An Ultra-Stable, High-Energy and Wide-Temperature-Range Aqueous Alkaline Sodium-Ion Battery with the Microporous C4N/rGO Anode
Corresponding Author: Jun Yang
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 158
Abstract
Common anode materials in aqueous alkaline electrolytes, such as cadmium, metal hydrides and zinc, usually suffer from remarkable biotoxicity, high cost, and serious side reactions. To overcome these problems, we develop a conjugated porous polymer (CPP) in-situ grown on reduced graphene oxide (rGO) and Ketjen black (KB), noted as C4N/rGO and C4N/KB respectively, as the alternative anodes. The results show that C4N/rGO electrode delivers a low redox potential (−0.905 V vs. Ag/AgCl), high specific capacity (268.8 mAh g−1 at 0.2 A g−1), ultra-stable and fast sodium ion storage behavior (216 mAh g−1 at 20 A g−1) in 2 M NaOH electrolyte. The assembled C4N/rGO//Ni(OH)2 full battery can cycle stably more than 38,000 cycles. Furthermore, by adding a small amount of antifreeze additive dimethyl sulfoxide (DMSO) to adjust the hydrogen bonding network, the low-temperature performance of the electrolyte (0.1 DMSO/2 M NaOH) is significantly improved while hydrogen evolution is inhibited. Consequently, the C4N/rGO//Ni(OH)2 full cell exhibits an energy density of 147.3 Wh Kg−1 and ultra-high cycling stability over a wide temperature range from −70 to 45 °C. This work provides an ultra-stable high-capacity CPP-based anode and antifreeze electrolyte for aqueous alkaline batteries and will facilitate their practical applications under extreme conditions.
Highlights:
1 An integrated conjugated microporous polymer composite electrode (C4N/rGO) with high conductivity, large specific surface area and good solvent resistance was prepared by in-situ growth.
2 An antifreeze alkaline electrolyte (0.1 DMSO/2 M NaOH) was developed to broaden the operation temperature zone and voltage window of the aqueous alkaline battery.
3 The prepared aqueous alkaline battery exhibits a high energy density (147.3 Wh Kg−1 at 25 °C), outstanding long cycling stability and excellent wide-temperature-range performance (−70 to 45 °C).
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83, 105792 (2021). https://doi.org/10.1016/j.nanoen.2021.105792
- Y. Pang, H. Li, S. Zhang, Q. Ma, P. Xiong et al., Conjugated porous polyimide poly(2, 6-diaminoanthraquinone) benzamide with good stability and high-performance as a cathode for sodium ion batteries. J. Mater. Chem. A 10, 1514–1521 (2022). https://doi.org/10.1039/d1ta06384g
- J. Zhang, L. Chen, L. Niu, P. Jiang, G. Shao et al., Na superionic conductor-type TiNb(PO4)3 anode with high energy density and long cycle life enables aqueous alkaline-ion batteries. ACS Appl. Mater. Interfaces 11, 39757–39764 (2019). https://doi.org/10.1021/acsami.9b10671
- H. Wu, J. Hao, Y. Jiang, Y. Jiao, J. Liu et al., Alkaline-based aqueous sodium-ion batteries for large-scale energy storage. Nat. Commun. 15, 575 (2024). https://doi.org/10.1038/s41467-024-44855-6
- T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16, 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
- Y. Wang, Z. Wang, X. Xu, S.J.A. Oh, J. Sun et al., Ultra-stable sodium-ion battery enabled by all-solid-state ferroelectric-engineered composite electrolytes. Nano-Micro Lett. 16, 254 (2024). https://doi.org/10.1007/s40820-024-01474-6
- Y. Li, L. Liu, C. Liu, Y. Lu, R. Shi et al., Rechargeable aqueous polymer-air batteries based on polyanthraquinone anode. Chem 5, 2159–2170 (2019). https://doi.org/10.1016/j.chempr.2019.06.001
- D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
- R. Li, M. Yang, H. Ma, X. Wang, H. Yu et al., A natural casein-based separator with brick-and-mortar structure for stable, high-rate proton batteries. Adv. Mater. 36, e2403489 (2024). https://doi.org/10.1002/adma.202403489
- R. Lin, C. Ke, J. Chen, S. Liu, J. Wang, Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 6, 399–417 (2022). https://doi.org/10.1016/j.joule.2022.01.002
- H. Cui, D. Zhang, Z. Wu, J. Zhu, P. Li et al., Tailoring hydroxyl groups of organic phenazine anodes for high-performance and stable alkaline batteries. Energy Environ. Sci. 17, 114–122 (2024). https://doi.org/10.1039/d3ee01212c
- M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019). https://doi.org/10.1002/adfm.201807847
- C.-C. Hu, C.-Y. Cheng, Anodic deposition of nickel oxides for the nickel-based batteries. J. Power Sources 111, 137–144 (2002). https://doi.org/10.1016/S0378-7753(02)00296-3
- D. Zhou, X. Guo, Q. Zhang, Y. Shi, H. Zhang et al., Nickel-based materials for advanced rechargeable batteries. Adv. Funct. Mater. 32, 2107928 (2022). https://doi.org/10.1002/adfm.202107928
- Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919
- T. Xu, M. Zhao, Z. Su, W. Duan, Y. Shi et al., Nanostructured LiTi2(PO4)3 anode with superior lithium and sodium storage capability aqueous electrolytes. J. Power Sources 481, 229110 (2021). https://doi.org/10.1016/j.jpowsour.2020.229110
- T. Xu, J. Yu, J. Ma, W. Ren, M. Hu et al., The critical role of water molecules in the development of aqueous electrolytes for rechargeable metal-ion batteries. J. Mater. Chem. A 12, 13551–13575 (2024). https://doi.org/10.1039/d3ta07767e
- X. Yang, L. Gong, X. Liu, P. Zhang, B. Li et al., Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage. Angew. Chem. Int. Ed. 61, e202207043 (2022). https://doi.org/10.1002/anie.202207043
- Y. Lin, H. Cui, C. Liu, R. Li, S. Wang et al., A covalent organic framework as a long-life and high-rate anode suitable for both aqueous acidic and alkaline batteries. Angew. Chem. Int. Ed. 62, e202218745 (2023). https://doi.org/10.1002/anie.202218745
- A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through in situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16, 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
- L. Li, L. Chen, Y. Wen, T. Xiong, H. Xu et al., Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries. J. Mater. Chem. A 8, 26013–26022 (2020). https://doi.org/10.1039/d0ta08600b
- C. Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang et al., Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017). https://doi.org/10.1038/nenergy.2017.74
- Y. Zou, Y. Wu, W. Wei, C. Qiao, M. Lu et al., Establishing pinhole deposition mode of Zn via scalable monolayer graphene film. Adv. Mater. 36, e2313775 (2024). https://doi.org/10.1002/adma.202313775
- S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, e2110140 (2022). https://doi.org/10.1002/adma.202110140
- D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15, 550–578 (2022). https://doi.org/10.1039/d1ee01789f
- M. Qiu, Y. Liang, J. Hong, J. Li, P. Sun et al., Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 63, e202407012 (2024). https://doi.org/10.1002/anie.202407012
- M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C. Nat. Commun. 14, 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
- S. Chen, T. Wang, L. Ma, B. Zhou, J. Wu et al., Aqueous rechargeable zinc air batteries operated at −110 °C. Chem 9, 497–510 (2023). https://doi.org/10.1016/j.chempr.2022.10.028
- S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Alkaline tolerant antifreezing additive enabling aqueous Zn||Ni battery operating at − 60 °C. Angew. Chem. Int. Ed. 61(48), e202212767 (2022). https://doi.org/10.1002/anie.202212767
- J. Galvao, B. Davis, M. Tilley, E. Normando, M.R. Duchen et al., Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28, 1317–1330 (2014). https://doi.org/10.1096/fj.13-235440
- Y. Zhang, Z. Sun, X. Kong, Y. Lin, W. Huang, An all-organic symmetric battery based on a triquinoxalinylene derivative with different redox voltage active sites and a large conjugation system. J. Mater. Chem. A 9, 26208–26215 (2021). https://doi.org/10.1039/d1ta06228j
- Y. Zhu, J. Li, X. Yun, G. Zhao, P. Ge et al., Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 16 (2020). https://doi.org/10.1007/s40820-019-0355-0
- A.A. Chen, R.V. Pappu, Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. J. Phys. Chem. B 111, 11884–11887 (2007). https://doi.org/10.1021/jp0765392
- T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
- L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
- U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
- M. Yang, Q. Zhao, H. Ma, R. Li, Y. Wang et al., Integrated uniformly microporous C4 N/multi-walled carbon nanotubes composite toward ultra-stable and ultralow-temperature proton batteries. Small 19, e2207487 (2023). https://doi.org/10.1002/smll.202207487
- M. Shi, R. Wang, J. He, L. Zhao, K. Dai et al., Multiple redox-active cyano-substituted organic compound integrated with MXene for high-performance flexible aqueous K-ion battery. Chem. Eng. J. 450, 138238 (2022). https://doi.org/10.1016/j.cej.2022.138238
- H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655–661 (2021). https://doi.org/10.1021/acsaem.0c02526
- M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 33, 2209777 (2023). https://doi.org/10.1002/adfm.202209777
- Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59, 4920–4924 (2020). https://doi.org/10.1002/anie.201916529
- Y.-C. Wen, H.-C. Kuo, J.-L. Guo, H.-W. Jia, Nuclear magnetic resonance spectroscopy investigation on ultralow melting temperature behavior of dimethyl sulfoxide-water solutions. J. Phys. Chem. B 120, 13125–13135 (2016). https://doi.org/10.1021/acs.jpcb.6b09040
- Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun et al., Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 6, 2174–2180 (2021). https://doi.org/10.1021/acsenergylett.1c00833
- Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11, 959 (2020). https://doi.org/10.1038/s41467-020-14748-5
- X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023). https://doi.org/10.1016/j.ensm.2022.12.048
- Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6, 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
- C. Liu, T. Ma, K. Xia, X. Hou, Q. Nian et al., High performance polyanthraquinone/Co–Ni(OH)2 aqueous batteries based on hydroxyl and potassium insertion/extraction reactions. Sustain. Energy Fuels 4, 132–137 (2020). https://doi.org/10.1039/c9se00598f
- T. Sun, C. Liu, J. Wang, Q. Nian, Y. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13, 676–683 (2020). https://doi.org/10.1007/s12274-020-2674-3
References
W. Zhang, J. Yin, W. Wang, Z. Bayhan, H.N. Alshareef, Status of rechargeable potassium batteries. Nano Energy 83, 105792 (2021). https://doi.org/10.1016/j.nanoen.2021.105792
Y. Pang, H. Li, S. Zhang, Q. Ma, P. Xiong et al., Conjugated porous polyimide poly(2, 6-diaminoanthraquinone) benzamide with good stability and high-performance as a cathode for sodium ion batteries. J. Mater. Chem. A 10, 1514–1521 (2022). https://doi.org/10.1039/d1ta06384g
J. Zhang, L. Chen, L. Niu, P. Jiang, G. Shao et al., Na superionic conductor-type TiNb(PO4)3 anode with high energy density and long cycle life enables aqueous alkaline-ion batteries. ACS Appl. Mater. Interfaces 11, 39757–39764 (2019). https://doi.org/10.1021/acsami.9b10671
H. Wu, J. Hao, Y. Jiang, Y. Jiao, J. Liu et al., Alkaline-based aqueous sodium-ion batteries for large-scale energy storage. Nat. Commun. 15, 575 (2024). https://doi.org/10.1038/s41467-024-44855-6
T. Cai, M. Cai, J. Mu, S. Zhao, H. Bi et al., High-entropy layered oxide cathode enabling high-rate for solid-state sodium-ion batteries. Nano-Micro Lett. 16, 10 (2023). https://doi.org/10.1007/s40820-023-01232-0
Y. Wang, Z. Wang, X. Xu, S.J.A. Oh, J. Sun et al., Ultra-stable sodium-ion battery enabled by all-solid-state ferroelectric-engineered composite electrolytes. Nano-Micro Lett. 16, 254 (2024). https://doi.org/10.1007/s40820-024-01474-6
Y. Li, L. Liu, C. Liu, Y. Lu, R. Shi et al., Rechargeable aqueous polymer-air batteries based on polyanthraquinone anode. Chem 5, 2159–2170 (2019). https://doi.org/10.1016/j.chempr.2019.06.001
D. Chao, W. Zhou, F. Xie, C. Ye, H. Li et al., Roadmap for advanced aqueous batteries: from design of materials to applications. Sci. Adv. (2020). https://doi.org/10.1126/sciadv.aba4098
R. Li, M. Yang, H. Ma, X. Wang, H. Yu et al., A natural casein-based separator with brick-and-mortar structure for stable, high-rate proton batteries. Adv. Mater. 36, e2403489 (2024). https://doi.org/10.1002/adma.202403489
R. Lin, C. Ke, J. Chen, S. Liu, J. Wang, Asymmetric donor-acceptor molecule-regulated core-shell-solvation electrolyte for high-voltage aqueous batteries. Joule 6, 399–417 (2022). https://doi.org/10.1016/j.joule.2022.01.002
H. Cui, D. Zhang, Z. Wu, J. Zhu, P. Li et al., Tailoring hydroxyl groups of organic phenazine anodes for high-performance and stable alkaline batteries. Energy Environ. Sci. 17, 114–122 (2024). https://doi.org/10.1039/d3ee01212c
M. Huang, M. Li, C. Niu, Q. Li, L. Mai, Recent advances in rational electrode designs for high-performance alkaline rechargeable batteries. Adv. Funct. Mater. 29, 1807847 (2019). https://doi.org/10.1002/adfm.201807847
C.-C. Hu, C.-Y. Cheng, Anodic deposition of nickel oxides for the nickel-based batteries. J. Power Sources 111, 137–144 (2002). https://doi.org/10.1016/S0378-7753(02)00296-3
D. Zhou, X. Guo, Q. Zhang, Y. Shi, H. Zhang et al., Nickel-based materials for advanced rechargeable batteries. Adv. Funct. Mater. 32, 2107928 (2022). https://doi.org/10.1002/adfm.202107928
Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919
T. Xu, M. Zhao, Z. Su, W. Duan, Y. Shi et al., Nanostructured LiTi2(PO4)3 anode with superior lithium and sodium storage capability aqueous electrolytes. J. Power Sources 481, 229110 (2021). https://doi.org/10.1016/j.jpowsour.2020.229110
T. Xu, J. Yu, J. Ma, W. Ren, M. Hu et al., The critical role of water molecules in the development of aqueous electrolytes for rechargeable metal-ion batteries. J. Mater. Chem. A 12, 13551–13575 (2024). https://doi.org/10.1039/d3ta07767e
X. Yang, L. Gong, X. Liu, P. Zhang, B. Li et al., Mesoporous polyimide-linked covalent organic framework with multiple redox-active sites for high-performance cathodic Li storage. Angew. Chem. Int. Ed. 61, e202207043 (2022). https://doi.org/10.1002/anie.202207043
Y. Lin, H. Cui, C. Liu, R. Li, S. Wang et al., A covalent organic framework as a long-life and high-rate anode suitable for both aqueous acidic and alkaline batteries. Angew. Chem. Int. Ed. 62, e202218745 (2023). https://doi.org/10.1002/anie.202218745
A.-G. Nguyen, M.-H. Lee, J. Kim, C.-J. Park, Construction of a high-performance composite solid electrolyte through in situ polymerization within a self-supported porous garnet framework. Nano-Micro Lett. 16, 83 (2024). https://doi.org/10.1007/s40820-023-01294-0
L. Li, L. Chen, Y. Wen, T. Xiong, H. Xu et al., Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries. J. Mater. Chem. A 8, 26013–26022 (2020). https://doi.org/10.1039/d0ta08600b
C. Peng, G.-H. Ning, J. Su, G. Zhong, W. Tang et al., Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes. Nat. Energy 2, 17074 (2017). https://doi.org/10.1038/nenergy.2017.74
Y. Zou, Y. Wu, W. Wei, C. Qiao, M. Lu et al., Establishing pinhole deposition mode of Zn via scalable monolayer graphene film. Adv. Mater. 36, e2313775 (2024). https://doi.org/10.1002/adma.202313775
S. Huang, L. Hou, T. Li, Y. Jiao, P. Wu, Antifreezing hydrogel electrolyte with ternary hydrogen bonding for high-performance zinc-ion batteries. Adv. Mater. 34, e2110140 (2022). https://doi.org/10.1002/adma.202110140
D. Hubble, D.E. Brown, Y. Zhao, C. Fang, J. Lau et al., Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 15, 550–578 (2022). https://doi.org/10.1039/d1ee01789f
M. Qiu, Y. Liang, J. Hong, J. Li, P. Sun et al., Entropy-driven hydrated eutectic electrolytes with diverse solvation configurations for all-temperature Zn-ion batteries. Angew. Chem. Int. Ed. 63, e202407012 (2024). https://doi.org/10.1002/anie.202407012
M. Qiu, P. Sun, K. Han, Z. Pang, J. Du et al., Tailoring water structure with high-tetrahedral-entropy for antifreezing electrolytes and energy storage at −80 °C. Nat. Commun. 14, 601 (2023). https://doi.org/10.1038/s41467-023-36198-5
S. Chen, T. Wang, L. Ma, B. Zhou, J. Wu et al., Aqueous rechargeable zinc air batteries operated at −110 °C. Chem 9, 497–510 (2023). https://doi.org/10.1016/j.chempr.2022.10.028
S. Chen, C. Peng, D. Xue, L. Ma, C. Zhi, Alkaline tolerant antifreezing additive enabling aqueous Zn||Ni battery operating at − 60 °C. Angew. Chem. Int. Ed. 61(48), e202212767 (2022). https://doi.org/10.1002/anie.202212767
J. Galvao, B. Davis, M. Tilley, E. Normando, M.R. Duchen et al., Unexpected low-dose toxicity of the universal solvent DMSO. FASEB J. 28, 1317–1330 (2014). https://doi.org/10.1096/fj.13-235440
Y. Zhang, Z. Sun, X. Kong, Y. Lin, W. Huang, An all-organic symmetric battery based on a triquinoxalinylene derivative with different redox voltage active sites and a large conjugation system. J. Mater. Chem. A 9, 26208–26215 (2021). https://doi.org/10.1039/d1ta06228j
Y. Zhu, J. Li, X. Yun, G. Zhao, P. Ge et al., Graphitic carbon quantum dots modified nickel cobalt sulfide as cathode materials for alkaline aqueous batteries. Nano-Micro Lett. 12, 16 (2020). https://doi.org/10.1007/s40820-019-0355-0
A.A. Chen, R.V. Pappu, Parameters of monovalent ions in the AMBER-99 forcefield: assessment of inaccuracies and proposed improvements. J. Phys. Chem. B 111, 11884–11887 (2007). https://doi.org/10.1021/jp0765392
T. Lu, F. Chen, Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580–592 (2012). https://doi.org/10.1002/jcc.22885
L. Martínez, R. Andrade, E.G. Birgin, J.M. Martínez, PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009). https://doi.org/10.1002/jcc.21224
U. Essmann, L. Perera, M.L. Berkowitz, T. Darden, H. Lee, L.G. Pedersen, A smooth p mesh Ewald method. J. Chem. Phys. 103(19), 8577–8593 (1995). https://doi.org/10.1063/1.470117
M. Yang, Q. Zhao, H. Ma, R. Li, Y. Wang et al., Integrated uniformly microporous C4 N/multi-walled carbon nanotubes composite toward ultra-stable and ultralow-temperature proton batteries. Small 19, e2207487 (2023). https://doi.org/10.1002/smll.202207487
M. Shi, R. Wang, J. He, L. Zhao, K. Dai et al., Multiple redox-active cyano-substituted organic compound integrated with MXene for high-performance flexible aqueous K-ion battery. Chem. Eng. J. 450, 138238 (2022). https://doi.org/10.1016/j.cej.2022.138238
H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C=N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655–661 (2021). https://doi.org/10.1021/acsaem.0c02526
M. Shi, R. Wang, L. Li, N. Chen, P. Xiao et al., Redox-active polymer integrated with MXene for ultra-stable and fast aqueous proton storage. Adv. Funct. Mater. 33, 2209777 (2023). https://doi.org/10.1002/adfm.202209777
Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc-organic battery. Angew. Chem. Int. Ed. 59, 4920–4924 (2020). https://doi.org/10.1002/anie.201916529
Y.-C. Wen, H.-C. Kuo, J.-L. Guo, H.-W. Jia, Nuclear magnetic resonance spectroscopy investigation on ultralow melting temperature behavior of dimethyl sulfoxide-water solutions. J. Phys. Chem. B 120, 13125–13135 (2016). https://doi.org/10.1021/acs.jpcb.6b09040
Q. Nian, X. Zhang, Y. Feng, S. Liu, T. Sun et al., Designing electrolyte structure to suppress hydrogen evolution reaction in aqueous batteries. ACS Energy Lett. 6, 2174–2180 (2021). https://doi.org/10.1021/acsenergylett.1c00833
Z. Guo, J. Huang, X. Dong, Y. Xia, L. Yan et al., An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 11, 959 (2020). https://doi.org/10.1038/s41467-020-14748-5
X. Zhang, C. Fu, S. Cheng, C. Zhang, L. Zhang et al., Novel PEO-based composite electrolyte for low-temperature all-solid-state lithium metal batteries enabled by interfacial cation-assistance. Energy Storage Mater. 56, 121–131 (2023). https://doi.org/10.1016/j.ensm.2022.12.048
Q. Zhang, K. Xia, Y. Ma, Y. Lu, L. Li et al., Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6, 2704–2712 (2021). https://doi.org/10.1021/acsenergylett.1c01054
C. Liu, T. Ma, K. Xia, X. Hou, Q. Nian et al., High performance polyanthraquinone/Co–Ni(OH)2 aqueous batteries based on hydroxyl and potassium insertion/extraction reactions. Sustain. Energy Fuels 4, 132–137 (2020). https://doi.org/10.1039/c9se00598f
T. Sun, C. Liu, J. Wang, Q. Nian, Y. Feng et al., A phenazine anode for high-performance aqueous rechargeable batteries in a wide temperature range. Nano Res. 13, 676–683 (2020). https://doi.org/10.1007/s12274-020-2674-3