Photostable and Biocompatible Fluorescent Silicon Nanoparticles for Imaging-Guided Co-Delivery of siRNA and Doxorubicin to Drug-Resistant Cancer Cells
Corresponding Author: Yao He
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 27
Abstract
The development of effective and safe vehicles to deliver small interfering RNA (siRNA) and chemotherapeutics remains a major challenge in RNA interference-based combination therapy with chemotherapeutics, which has emerged as a powerful platform to treat drug-resistant cancer cells. Herein, we describe the development of novel all-in-one fluorescent silicon nanoparticles (SiNPs)-based nanomedicine platform for imaging-guided co-delivery of siRNA and doxorubicin (DOX). This approach enhanced therapeutic efficacy in multidrug-resistant breast cancer cells (i.e., MCF-7/ADR cells). Typically, the SiNP-based nanocarriers enhanced the stability of siRNA in a biological environment (i.e., medium or RNase A) and imparted the responsive release behavior of siRNA, resulting in approximately 80% down-regulation of P-glycoprotein expression. Co-delivery of P-glycoprotein siRNA and DOX led to > 35-fold decrease in the half maximal inhibitory concentration of DOX in comparison with free DOX, indicating the pronounced therapeutic efficiency of the resultant nanocomposites for drug-resistant breast cancer cells. The intracellular time-dependent release behaviors of siRNA and DOX were revealed through tracking the strong and stable fluorescence of SiNPs. These data provide valuable information for designing effective RNA interference-based co-delivery carriers.
Highlights:
1 A novel all-in-one fluorescent nanomedicine platform based on silicon nanoparticles (SiNPs) was developed for imaging-guided co-delivery of short interfering RNA (siRNA) and doxorubicin (DOX).
2 The intracellular time-dependent release behaviors of siRNA and DOX were visually monitored by tracking the strong and stable fluorescence of SiNPs.
3 The SiNPs-based nanocarriers displayed pronounced therapeutic efficiency on drug-resistant breast cancer cells.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013). https://doi.org/10.1038/nrc3599
- M. Abbasi, A. Lavasanifar, H. Uludaˇ, Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med. Res. Rev. 33, 33–53 (2013). https://doi.org/10.1002/med.20244
- P.A. Watson, V.K. Arora, C.L. Sawyers, Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015). https://doi.org/10.1038/nrc4016
- A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). https://doi.org/10.1038/35888
- S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001). https://doi.org/10.1038/35078107
- J.E. Zuckerman, M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015). https://doi.org/10.1038/nrd4685
- Y. Min, J.M. Caster, M.J. Eblan, A.Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015). https://doi.org/10.1021/acs.chemrev.5b00116
- B. Jang, H. Kwon, P. Katila, S.J. Lee, H. Lee, Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Adv. Drug Deliv. Rev. 98, 113–133 (2016). https://doi.org/10.1016/j.addr.2015.10.023
- X.G. Ding, F. Peng, J. Zhou, W.B. Gong, G. Slaven, K.P. Loh, C.T. Lim, D.T. Leong, Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10, 41 (2019). https://doi.org/10.1038/s41467-018-07835-1
- R. Kanasty, J.R. Dorkin, A. Vegas, D. Anderson, Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013). https://doi.org/10.1038/nmat3765
- X. Xu, K. Xie, X.-Q. Zhang, E.M. Pridgen, G.Y. Park et al., Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. U.S.A. 110(46), 18638–18643 (2013). https://doi.org/10.1073/pnas.1303958110
- A.K. Iyer, A. Singh, S. Ganta, M.M. Amiji, Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 65, 1784–1802 (2013). https://doi.org/10.1016/j.addr.2013.07.012
- Y. Chang, K. Yang, P. Wei, S. Huang, Y. Pei, W. Zhao, Z. Pei, Cationic vesicles based on amphiphilic Pillar [5] arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew. Chem. Int. Ed. 53(48), 13126–13130 (2014). https://doi.org/10.1002/anie.201407272
- J.L. Shen, W. Zhang, R.G. Qi, Z.W. Mao, H.F. Shen, Engineering functional inorganic-organic hybrid systems: advances in siRNA therapeutics. Chem. Soc. Rev. 47, 1969–1995 (2018). https://doi.org/10.1039/C7CS00479F
- C.B. He, K.D. Lu, D.M. Liu, W.B. Lin, Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136(14), 5181–5184 (2014). https://doi.org/10.1021/ja4098862
- C.B. He, C. Poon, C. Chan, S.D. Yamada, W.B. Lin, Nanoscale coordination polymers codeliver chemotherapeutics and siRNAs to eradicate tumors of cisplatin-resistant ovarian cancer. J. Am. Chem. Soc. 138(18), 6010–6019 (2016). https://doi.org/10.1021/jacs.6b02486
- M. Wu, Q. Meng, Y. Chen, L. Zhang, M. Li et al., Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv. Mater. 28, 1963–1969 (2016). https://doi.org/10.1002/adma.201505524
- J.L. Shen, H.C. Kim, H. Su, F. Wang, J. Wolfram et al., Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4(5), 487–497 (2014). https://doi.org/10.7150/thno.8263
- J.L. Shen, R. Xu, J.H. Mai, H.C. Kim, X.J. Guo et al., High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7(11), 9867–9880 (2013). https://doi.org/10.1021/nn4035316
- Y. Liu, V. Gunda, X. Zhu, X. Xu, J. Wu et al., Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc. Natl. Acad. Sci. U.S.A. 113(28), 7750–7755 (2016). https://doi.org/10.1073/pnas.1605841113
- R. Wang, L. Zhou, W.X. Wang, X.M. Li, F. Zhang, In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun. 8, 14702 (2017). https://doi.org/10.1038/ncomms14702
- S. Kim, Y. Choi, G. Park, C. Won, Y.-J. Park, Y. Lee, B.-S. Kim, D.-H. Min, Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 10(2), 503–519 (2017). https://doi.org/10.1007/s12274-016-1309-1
- F. Peng, Y.Y. Su, Y.L. Zhong, C.H. Fan, S.T. Lee, Y. He, Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47(2), 612–623 (2014). https://doi.org/10.1021/ar400221g
- M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015). https://doi.org/10.1039/C4CS00486H
- Y.Y. Su, X.Y. Ji, Y. He, Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 28(47), 10567–10574 (2016). https://doi.org/10.1002/adma.201601173
- C.X. Song, Y.L. Zhong, X.X. Jiang, F. Peng, Y.M. Lu et al., Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 87(13), 6718–6723 (2015). https://doi.org/10.1021/acs.analchem.5b00853
- B.B. Chu, H.Y. Wang, B. Song, F. Peng, Y.Y. Su, Y. He, Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 88(18), 9235–9242 (2016). https://doi.org/10.1021/acs.analchem.6b02488
- X.Y. Ji, F. Peng, Y.L. Zhong, Y.Y. Su, X.X. Jiang et al., Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in vivo cancer therapy. Adv. Mater. 27(6), 1029–1034 (2015). https://doi.org/10.1002/adma.201403848
- Y.L. Zhong, X.T. Sun, S.Y. Wang, F. Peng, F. Bao et al., Large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 9(6), 5958–5967 (2015). https://doi.org/10.1021/acsnano.5b00683
- C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089
- M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher et al., Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010). https://doi.org/10.1038/nature08956
- Y. Tay, L. Yuan, D.T. Leong, Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano 9(5), 5609–5617 (2015). https://doi.org/10.1021/acsnano.5b01954
- M.I. Setyawati, R.V. Kutty, D.T. Leong, DNA nanostructures carrying stoichiometrically definable antibodies. Small 12(40), 5601–5611 (2016). https://doi.org/10.1002/smll.201601669
- K.J. Zhou, Y.G. Wang, X.N. Huang, K. Luby-phelps, B.D. Sumer, J.M. Gao, Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50(27), 6109–6114 (2011). https://doi.org/10.1002/anie.201100884
- D.H. Kim, L.M. Villeneuve, K.V. Morris, J.J. Rossi, Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006). https://doi.org/10.1038/nsmb1142
- B. Scaggiante, B. Dapas, R. Farra, M. Grassi, G. Pozzato, G. Gabreile, C. Qiansante, G. Grassi, Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab. 12(1), 11–23 (2011). https://doi.org/10.2174/13892001179452001742
- M.I. Setyawati, C.Y. Tay, S.L. Chia, S.L. Goh, W. Fang, Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4, 1673 (2013). https://doi.org/10.1038/ncomms2655
- C.Y. Tay, M.I. Setyawati, D.T. Leong, Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano 11(3), 2764–2772 (2017). https://doi.org/10.1021/acsnano.6b07806
- F. Peng, J.K. Tee, M.L. Setyawati, X.G. Ding, H.L.A. Yeo et al., Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis. ACS Appl. Mater. Interfaces. 10(38), 31938–31946 (2018). https://doi.org/10.1021/acsami.8b10527
- F. Peng, M.I. Setyawati, J.K. Tee, X.G. Ding, J.P. Wang et al., Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 14, 279–286 (2019). https://doi.org/10.1038/s41565-018-0356-z
References
C. Holohan, S. Van Schaeybroeck, D.B. Longley, P.G. Johnston, Cancer drug resistance: an evolving paradigm. Nat. Rev. Cancer 13, 714–726 (2013). https://doi.org/10.1038/nrc3599
M. Abbasi, A. Lavasanifar, H. Uludaˇ, Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med. Res. Rev. 33, 33–53 (2013). https://doi.org/10.1002/med.20244
P.A. Watson, V.K. Arora, C.L. Sawyers, Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015). https://doi.org/10.1038/nrc4016
A. Fire, S. Xu, M.K. Montgomery, S.A. Kostas, S.E. Driver, C.C. Mello, Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998). https://doi.org/10.1038/35888
S.M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, T. Tuschl, Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494–498 (2001). https://doi.org/10.1038/35078107
J.E. Zuckerman, M.E. Davis, Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov. 14, 843–856 (2015). https://doi.org/10.1038/nrd4685
Y. Min, J.M. Caster, M.J. Eblan, A.Z. Wang, Clinical translation of nanomedicine. Chem. Rev. 115(19), 11147–11190 (2015). https://doi.org/10.1021/acs.chemrev.5b00116
B. Jang, H. Kwon, P. Katila, S.J. Lee, H. Lee, Dual delivery of biological therapeutics for multimodal and synergistic cancer therapies. Adv. Drug Deliv. Rev. 98, 113–133 (2016). https://doi.org/10.1016/j.addr.2015.10.023
X.G. Ding, F. Peng, J. Zhou, W.B. Gong, G. Slaven, K.P. Loh, C.T. Lim, D.T. Leong, Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 10, 41 (2019). https://doi.org/10.1038/s41467-018-07835-1
R. Kanasty, J.R. Dorkin, A. Vegas, D. Anderson, Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013). https://doi.org/10.1038/nmat3765
X. Xu, K. Xie, X.-Q. Zhang, E.M. Pridgen, G.Y. Park et al., Enhancing tumor cell response to chemotherapy through nanoparticle-mediated codelivery of siRNA and cisplatin prodrug. Proc. Natl. Acad. Sci. U.S.A. 110(46), 18638–18643 (2013). https://doi.org/10.1073/pnas.1303958110
A.K. Iyer, A. Singh, S. Ganta, M.M. Amiji, Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev. 65, 1784–1802 (2013). https://doi.org/10.1016/j.addr.2013.07.012
Y. Chang, K. Yang, P. Wei, S. Huang, Y. Pei, W. Zhao, Z. Pei, Cationic vesicles based on amphiphilic Pillar [5] arene capped with ferrocenium: a redox-responsive system for drug/siRNA co-delivery. Angew. Chem. Int. Ed. 53(48), 13126–13130 (2014). https://doi.org/10.1002/anie.201407272
J.L. Shen, W. Zhang, R.G. Qi, Z.W. Mao, H.F. Shen, Engineering functional inorganic-organic hybrid systems: advances in siRNA therapeutics. Chem. Soc. Rev. 47, 1969–1995 (2018). https://doi.org/10.1039/C7CS00479F
C.B. He, K.D. Lu, D.M. Liu, W.B. Lin, Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc. 136(14), 5181–5184 (2014). https://doi.org/10.1021/ja4098862
C.B. He, C. Poon, C. Chan, S.D. Yamada, W.B. Lin, Nanoscale coordination polymers codeliver chemotherapeutics and siRNAs to eradicate tumors of cisplatin-resistant ovarian cancer. J. Am. Chem. Soc. 138(18), 6010–6019 (2016). https://doi.org/10.1021/jacs.6b02486
M. Wu, Q. Meng, Y. Chen, L. Zhang, M. Li et al., Large pore-sized hollow mesoporous organosilica for redox-responsive gene delivery and synergistic cancer chemotherapy. Adv. Mater. 28, 1963–1969 (2016). https://doi.org/10.1002/adma.201505524
J.L. Shen, H.C. Kim, H. Su, F. Wang, J. Wolfram et al., Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics. Theranostics 4(5), 487–497 (2014). https://doi.org/10.7150/thno.8263
J.L. Shen, R. Xu, J.H. Mai, H.C. Kim, X.J. Guo et al., High capacity nanoporous silicon carrier for systemic delivery of gene silencing therapeutics. ACS Nano 7(11), 9867–9880 (2013). https://doi.org/10.1021/nn4035316
Y. Liu, V. Gunda, X. Zhu, X. Xu, J. Wu et al., Theranostic near-infrared fluorescent nanoplatform for imaging and systemic siRNA delivery to metastatic anaplastic thyroid cancer. Proc. Natl. Acad. Sci. U.S.A. 113(28), 7750–7755 (2016). https://doi.org/10.1073/pnas.1605841113
R. Wang, L. Zhou, W.X. Wang, X.M. Li, F. Zhang, In vivo gastrointestinal drug-release monitoring through second near-infrared window fluorescent bioimaging with orally delivered microcarriers. Nat. Commun. 8, 14702 (2017). https://doi.org/10.1038/ncomms14702
S. Kim, Y. Choi, G. Park, C. Won, Y.-J. Park, Y. Lee, B.-S. Kim, D.-H. Min, Highly efficient gene silencing and bioimaging based on fluorescent carbon dots in vitro and in vivo. Nano Res. 10(2), 503–519 (2017). https://doi.org/10.1007/s12274-016-1309-1
F. Peng, Y.Y. Su, Y.L. Zhong, C.H. Fan, S.T. Lee, Y. He, Silicon nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47(2), 612–623 (2014). https://doi.org/10.1021/ar400221g
M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging. Chem. Soc. Rev. 44, 4853–4921 (2015). https://doi.org/10.1039/C4CS00486H
Y.Y. Su, X.Y. Ji, Y. He, Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 28(47), 10567–10574 (2016). https://doi.org/10.1002/adma.201601173
C.X. Song, Y.L. Zhong, X.X. Jiang, F. Peng, Y.M. Lu et al., Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 87(13), 6718–6723 (2015). https://doi.org/10.1021/acs.analchem.5b00853
B.B. Chu, H.Y. Wang, B. Song, F. Peng, Y.Y. Su, Y. He, Fluorescent and photostable silicon nanoparticles sensors for real-time and long-term intracellular pH measurement in live cells. Anal. Chem. 88(18), 9235–9242 (2016). https://doi.org/10.1021/acs.analchem.6b02488
X.Y. Ji, F. Peng, Y.L. Zhong, Y.Y. Su, X.X. Jiang et al., Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in vivo cancer therapy. Adv. Mater. 27(6), 1029–1034 (2015). https://doi.org/10.1002/adma.201403848
Y.L. Zhong, X.T. Sun, S.Y. Wang, F. Peng, F. Bao et al., Large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 9(6), 5958–5967 (2015). https://doi.org/10.1021/acsnano.5b00683
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to imageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089
M.E. Davis, J.E. Zuckerman, C.H.J. Choi, D. Seligson, A. Tolcher et al., Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067–1070 (2010). https://doi.org/10.1038/nature08956
Y. Tay, L. Yuan, D.T. Leong, Nature-inspired DNA nanosensor for real-time in situ detection of mRNA in living cells. ACS Nano 9(5), 5609–5617 (2015). https://doi.org/10.1021/acsnano.5b01954
M.I. Setyawati, R.V. Kutty, D.T. Leong, DNA nanostructures carrying stoichiometrically definable antibodies. Small 12(40), 5601–5611 (2016). https://doi.org/10.1002/smll.201601669
K.J. Zhou, Y.G. Wang, X.N. Huang, K. Luby-phelps, B.D. Sumer, J.M. Gao, Tunable, ultrasensitive pH-responsive nanoparticles targeting specific endocytic organelles in living cells. Angew. Chem. Int. Ed. 50(27), 6109–6114 (2011). https://doi.org/10.1002/anie.201100884
D.H. Kim, L.M. Villeneuve, K.V. Morris, J.J. Rossi, Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells. Nat. Struct. Mol. Biol. 13, 793–797 (2006). https://doi.org/10.1038/nsmb1142
B. Scaggiante, B. Dapas, R. Farra, M. Grassi, G. Pozzato, G. Gabreile, C. Qiansante, G. Grassi, Improving siRNA bio-distribution and minimizing side effects. Curr. Drug Metab. 12(1), 11–23 (2011). https://doi.org/10.2174/13892001179452001742
M.I. Setyawati, C.Y. Tay, S.L. Chia, S.L. Goh, W. Fang, Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4, 1673 (2013). https://doi.org/10.1038/ncomms2655
C.Y. Tay, M.I. Setyawati, D.T. Leong, Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano 11(3), 2764–2772 (2017). https://doi.org/10.1021/acsnano.6b07806
F. Peng, J.K. Tee, M.L. Setyawati, X.G. Ding, H.L.A. Yeo et al., Inorganic nanomaterials as highly efficient inhibitors of cellular hepatic fibrosis. ACS Appl. Mater. Interfaces. 10(38), 31938–31946 (2018). https://doi.org/10.1021/acsami.8b10527
F. Peng, M.I. Setyawati, J.K. Tee, X.G. Ding, J.P. Wang et al., Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 14, 279–286 (2019). https://doi.org/10.1038/s41565-018-0356-z