Robust and Biodegradable Heterogeneous Electronics with Customizable Cylindrical Architecture for Interference-Free Respiratory Rate Monitoring
Corresponding Author: Hailin Cong
Nano-Micro Letters,
Vol. 18 (2026), Article Number: 34
Abstract
A rapidly growing field is piezoresistive sensor for accurate respiration rate monitoring to suppress the worldwide respiratory illness. However, a large neglected issue is the sensing durability and accuracy without interference since the expiratory pressure always coupled with external humidity and temperature variations, as well as mechanical motion artifacts. Herein, a robust and biodegradable piezoresistive sensor is reported that consists of heterogeneous MXene/cellulose-gelation sensing layer and Ag-based interdigital electrode, featuring customizable cylindrical interface arrangement and compact hierarchical laminated architecture for collectively regulating the piezoresistive response and mechanical robustness, thereby realizing the long-term breath-induced pressure detection. Notably, molecular dynamics simulations reveal the frequent angle inversion and reorientation of MXene/cellulose in vacuum filtration, driven by shear forces and interfacial interactions, which facilitate the establishment of hydrogen bonds and optimize the architecture design in sensing layer. The resultant sensor delivers unprecedented collection features of superior stability for off-axis deformation (0–120°, ~ 2.8 × 10–3 A) and sensing accuracy without crosstalk (humidity 50%–100% and temperature 30–80 °C). Besides, the sensor-embedded mask together with machine learning models is achieved to train and classify the respiration status for volunteers with different ages (average prediction accuracy ~ 90%). It is envisioned that the customizable architecture design and sensor paradigm will shed light on the advanced stability of sustainable electronics and pave the way for the commercial application in respiratory monitory.
Highlights:
1 Piezoresistive sensor in tandem with customizable cylindrical microstructure for ultra-sensitive, stable, and interference-free performance.
2 Molecular dynamics simulations reveal shear-force-driven self-assembly mechanisms.
3 Eco-friendly and robust sensing layer for scalable, sustainable fabrication.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Wei, X. Shi, Z. Yao, J. Zhi, L. Hu et al., Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. NPJ Flex. Electron. 7, 13 (2023). https://doi.org/10.1038/s41528-023-00244-5
- G. Niu, Z. Wang, Y. Xue, J. Yan, A. Dutta et al., Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. Nano Lett. 23(4), 1252–1260 (2023). https://doi.org/10.1021/acs.nanolett.2c04384
- M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15(6), 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472
- Y. Wang, X. Liu, Z. Chen, L. Sun, J. Zhao et al., Ultrastretchable wireless conductive hydrogel sensors for respiratory monitoring and motion detection. Adv. Mater. 37, 2502369 (2025). https://doi.org/10.1002/adma.202502369
- K. Zhou, W. Xu, Y. Yu, W. Zhai, Z. Yuan et al., Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 17(31), 2100542 (2021). https://doi.org/10.1002/smll.202100542
- J.H. Kwon, Y.M. Kim, H.C. Moon, Porous ion gel: a versatile ionotronic sensory platform for high-performance, wearable ionoskins with electrical and optical dual output. ACS Nano 15(9), 15132–15141 (2021). https://doi.org/10.1021/acsnano.1c05570
- X. Wei, H. Li, W. Yue, S. Gao, Z. Chen et al., A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 5(5), 1481–1501 (2022). https://doi.org/10.1016/j.matt.2022.02.016
- S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12(19), 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
- J. Yang, C. Wang, L. Liu, H. Zhang, J. Ma, Water-tolerant MXene epidermal sensors with high sensitivity and reliability for healthcare monitoring. ACS Appl. Mater. Interfaces 14(18), 21253–21262 (2022). https://doi.org/10.1021/acsami.2c03731
- W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
- Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14(1), 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
- Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti(3)C(2)T(x) MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
- G. Song, Y. Zhan, Y. Hu, J. Rao, N. Li et al., Paper-mill waste reinforced nanofluidic membrane as high-performance osmotic energy generators. Adv. Funct. Mater. 33(26), 2214044 (2023). https://doi.org/10.1002/adfm.202214044
- S.-D. Wu, S.-H. Hsu, B. Ketelsen, S.C. Bittinger, H. Schlicke et al., Fabrication of eco-friendly wearable strain sensor arrays via facile contact printing for healthcare applications. Small Methods 7(9), 2300170 (2023). https://doi.org/10.1002/smtd.202300170
- J.A. Chiong, H. Tran, Y. Lin, Y. Zheng, Z. Bao, Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 8(14), 2101233 (2021). https://doi.org/10.1002/advs.202101233
- S. Lee, S.-H. Byun, C.Y. Kim, S. Cho, S. Park et al., Beyond human touch perception: an adaptive robotic skin based on gallium microgranules for pressure sensory augmentation. Adv. Mater. 34(44), 2270302 (2022). https://doi.org/10.1002/adma.202270302
- M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9(20), 2200507 (2022). https://doi.org/10.1002/advs.202200507
- Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
- D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
- K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
- Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1802576 (2018). https://doi.org/10.1002/adfm.201802576
- J. He, R. Zhou, Y. Zhang, W. Gao, T. Chen et al., Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 32(10), 2107281 (2022). https://doi.org/10.1002/adfm.202107281
- H. Wang, Y. Wang, J. Chang, J. Yang, H. Dai et al., Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 23(12), 5663–5672 (2023). https://doi.org/10.1021/acs.nanolett.3c01307
- Y. Liu, J. Tao, W. Yang, Y. Zhang, J. Li et al., Biodegradable, breathable leaf vein-based tactile sensors with tunable sensitivity and sensing range. Small 18(8), e2106906 (2022). https://doi.org/10.1002/smll.202106906
- H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31(13), 2008006 (2021). https://doi.org/10.1002/adfm.202008006
- Y. Shin, Y.W. Kim, H.J. Kang, J.H. Lee, J.E. Byun et al., Stretchable and skin-mountable temperature sensor array using reduction-controlled graphene oxide for dermatological thermography. Nano Lett. 23(11), 5391–5398 (2023). https://doi.org/10.1021/acs.nanolett.2c04752
- T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). https://doi.org/10.1016/j.nanoen.2021.106151
- Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
- Y. Ma, R. Li, S. Dong, J. Yu, T. Zhang et al., Flexible gel electronics for high-fidelity wireless respiratory monitoring. Adv. Funct. Mater. 35, 2502583 (2025). https://doi.org/10.1002/adfm.202502583
- L. Yang, H. Wang, W. Yuan, Y. Li, P. Gao et al., Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 13(50), 60531–60543 (2021). https://doi.org/10.1021/acsami.1c22001
- S. Wang, W. Deng, T. Yang, Y. Ao, H. Zhang et al., Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater. 33(18), 2214503 (2023). https://doi.org/10.1002/adfm.202214503
- Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35(29), 2300855 (2023). https://doi.org/10.1002/adma.202300855
- T. Liu, D. Qu, L. Guo, G. Zhou, G. Zhang et al., MXene/TPU composite film for humidity sensing and human respiration monitoring. Adv. Sens. Res. 3(3), 2300014 (2024). https://doi.org/10.1002/adsr.202300014
- L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
- L. Chen, Q. Feng, W. Xu, X. Guo, X. Huang et al., Self-healing and biocompatible gel-based wireless sensors for continuous respiratory health monitoring. Adv. Funct. Mater. 35, 2502196 (2025). https://doi.org/10.1002/adfm.202502196
- M. Wang, L. Dong, J. Wu, J. Shi, Q. Gao et al., Leaf-meridian bio-inspired nanofibrous electronics with uniform distributed microgrid and 3D multi-level structure for wearable applications. NPJ Flex. Electron. 6, 34 (2022). https://doi.org/10.1038/s41528-022-00171-x
- X. Hu, M. Wu, L. Che, J. Huang, H. Li et al., Nanoengineering ultrathin flexible pressure sensor with superior sensitivity and perfect conformability. Small 19(33), 2208015 (2023). https://doi.org/10.1002/smll.202208015
- P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small 20(3), 2304914 (2024). https://doi.org/10.1002/smll.202304914
- Y. Zhu, Z. Wang, Z. Chen, X. Xin, W. Gan et al., Highly stretchable, biodegradable, and recyclable green electronic substrates. Small 20(3), 2305181 (2024). https://doi.org/10.1002/smll.202305181
- J. Chen, K. Chen, J. Jin, K. Wu, Y. Wang et al., Outstanding synergy of sensitivity and linear range enabled by multigradient architectures. Nano Lett. 23(24), 11958–11967 (2023). https://doi.org/10.1021/acs.nanolett.3c04204
- X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33(18), 2213274 (2023). https://doi.org/10.1002/adfm.202213274
- Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
- R. Dai, L. Meng, Q. Fu, S. Hao, J. Yang, Fabrication of anisotropic silk fibroin-cellulose nanocrystals cryogels with tunable mechanical properties, rapid swelling, and structural recoverability via a directional-freezing strategy. ACS Sustainable Chem. Eng. 9(36), 12274–12285 (2021). https://doi.org/10.1021/acssuschemeng.1c03852
- J. Li, H. Wang, Y. Luo, Z. Zhou, H. Zhang et al., Design of AI-enhanced and hardware-supported multimodal E-skin for environmental object recognition and wireless toxic gas alarm. Nano-Micro Lett. 16(1), 256 (2024). https://doi.org/10.1007/s40820-024-01466-6
- S. Hao, R. Dai, Q. Fu, Y. Wang, X. Zhang et al., A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring. Adv. Funct. Mater. 33(33), 2302840 (2023). https://doi.org/10.1002/adfm.202302840
- L. Meng, Q. Fu, S. Hao, F. Xu, J. Yang, Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring. Chem. Eng. J. 427, 131999 (2022). https://doi.org/10.1016/j.cej.2021.131999
- L. Li, W. Tian, A. VahidMohammadi, J. Rostami, B. Chen et al., Ultrastrong ionotronic films showing electrochemical osmotic actuation. Adv. Mater. 35(45), e2301163 (2023). https://doi.org/10.1002/adma.202301163
- Y. Xie, Y. Cheng, Y. Ma, J. Wang, J. Zou et al., 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv. Sci. 10(6), e2205303 (2023). https://doi.org/10.1002/advs.202205303
- X. Guo, X. Dong, G. Zou, H. Gao, W. Zhai, Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. Sci. Adv. 9(2), eadf7075 (2023). https://doi.org/10.1126/sciadv.adf7075
- Y. Wu, S. Chen, J. Wu, F. Liu, C. Chen et al., Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. Sci. Adv. 10(48), eadn8662 (2024). https://doi.org/10.1126/sciadv.adn8662
- C. Di Mino, A.G. Seel, A.J. Clancy, T.F. Headen, T. Földes et al., Strong structuring arising from weak cooperative O-H···π and C-H···O hydrogen bonding in benzene-methanol solution. Nat. Commun. 14(1), 5900 (2023). https://doi.org/10.1038/s41467-023-41451-y
- L. Zhu, H. Yang, T. Xu, L. Wang, J. Lei et al., Engineered nanochannels in MXene heterogeneous proton exchange membranes mediated by cellulose nanofiber/sodium alginate dual crosslinked networks. Adv. Funct. Mater. 35(19), 2570111 (2025). https://doi.org/10.1002/adfm.202570111
- W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
- J. Zhong, Z. Li, M. Takakuwa, D. Inoue, D. Hashizume et al., Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 34(6), 2107758 (2022). https://doi.org/10.1002/adma.202107758
- X. Zheng, S. Zhang, M. Zhou, H. Lu, S. Guo et al., MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv. Funct. Mater. 33(19), 2214880 (2023). https://doi.org/10.1002/adfm.202214880
References
Y. Wei, X. Shi, Z. Yao, J. Zhi, L. Hu et al., Fully paper-integrated hydrophobic and air permeable piezoresistive sensors for high-humidity and underwater wearable motion monitoring. NPJ Flex. Electron. 7, 13 (2023). https://doi.org/10.1038/s41528-023-00244-5
G. Niu, Z. Wang, Y. Xue, J. Yan, A. Dutta et al., Pencil-on-paper humidity sensor treated with NaCl solution for health monitoring and skin characterization. Nano Lett. 23(4), 1252–1260 (2023). https://doi.org/10.1021/acs.nanolett.2c04384
M. Chao, L. He, M. Gong, N. Li, X. Li et al., Breathable Ti3C2Tx MXene/protein nanocomposites for ultrasensitive medical pressure sensor with degradability in solvents. ACS Nano 15(6), 9746–9758 (2021). https://doi.org/10.1021/acsnano.1c00472
Y. Wang, X. Liu, Z. Chen, L. Sun, J. Zhao et al., Ultrastretchable wireless conductive hydrogel sensors for respiratory monitoring and motion detection. Adv. Mater. 37, 2502369 (2025). https://doi.org/10.1002/adma.202502369
K. Zhou, W. Xu, Y. Yu, W. Zhai, Z. Yuan et al., Tunable and nacre-mimetic multifunctional electronic skins for highly stretchable contact-noncontact sensing. Small 17(31), 2100542 (2021). https://doi.org/10.1002/smll.202100542
J.H. Kwon, Y.M. Kim, H.C. Moon, Porous ion gel: a versatile ionotronic sensory platform for high-performance, wearable ionoskins with electrical and optical dual output. ACS Nano 15(9), 15132–15141 (2021). https://doi.org/10.1021/acsnano.1c05570
X. Wei, H. Li, W. Yue, S. Gao, Z. Chen et al., A high-accuracy, real-time, intelligent material perception system with a machine-learning-motivated pressure-sensitive electronic skin. Matter 5(5), 1481–1501 (2022). https://doi.org/10.1016/j.matt.2022.02.016
S. Sharma, A. Chhetry, M. Sharifuzzaman, H. Yoon, J.Y. Park, Wearable capacitive pressure sensor based on MXene composite nanofibrous scaffolds for reliable human physiological signal acquisition. ACS Appl. Mater. Interfaces 12(19), 22212–22224 (2020). https://doi.org/10.1021/acsami.0c05819
J. Yang, C. Wang, L. Liu, H. Zhang, J. Ma, Water-tolerant MXene epidermal sensors with high sensitivity and reliability for healthcare monitoring. ACS Appl. Mater. Interfaces 14(18), 21253–21262 (2022). https://doi.org/10.1021/acsami.2c03731
W. Chen, L.-X. Liu, H.-B. Zhang, Z.-Z. Yu, Kirigami-inspired highly stretchable, conductive, and hierarchical Ti3C2Tx MXene films for efficient electromagnetic interference shielding and pressure sensing. ACS Nano 15(4), 7668–7681 (2021). https://doi.org/10.1021/acsnano.1c01277
Y. Liang, Q. Ding, H. Wang, Z. Wu, J. Li et al., Humidity sensing of stretchable and transparent hydrogel films for wireless respiration monitoring. Nano-Micro Lett. 14(1), 183 (2022). https://doi.org/10.1007/s40820-022-00934-1
Y. Cheng, Y. Ma, L. Li, M. Zhu, Y. Yue et al., Bioinspired microspines for a high-performance spray Ti(3)C(2)T(x) MXene-based piezoresistive sensor. ACS Nano 14(2), 2145–2155 (2020). https://doi.org/10.1021/acsnano.9b08952
G. Song, Y. Zhan, Y. Hu, J. Rao, N. Li et al., Paper-mill waste reinforced nanofluidic membrane as high-performance osmotic energy generators. Adv. Funct. Mater. 33(26), 2214044 (2023). https://doi.org/10.1002/adfm.202214044
S.-D. Wu, S.-H. Hsu, B. Ketelsen, S.C. Bittinger, H. Schlicke et al., Fabrication of eco-friendly wearable strain sensor arrays via facile contact printing for healthcare applications. Small Methods 7(9), 2300170 (2023). https://doi.org/10.1002/smtd.202300170
J.A. Chiong, H. Tran, Y. Lin, Y. Zheng, Z. Bao, Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 8(14), 2101233 (2021). https://doi.org/10.1002/advs.202101233
S. Lee, S.-H. Byun, C.Y. Kim, S. Cho, S. Park et al., Beyond human touch perception: an adaptive robotic skin based on gallium microgranules for pressure sensory augmentation. Adv. Mater. 34(44), 2270302 (2022). https://doi.org/10.1002/adma.202270302
M. Yang, Y. Cheng, Y. Yue, Y. Chen, H. Gao et al., High-performance flexible pressure sensor with a self-healing function for tactile feedback. Adv. Sci. 9(20), 2200507 (2022). https://doi.org/10.1002/advs.202200507
Y. Guo, M. Zhong, Z. Fang, P. Wan, G. Yu, A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 19(2), 1143–1150 (2019). https://doi.org/10.1021/acs.nanolett.8b04514
D. Wang, L. Wang, Z. Lou, Y. Zheng, K. Wang et al., Biomimetic, biocompatible and robust silk fibroin-MXene film with stable 3D cross-link structure for flexible pressure sensors. Nano Energy 78, 105252 (2020). https://doi.org/10.1016/j.nanoen.2020.105252
K. Wang, Z. Lou, L. Wang, L. Zhao, S. Zhao et al., Bioinspired interlocked structure-induced high deformability for two-dimensional titanium carbide (MXene)/natural microcapsule-based flexible pressure sensors. ACS Nano 13(8), 9139–9147 (2019). https://doi.org/10.1021/acsnano.9b03454
Y. Gao, C. Yan, H. Huang, T. Yang, G. Tian et al., Microchannel-confined MXene based flexible piezoresistive multifunctional micro-force sensor. Adv. Funct. Mater. 30(11), 1909603 (2020). https://doi.org/10.1002/adfm.201909603
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1802576 (2018). https://doi.org/10.1002/adfm.201802576
J. He, R. Zhou, Y. Zhang, W. Gao, T. Chen et al., Strain-insensitive self-powered tactile sensor arrays based on intrinsically stretchable and patternable ultrathin conformal wrinkled graphene-elastomer composite. Adv. Funct. Mater. 32(10), 2107281 (2022). https://doi.org/10.1002/adfm.202107281
H. Wang, Y. Wang, J. Chang, J. Yang, H. Dai et al., Nacre-inspired strong MXene/cellulose fiber with superior supercapacitive performance via synergizing the interfacial bonding and interlayer spacing. Nano Lett. 23(12), 5663–5672 (2023). https://doi.org/10.1021/acs.nanolett.3c01307
Y. Liu, J. Tao, W. Yang, Y. Zhang, J. Li et al., Biodegradable, breathable leaf vein-based tactile sensors with tunable sensitivity and sensing range. Small 18(8), e2106906 (2022). https://doi.org/10.1002/smll.202106906
H. Liu, X. Chen, Y. Zheng, D. Zhang, Y. Zhao et al., Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications. Adv. Funct. Mater. 31(13), 2008006 (2021). https://doi.org/10.1002/adfm.202008006
Y. Shin, Y.W. Kim, H.J. Kang, J.H. Lee, J.E. Byun et al., Stretchable and skin-mountable temperature sensor array using reduction-controlled graphene oxide for dermatological thermography. Nano Lett. 23(11), 5391–5398 (2023). https://doi.org/10.1021/acs.nanolett.2c04752
T. Su, N. Liu, Y. Gao, D. Lei, L. Wang et al., MXene/cellulose nanofiber-foam based high performance degradable piezoresistive sensor with greatly expanded interlayer distances. Nano Energy 87, 106151 (2021). https://doi.org/10.1016/j.nanoen.2021.106151
Z. Chen, Y. Hu, H. Zhuo, L. Liu, S. Jing et al., Compressible, elastic, and pressure-sensitive carbon aerogels derived from 2D titanium carbide nanosheets and bacterial cellulose for wearable sensors. Chem. Mater. 31(9), 3301–3312 (2019). https://doi.org/10.1021/acs.chemmater.9b00259
Y. Ma, R. Li, S. Dong, J. Yu, T. Zhang et al., Flexible gel electronics for high-fidelity wireless respiratory monitoring. Adv. Funct. Mater. 35, 2502583 (2025). https://doi.org/10.1002/adfm.202502583
L. Yang, H. Wang, W. Yuan, Y. Li, P. Gao et al., Wearable pressure sensors based on MXene/tissue papers for wireless human health monitoring. ACS Appl. Mater. Interfaces 13(50), 60531–60543 (2021). https://doi.org/10.1021/acsami.1c22001
S. Wang, W. Deng, T. Yang, Y. Ao, H. Zhang et al., Bioinspired MXene-based piezoresistive sensor with two-stage enhancement for motion capture. Adv. Funct. Mater. 33(18), 2214503 (2023). https://doi.org/10.1002/adfm.202214503
Y. Guo, F. Yin, Y. Li, G. Shen, J.-C. Lee, Incorporating wireless strategies to wearable devices enabled by a photocurable hydrogel for monitoring pressure information. Adv. Mater. 35(29), 2300855 (2023). https://doi.org/10.1002/adma.202300855
T. Liu, D. Qu, L. Guo, G. Zhou, G. Zhang et al., MXene/TPU composite film for humidity sensing and human respiration monitoring. Adv. Sens. Res. 3(3), 2300014 (2024). https://doi.org/10.1002/adsr.202300014
L.-Q. Tao, K.-N. Zhang, H. Tian, Y. Liu, D.-Y. Wang et al., Graphene-paper pressure sensor for detecting human motions. ACS Nano 11(9), 8790–8795 (2017). https://doi.org/10.1021/acsnano.7b02826
L. Chen, Q. Feng, W. Xu, X. Guo, X. Huang et al., Self-healing and biocompatible gel-based wireless sensors for continuous respiratory health monitoring. Adv. Funct. Mater. 35, 2502196 (2025). https://doi.org/10.1002/adfm.202502196
M. Wang, L. Dong, J. Wu, J. Shi, Q. Gao et al., Leaf-meridian bio-inspired nanofibrous electronics with uniform distributed microgrid and 3D multi-level structure for wearable applications. NPJ Flex. Electron. 6, 34 (2022). https://doi.org/10.1038/s41528-022-00171-x
X. Hu, M. Wu, L. Che, J. Huang, H. Li et al., Nanoengineering ultrathin flexible pressure sensor with superior sensitivity and perfect conformability. Small 19(33), 2208015 (2023). https://doi.org/10.1002/smll.202208015
P.-L. Wang, T. Mai, W. Zhang, M.-Y. Qi, L. Chen et al., Robust and multifunctional Ti3C2Tx/modified sawdust composite paper for electromagnetic interference shielding and wearable thermal management. Small 20(3), 2304914 (2024). https://doi.org/10.1002/smll.202304914
Y. Zhu, Z. Wang, Z. Chen, X. Xin, W. Gan et al., Highly stretchable, biodegradable, and recyclable green electronic substrates. Small 20(3), 2305181 (2024). https://doi.org/10.1002/smll.202305181
J. Chen, K. Chen, J. Jin, K. Wu, Y. Wang et al., Outstanding synergy of sensitivity and linear range enabled by multigradient architectures. Nano Lett. 23(24), 11958–11967 (2023). https://doi.org/10.1021/acs.nanolett.3c04204
X. Zhang, J. Li, Q. Gao, Z. Wang, N. Ye et al., Nerve-fiber-inspired construction of 3D graphene “tracks” supported by wood fibers for multifunctional biocomposite with metal-level thermal conductivity. Adv. Funct. Mater. 33(18), 2213274 (2023). https://doi.org/10.1002/adfm.202213274
Y. Yue, N. Liu, W. Liu, M. Li, Y. Ma et al., 3D hybrid porous Mxene-sponge network and its application in piezoresistive sensor. Nano Energy 50, 79–87 (2018). https://doi.org/10.1016/j.nanoen.2018.05.020
R. Dai, L. Meng, Q. Fu, S. Hao, J. Yang, Fabrication of anisotropic silk fibroin-cellulose nanocrystals cryogels with tunable mechanical properties, rapid swelling, and structural recoverability via a directional-freezing strategy. ACS Sustainable Chem. Eng. 9(36), 12274–12285 (2021). https://doi.org/10.1021/acssuschemeng.1c03852
J. Li, H. Wang, Y. Luo, Z. Zhou, H. Zhang et al., Design of AI-enhanced and hardware-supported multimodal E-skin for environmental object recognition and wireless toxic gas alarm. Nano-Micro Lett. 16(1), 256 (2024). https://doi.org/10.1007/s40820-024-01466-6
S. Hao, R. Dai, Q. Fu, Y. Wang, X. Zhang et al., A robust and adhesive hydrogel enables interfacial coupling for continuous temperature monitoring. Adv. Funct. Mater. 33(33), 2302840 (2023). https://doi.org/10.1002/adfm.202302840
L. Meng, Q. Fu, S. Hao, F. Xu, J. Yang, Self-adhesive, biodegradable silk-based dry electrodes for epidermal electrophysiological monitoring. Chem. Eng. J. 427, 131999 (2022). https://doi.org/10.1016/j.cej.2021.131999
L. Li, W. Tian, A. VahidMohammadi, J. Rostami, B. Chen et al., Ultrastrong ionotronic films showing electrochemical osmotic actuation. Adv. Mater. 35(45), e2301163 (2023). https://doi.org/10.1002/adma.202301163
Y. Xie, Y. Cheng, Y. Ma, J. Wang, J. Zou et al., 3D MXene-based flexible network for high-performance pressure sensor with a wide temperature range. Adv. Sci. 10(6), e2205303 (2023). https://doi.org/10.1002/advs.202205303
X. Guo, X. Dong, G. Zou, H. Gao, W. Zhai, Strong and tough fibrous hydrogels reinforced by multiscale hierarchical structures with multimechanisms. Sci. Adv. 9(2), eadf7075 (2023). https://doi.org/10.1126/sciadv.adf7075
Y. Wu, S. Chen, J. Wu, F. Liu, C. Chen et al., Revivable self-assembled supramolecular biomass fibrous framework for efficient microplastic removal. Sci. Adv. 10(48), eadn8662 (2024). https://doi.org/10.1126/sciadv.adn8662
C. Di Mino, A.G. Seel, A.J. Clancy, T.F. Headen, T. Földes et al., Strong structuring arising from weak cooperative O-H···π and C-H···O hydrogen bonding in benzene-methanol solution. Nat. Commun. 14(1), 5900 (2023). https://doi.org/10.1038/s41467-023-41451-y
L. Zhu, H. Yang, T. Xu, L. Wang, J. Lei et al., Engineered nanochannels in MXene heterogeneous proton exchange membranes mediated by cellulose nanofiber/sodium alginate dual crosslinked networks. Adv. Funct. Mater. 35(19), 2570111 (2025). https://doi.org/10.1002/adfm.202570111
W.-T. Cao, F.-F. Chen, Y.-J. Zhu, Y.-G. Zhang, Y.-Y. Jiang et al., Binary strengthening and toughening of MXene/cellulose nanofiber composite paper with nacre-inspired structure and superior electromagnetic interference shielding properties. ACS Nano 12(5), 4583–4593 (2018). https://doi.org/10.1021/acsnano.8b00997
J. Zhong, Z. Li, M. Takakuwa, D. Inoue, D. Hashizume et al., Smart face mask based on an ultrathin pressure sensor for wireless monitoring of breath conditions. Adv. Mater. 34(6), 2107758 (2022). https://doi.org/10.1002/adma.202107758
X. Zheng, S. Zhang, M. Zhou, H. Lu, S. Guo et al., MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv. Funct. Mater. 33(19), 2214880 (2023). https://doi.org/10.1002/adfm.202214880