promising Ti3C2T x MXene/Ni chain hybrid with excellent electromagnetic wave absorption and shielding capacity. ACS Appl. Mater. Interfaces 11, 25399–25409 (2019). https://doi.org/10.1021/acsami.9b07294
H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park et al., Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130–137 (2017). https://doi.org/10.1016/j.nanoen.2017.01.035