Fluorescent Silicon Nanorods-Based Nanotheranostic Agents for Multimodal Imaging-Guided Photothermal Therapy
Corresponding Author: Yao He
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 73
Abstract
The utilization of diagnosis to guide/aid therapy procedures has shown great prospects in the era of personalized medicine along with the recognition of tumor heterogeneity and complexity. Herein, a kind of multifunctional silicon-based nanostructure, i.e., gold nanoparticles-decorated fluorescent silicon nanorods (Au@SiNRs), is fabricated and exploited for tumor-targeted multimodal imaging-guided photothermal therapy. In particular, the prepared Au@SiNRs feature high photothermal conversion efficiency (~ 43.9%) and strong photothermal stability (photothermal performance stays constant after five-cycle NIR laser irradiation), making them high-performance agents for simultaneously photoacoustic and infrared thermal imaging. The Au@SiNRs are readily modified with targeting peptide ligands, enabling an enhanced tumor accumulation with a high value of ~ 8.74% ID g−1. Taking advantages of these unique merits, the Au@SiNRs are superbly suitable for specifically ablating tumors in vivo without appreciable toxicity under the guidance of multimodal imaging. Typically, all the mice treated with the Au@SiNRs remain alive, and no distinct tumor recurrence is observed during 60-day investigation.
Highlights:
1 A kind of multifunctional silicon-based theranostic agent is fabricated and exploited for imaging-guided tumor-targeted photothermal therapy.
2 The obtained gold nanoparticles-decorated fluorescent silicon nanorods featuring high photothermal conversion performance and good photothermal stability enable a total ablation of tumors and prolong the survival time of mice.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Shi, P.W. Kantoff, R.O. Wooster, C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
- H. Chen, W. Zhang, G. Zhu, J. Xie, X. Chen, Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017). https://doi.org/10.1038/natrevmats.2017.24
- X.J. Huang, W.Z. Zhang, G.Q. Guan, G.S. Song, R.J. Zou, J.Q. Hu, Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 50(10), 2529–2538 (2017). https://doi.org/10.1021/acs.accounts.7b00294
- X. Zhang, J.C. Liu, X.R. Yang, G.J. He, B. Li et al., CuCo2S4 nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation. Nanoscale 11, 9733–9742 (2019). https://doi.org/10.1039/C9NR00772E
- S.B. Lee, J.-E. Lee, S.J. Cho, J.W. Chin, S.K. Kim et al., Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 11, 36 (2019). https://doi.org/10.1007/s40820-019-0266-0
- Y. Cheng, Y. Chang, Y. Feng, H. Jian, Z. Tang, H. Zhang, Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem. Int. Ed. 57(1), 246–251 (2018). https://doi.org/10.1002/anie.201710399
- X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K.Y. Pu, Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew. Chem. Int. Ed. 57(26), 7804–7808 (2018). https://doi.org/10.1002/anie.201803321
- J. Wang, J. Liu, Y. Liu, L. Wang, M.J. Cao et al., Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv. Mater. 28(40), 8950–8958 (2016). https://doi.org/10.1002/adma.201603114
- P. Xue, R.H. Yang, L.H. Sun, Q. Li, L. Zhang, Z.G. Xu, Y.J. Kang, Indocyanine green-conjugated magnetic prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nano-Micro Lett. 10(4), 74 (2018). https://doi.org/10.1007/s40820-018-0227-z
- J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009). https://doi.org/10.1038/nmat2398
- N.P. Dasgupta, C. Liu, S. Andrews, F.B. Prinz, P. Yang, Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 135(35), 12932–12935 (2013). https://doi.org/10.1021/ja405680p
- F. Peng, Y.Y. Su, X.P. Wei, Y.M. Lu, Y.F. Zhou, Y.L. Zhong, S.T. Lee, Y. He, Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew. Chem. Int. Ed. 52(5), 1457–1461 (2013). https://doi.org/10.1002/anie.201206737
- E. Phillips, O. PenateMedina, P.B. Zanzonico, R.D. Carvajal, P. Mohan et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Trans. Med. 6(260), 260 (2014)
- F. Peng, Y. Su, Y. Zhong, C. Fan, S.-T. Lee, Y. He, Silicon Nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47(2), 612–623 (2014). https://doi.org/10.1021/ar400221g
- J.G. Croissant, Y. Fatieiev, N.M. Khashab, Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater. 29(9), 1604634 (2017). https://doi.org/10.1002/adma.201604634
- D.X. Guo, X.Y. Ji, F. Peng, Y.L. Zhong, B.B. Chu, Y.Y. Su, Y. He, Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 11, 27 (2019). https://doi.org/10.1007/s40820-019-0257-1
- C. Chiappini, E. De Rosa, J.O. Martinez, X. Liu, J.M. Steele, M. Stevens, E. Tasciotti, Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015). https://doi.org/10.1038/nmat4249
- Y.L. Zhong, F. Peng, X.P. Wei, Y.F. Zhou, J. Wang et al., Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem. Int. Ed. 51(34), 8485–8489 (2012). https://doi.org/10.1002/anie.201202085
- S. Wu, Y. Zhong, Y. Zhou, B. Song, B. Chu, X. Ji, Y. Wu, Y. Su, Y. He, Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 137(46), 14726–14732 (2015). https://doi.org/10.1021/jacs.5b08685
- Y. Zhong, X. Sun, S. Wang, F. Peng, F. Bao et al., Facile large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 9(6), 5958–5967 (2015). https://doi.org/10.1021/acsnano.5b00683
- F. Erogbogbo, K.T. Yong, I. Roy, R. Hu, W.C. Law et al., In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5(1), 413–423 (2011). https://doi.org/10.1021/nn1018945
- X.Y. Ji, F. Peng, Y.L. Zhong, Y.Y. Su, X.X. Jiang et al., Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in vivo cancer therapy. Adv. Mater. 27(6), 1029–1034 (2015). https://doi.org/10.1002/adma.201403848
- Y. Su, X. Ji, Y. He, Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 28(47), 10567–10574 (2016). https://doi.org/10.1002/adma.201601173
- F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)
- E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park et al., Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138–142 (2010). https://doi.org/10.1038/nnano.2009.353
- S. Su, X. Wei, Y. Zhong, Y. Guo, Y. Su et al., Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano 6(3), 2582–2590 (2012). https://doi.org/10.1021/nn2050449
- R. Lavieville, F. Triozon, S. Barraud, A. Corna, X. Jehl et al., Quantum dot made in metal oxide silicon-nanowire field effect transistor working at room temperature. Nano Lett. 15(5), 2958–2964 (2015). https://doi.org/10.1021/nl504806s
- A. Shabaev, C.S. Hellberg, A.L. Efros, Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 46(6), 1242–1251 (2013). https://doi.org/10.1021/ar300283j
- X. Lu, C.M. Hessel, Y. Yu, T.D. Bogart, B.A. Korgel, Colloidal luminescent silicon nanorods. Nano Lett. 13(7), 3101–3105 (2013). https://doi.org/10.1021/nl401802h
- B. Song, Y. Zhong, S. Wu, B. Chu, Y. Su, Y. He, One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc. 138(14), 4824–4831 (2016). https://doi.org/10.1021/jacs.6b00479
- C.J. Stolle, X. Lu, Y. Yu, R.D. Schaller, B.A. Korgel, Efficient carrier multiplication in colloidal silicon nanorods. Nano Lett. 17(9), 5580–5586 (2017). https://doi.org/10.1021/acs.nanolett.7b02386
- B.B. Chu, B. Song, X.Y. Ji, Y.Y. Su, H.Y. Wang, Y. He, Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular ph in live cells. Anal. Chem. 89(22), 12152–12159 (2017). https://doi.org/10.1021/acs.analchem.7b02791
- A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150124
- S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 105(33), 11613–11618 (2008). https://doi.org/10.1073/pnas.0801763105
- Z.J. Zhang, J. Wang, X. Xie, T. Wen, Y.L. Ji, X.C. Wu, Y.L. Zhao, C.Y. Chen, near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 136(20), 7317–7326 (2014). https://doi.org/10.1021/ja412735p
- P. Kolhar, A.C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti, S. Mitragotri, Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U.S.A. 110(26), 10753–10758 (2013). https://doi.org/10.1073/pnas.1308345110
- D. Tang, Z. Li, Y. Gao, H. Sun, S. Zhou, A bio-inspired rod-shaped nanoplatform for strongly infecting tumor cells and enhancing the delivery efficiency of anticancer drugs. Adv. Funct. Mater. 26(1), 66–79 (2016). https://doi.org/10.1002/adfm.201503664
- Q. Sun, Q. You, X. Pang, X. Tan, J. Wang et al., A photoresponsive and rod-shape nanocarrier: single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials 122, 188–200 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.021
- J. Xue, Z. Guan, J. Lin, C. Cai, W. Zhang, X. Jiang, Cellular internalization of rod-like nanoparticles with various surface patterns: novel entry pathway and controllable uptake capacity. Small 13(24), 1604214 (2017). https://doi.org/10.1002/smll.201604214
- S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
- S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, G. Kar, Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21(13), 5949–5956 (2005). https://doi.org/10.1021/la050283e
- R.O. Hynes, Integrins: bidirectional, allosteric signaling machines. Cell 110(6), 673–687 (2002). https://doi.org/10.1016/S0092-8674(02)00971-6
- J.X. Guo, Y.L. Chen, Y.J. Jiang, H.X. Ju, Polyadenine-modulated DNA conformation monitored by surface-enhanced raman scattering (SERS) on multibranched gold nanoparticles and its sensing application. Chem. Eur. J. 23(39), 9332–9337 (2017). https://doi.org/10.1002/chem.201700883
- K. Zheng, M.I. Setyawati, D.T. Leong, J. Xie, Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 30(8), 2800–2808 (2018). https://doi.org/10.1021/acs.chemmater.8b00667
- Y.Y. Jiang, J.C. Li, X. Zhen, C. Xie, K.Y. Pu, Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30(49), 1801778 (2018). https://doi.org/10.1002/adma.201801778
- T. Liu, M.K. Zhang, W.L. Liu, X. Zeng, X.L. Song, X.Q. Yang, X.Z. Zhang, J. Feng, Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 12(4), 3917–3927 (2018). https://doi.org/10.1021/acsnano.8b01456
- D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111(9), 3636–3641 (2007). https://doi.org/10.1021/jp064341w
- Y.Y. Su, X.P. Wei, F. Peng, Y.L. Zhong, Y.M. Lu et al., Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 12(4), 1845–1850 (2012). https://doi.org/10.1021/nl204203t
- J. Zeng, D. Goldfeld, Y. Xia, A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem. Int. Ed. 52(15), 4169–4173 (2013). https://doi.org/10.1002/anie.201210359
- K.Q. Peng, X. Wang, X.L. Wu, S.T. Lee, Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 9(11), 3704–3709 (2009). https://doi.org/10.1021/nl901734e
- M. Lv, S. Su, Y. He, Q. Huang, W. Hu, D. Li, C.S.T.Lee Fan, Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 22(48), 5463–5467 (2010). https://doi.org/10.1002/adma.201001934
- W.L. Zhang, G.Y. Deng, X.X. Zhao, J. Tao, G.S. Song et al., Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 159, 68–81 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.021
- K.Y. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014). https://doi.org/10.1038/nnano.2013.302
- P.C. Brooks, A.M.P. Montgomery, M. Rosenfeld, R.A. Reisfeld, T. Hu, G. Klier, D.A. Cheresh, Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7), 1157–1164 (1994). https://doi.org/10.1016/0092-8674(94)90007-8
- C.X. Song, Y.L. Zhong, X.X. Jiang, F. Peng, Y.M. Lu, X.Y. Ji, Y.Y. Su, Y. He, Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 87(13), 6718–6723 (2015). https://doi.org/10.1021/acs.analchem.5b00853
- M.M. Tang, X.Y. Ji, H. Xu, L. Zhang, A.R. Jiang, B. Song, Y.Y. Su, Y. He, Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal. Chem. 90(13), 8188–8195 (2018). https://doi.org/10.1021/acs.analchem.8b01580
- M.I. Setyawati, C.Y. Tay, S.L. Chia, S.L. Goh, W. Fang et al., Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4, 1673 (2013). https://doi.org/10.1038/ncomms2655
- C.Y. Tay, M.I. Setyawati, D.T. Leong, Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano 11(3), 2764–2772 (2017). https://doi.org/10.1021/acsnano.6b07806
- F. Peng, M.I. Setyawati, J.K. Tee, X.G. Ding, J.P. Wang, M.E. Nga, H.K. Ho, D.T. Leong, Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 14, 279–286 (2019). https://doi.org/10.1038/s41565-018-0356-z
- Y.Y. Su, F. Peng, Z.Y. Jiang, Y.L. Zhong, Y.M. Lu et al., In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials 32(15), 5855–5862 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.063
- Y.M. Lu, Y.Y. Su, Y.F. Zhou, J. Wang, F. Peng et al., In vivo behavior of near infrared-emitting quantum dots. Biomaterials 34(17), 4302–4308 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.054
References
J. Shi, P.W. Kantoff, R.O. Wooster, C. Farokhzad, Cancer nanomedicine: progress, challenges and opportunities. Nat. Rev. Cancer 17, 20–37 (2017). https://doi.org/10.1038/nrc.2016.108
H. Chen, W. Zhang, G. Zhu, J. Xie, X. Chen, Rethinking cancer nanotheranostics. Nat. Rev. Mater. 2, 17024 (2017). https://doi.org/10.1038/natrevmats.2017.24
X.J. Huang, W.Z. Zhang, G.Q. Guan, G.S. Song, R.J. Zou, J.Q. Hu, Design and functionalization of the NIR-responsive photothermal semiconductor nanomaterials for cancer theranostics. Acc. Chem. Res. 50(10), 2529–2538 (2017). https://doi.org/10.1021/acs.accounts.7b00294
X. Zhang, J.C. Liu, X.R. Yang, G.J. He, B. Li et al., CuCo2S4 nanocrystals as a nanoplatform for photothermal therapy of arterial inflammation. Nanoscale 11, 9733–9742 (2019). https://doi.org/10.1039/C9NR00772E
S.B. Lee, J.-E. Lee, S.J. Cho, J.W. Chin, S.K. Kim et al., Crushed gold shell nanoparticles labeled with radioactive iodine as a theranostic nanoplatform for macrophage-mediated photothermal therapy. Nano-Micro Lett. 11, 36 (2019). https://doi.org/10.1007/s40820-019-0266-0
Y. Cheng, Y. Chang, Y. Feng, H. Jian, Z. Tang, H. Zhang, Deep-level defect enhanced photothermal performance of bismuth sulfide-gold heterojunction nanorods for photothermal therapy of cancer guided by computed tomography imaging. Angew. Chem. Int. Ed. 57(1), 246–251 (2018). https://doi.org/10.1002/anie.201710399
X. Zhen, J. Zhang, J. Huang, C. Xie, Q. Miao, K.Y. Pu, Macrotheranostic probe with disease-activated near-infrared fluorescence, photoacoustic, and photothermal signals for imaging-guided therapy. Angew. Chem. Int. Ed. 57(26), 7804–7808 (2018). https://doi.org/10.1002/anie.201803321
J. Wang, J. Liu, Y. Liu, L. Wang, M.J. Cao et al., Gd-hybridized plasmonic Au-nanocomposites enhanced tumor-interior drug permeability in multimodal imaging-guided therapy. Adv. Mater. 28(40), 8950–8958 (2016). https://doi.org/10.1002/adma.201603114
P. Xue, R.H. Yang, L.H. Sun, Q. Li, L. Zhang, Z.G. Xu, Y.J. Kang, Indocyanine green-conjugated magnetic prussian blue nanoparticles for synchronous photothermal/photodynamic tumor therapy. Nano-Micro Lett. 10(4), 74 (2018). https://doi.org/10.1007/s40820-018-0227-z
J.H. Park, L. Gu, G. von Maltzahn, E. Ruoslahti, S.N. Bhatia, M.J. Sailor, Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat. Mater. 8, 331–336 (2009). https://doi.org/10.1038/nmat2398
N.P. Dasgupta, C. Liu, S. Andrews, F.B. Prinz, P. Yang, Atomic layer deposition of platinum catalysts on nanowire surfaces for photoelectrochemical water reduction. J. Am. Chem. Soc. 135(35), 12932–12935 (2013). https://doi.org/10.1021/ja405680p
F. Peng, Y.Y. Su, X.P. Wei, Y.M. Lu, Y.F. Zhou, Y.L. Zhong, S.T. Lee, Y. He, Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew. Chem. Int. Ed. 52(5), 1457–1461 (2013). https://doi.org/10.1002/anie.201206737
E. Phillips, O. PenateMedina, P.B. Zanzonico, R.D. Carvajal, P. Mohan et al., Clinical translation of an ultrasmall inorganic optical-PET imaging nanoparticle probe. Sci. Trans. Med. 6(260), 260 (2014)
F. Peng, Y. Su, Y. Zhong, C. Fan, S.-T. Lee, Y. He, Silicon Nanomaterials platform for bioimaging, biosensing, and cancer therapy. Acc. Chem. Res. 47(2), 612–623 (2014). https://doi.org/10.1021/ar400221g
J.G. Croissant, Y. Fatieiev, N.M. Khashab, Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater. 29(9), 1604634 (2017). https://doi.org/10.1002/adma.201604634
D.X. Guo, X.Y. Ji, F. Peng, Y.L. Zhong, B.B. Chu, Y.Y. Su, Y. He, Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant cancer cells. Nano-Micro Lett. 11, 27 (2019). https://doi.org/10.1007/s40820-019-0257-1
C. Chiappini, E. De Rosa, J.O. Martinez, X. Liu, J.M. Steele, M. Stevens, E. Tasciotti, Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat. Mater. 14, 532–539 (2015). https://doi.org/10.1038/nmat4249
Y.L. Zhong, F. Peng, X.P. Wei, Y.F. Zhou, J. Wang et al., Microwave-assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Angew. Chem. Int. Ed. 51(34), 8485–8489 (2012). https://doi.org/10.1002/anie.201202085
S. Wu, Y. Zhong, Y. Zhou, B. Song, B. Chu, X. Ji, Y. Wu, Y. Su, Y. He, Biomimetic preparation and dual-color bioimaging of fluorescent silicon nanoparticles. J. Am. Chem. Soc. 137(46), 14726–14732 (2015). https://doi.org/10.1021/jacs.5b08685
Y. Zhong, X. Sun, S. Wang, F. Peng, F. Bao et al., Facile large-quantity synthesis of stable, tunable-color silicon nanoparticles and their application for long-term cellular imaging. ACS Nano 9(6), 5958–5967 (2015). https://doi.org/10.1021/acsnano.5b00683
F. Erogbogbo, K.T. Yong, I. Roy, R. Hu, W.C. Law et al., In vivo targeted cancer imaging, sentinel lymph node mapping and multi-channel imaging with biocompatible silicon nanocrystals. ACS Nano 5(1), 413–423 (2011). https://doi.org/10.1021/nn1018945
X.Y. Ji, F. Peng, Y.L. Zhong, Y.Y. Su, X.X. Jiang et al., Highly fluorescent, photostable, and ultrasmall silicon drug nanocarriers for long-term tumor cell tracking and in vivo cancer therapy. Adv. Mater. 27(6), 1029–1034 (2015). https://doi.org/10.1002/adma.201403848
Y. Su, X. Ji, Y. He, Water-dispersible fluorescent silicon nanoparticles and their optical applications. Adv. Mater. 28(47), 10567–10574 (2016). https://doi.org/10.1002/adma.201601173
F. Patolsky, B.P. Timko, G. Yu, Y. Fang, A.B. Greytak, G. Zheng, C.M. Lieber, Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays. Science 313(5790), 1100–1104 (2006)
E. Stern, A. Vacic, N.K. Rajan, J.M. Criscione, J. Park et al., Label-free biomarker detection from whole blood. Nat. Nanotechnol. 5, 138–142 (2010). https://doi.org/10.1038/nnano.2009.353
S. Su, X. Wei, Y. Zhong, Y. Guo, Y. Su et al., Silicon nanowire-based molecular beacons for high-sensitivity and sequence-specific DNA multiplexed analysis. ACS Nano 6(3), 2582–2590 (2012). https://doi.org/10.1021/nn2050449
R. Lavieville, F. Triozon, S. Barraud, A. Corna, X. Jehl et al., Quantum dot made in metal oxide silicon-nanowire field effect transistor working at room temperature. Nano Lett. 15(5), 2958–2964 (2015). https://doi.org/10.1021/nl504806s
A. Shabaev, C.S. Hellberg, A.L. Efros, Efficiency of multiexciton generation in colloidal nanostructures. Acc. Chem. Res. 46(6), 1242–1251 (2013). https://doi.org/10.1021/ar300283j
X. Lu, C.M. Hessel, Y. Yu, T.D. Bogart, B.A. Korgel, Colloidal luminescent silicon nanorods. Nano Lett. 13(7), 3101–3105 (2013). https://doi.org/10.1021/nl401802h
B. Song, Y. Zhong, S. Wu, B. Chu, Y. Su, Y. He, One-dimensional fluorescent silicon nanorods featuring ultrahigh photostability, favorable biocompatibility, and excitation wavelength-dependent emission spectra. J. Am. Chem. Soc. 138(14), 4824–4831 (2016). https://doi.org/10.1021/jacs.6b00479
C.J. Stolle, X. Lu, Y. Yu, R.D. Schaller, B.A. Korgel, Efficient carrier multiplication in colloidal silicon nanorods. Nano Lett. 17(9), 5580–5586 (2017). https://doi.org/10.1021/acs.nanolett.7b02386
B.B. Chu, B. Song, X.Y. Ji, Y.Y. Su, H.Y. Wang, Y. He, Fluorescent silicon nanorods-based ratiometric sensors for long-term and real-time measurements of intracellular ph in live cells. Anal. Chem. 89(22), 12152–12159 (2017). https://doi.org/10.1021/acs.analchem.7b02791
A. Albanese, P.S. Tang, W.C. Chan, The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012). https://doi.org/10.1146/annurev-bioeng-071811-150124
S.E.A. Gratton, P.A. Ropp, P.D. Pohlhaus, J.C. Luft, V.J. Madden, M.E. Napier, J.M. DeSimone, The effect of particle design on cellular internalization pathways. Proc. Natl. Acad. Sci. U.S.A. 105(33), 11613–11618 (2008). https://doi.org/10.1073/pnas.0801763105
Z.J. Zhang, J. Wang, X. Xie, T. Wen, Y.L. Ji, X.C. Wu, Y.L. Zhao, C.Y. Chen, near infrared laser-induced targeted cancer therapy using thermoresponsive polymer encapsulated gold nanorods. J. Am. Chem. Soc. 136(20), 7317–7326 (2014). https://doi.org/10.1021/ja412735p
P. Kolhar, A.C. Anselmo, V. Gupta, K. Pant, B. Prabhakarpandian, E. Ruoslahti, S. Mitragotri, Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proc. Natl. Acad. Sci. U.S.A. 110(26), 10753–10758 (2013). https://doi.org/10.1073/pnas.1308345110
D. Tang, Z. Li, Y. Gao, H. Sun, S. Zhou, A bio-inspired rod-shaped nanoplatform for strongly infecting tumor cells and enhancing the delivery efficiency of anticancer drugs. Adv. Funct. Mater. 26(1), 66–79 (2016). https://doi.org/10.1002/adfm.201503664
Q. Sun, Q. You, X. Pang, X. Tan, J. Wang et al., A photoresponsive and rod-shape nanocarrier: single wavelength of light triggered photothermal and photodynamic therapy based on AuNRs-capped & Ce6-doped mesoporous silica nanorods. Biomaterials 122, 188–200 (2017). https://doi.org/10.1016/j.biomaterials.2017.01.021
J. Xue, Z. Guan, J. Lin, C. Cai, W. Zhang, X. Jiang, Cellular internalization of rod-like nanoparticles with various surface patterns: novel entry pathway and controllable uptake capacity. Small 13(24), 1604214 (2017). https://doi.org/10.1002/smll.201604214
S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1, 16014 (2016). https://doi.org/10.1038/natrevmats.2016.14
S.K. Bhargava, J.M. Booth, S. Agrawal, P. Coloe, G. Kar, Gold nanoparticle formation during bromoaurate reduction by amino acids. Langmuir 21(13), 5949–5956 (2005). https://doi.org/10.1021/la050283e
R.O. Hynes, Integrins: bidirectional, allosteric signaling machines. Cell 110(6), 673–687 (2002). https://doi.org/10.1016/S0092-8674(02)00971-6
J.X. Guo, Y.L. Chen, Y.J. Jiang, H.X. Ju, Polyadenine-modulated DNA conformation monitored by surface-enhanced raman scattering (SERS) on multibranched gold nanoparticles and its sensing application. Chem. Eur. J. 23(39), 9332–9337 (2017). https://doi.org/10.1002/chem.201700883
K. Zheng, M.I. Setyawati, D.T. Leong, J. Xie, Surface ligand chemistry of gold nanoclusters determines their antimicrobial ability. Chem. Mater. 30(8), 2800–2808 (2018). https://doi.org/10.1021/acs.chemmater.8b00667
Y.Y. Jiang, J.C. Li, X. Zhen, C. Xie, K.Y. Pu, Organic semiconducting agents for deep-tissue molecular imaging: second near-infrared fluorescence, self-luminescence, and photoacoustics. Adv. Mater. 30(49), 1801778 (2018). https://doi.org/10.1002/adma.201801778
T. Liu, M.K. Zhang, W.L. Liu, X. Zeng, X.L. Song, X.Q. Yang, X.Z. Zhang, J. Feng, Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 12(4), 3917–3927 (2018). https://doi.org/10.1021/acsnano.8b01456
D.K. Roper, W. Ahn, M. Hoepfner, Microscale heat transfer transduced by surface plasmon resonant gold nanoparticles. J. Phys. Chem. C 111(9), 3636–3641 (2007). https://doi.org/10.1021/jp064341w
Y.Y. Su, X.P. Wei, F. Peng, Y.L. Zhong, Y.M. Lu et al., Gold nanoparticles-decorated silicon nanowires as highly efficient near-infrared hyperthermia agents for cancer cells destruction. Nano Lett. 12(4), 1845–1850 (2012). https://doi.org/10.1021/nl204203t
J. Zeng, D. Goldfeld, Y. Xia, A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch. Angew. Chem. Int. Ed. 52(15), 4169–4173 (2013). https://doi.org/10.1002/anie.201210359
K.Q. Peng, X. Wang, X.L. Wu, S.T. Lee, Platinum nanoparticle decorated silicon nanowires for efficient solar energy conversion. Nano Lett. 9(11), 3704–3709 (2009). https://doi.org/10.1021/nl901734e
M. Lv, S. Su, Y. He, Q. Huang, W. Hu, D. Li, C.S.T.Lee Fan, Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 22(48), 5463–5467 (2010). https://doi.org/10.1002/adma.201001934
W.L. Zhang, G.Y. Deng, X.X. Zhao, J. Tao, G.S. Song et al., Degradable rhenium trioxide nanocubes with high localized surface plasmon resonance absorbance like gold for photothermal theranostics. Biomaterials 159, 68–81 (2018). https://doi.org/10.1016/j.biomaterials.2017.12.021
K.Y. Pu, A.J. Shuhendler, J.V. Jokerst, J. Mei, S.S. Gambhir, Z. Bao, J. Rao, Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice. Nat. Nanotechnol. 9, 233–239 (2014). https://doi.org/10.1038/nnano.2013.302
P.C. Brooks, A.M.P. Montgomery, M. Rosenfeld, R.A. Reisfeld, T. Hu, G. Klier, D.A. Cheresh, Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79(7), 1157–1164 (1994). https://doi.org/10.1016/0092-8674(94)90007-8
C.X. Song, Y.L. Zhong, X.X. Jiang, F. Peng, Y.M. Lu, X.Y. Ji, Y.Y. Su, Y. He, Peptide-conjugated fluorescent silicon nanoparticles enabling simultaneous tracking and specific destruction of cancer cells. Anal. Chem. 87(13), 6718–6723 (2015). https://doi.org/10.1021/acs.analchem.5b00853
M.M. Tang, X.Y. Ji, H. Xu, L. Zhang, A.R. Jiang, B. Song, Y.Y. Su, Y. He, Photostable and biocompatible fluorescent silicon nanoparticles-based theranostic probes for simultaneous imaging and treatment of ocular neovascularization. Anal. Chem. 90(13), 8188–8195 (2018). https://doi.org/10.1021/acs.analchem.8b01580
M.I. Setyawati, C.Y. Tay, S.L. Chia, S.L. Goh, W. Fang et al., Titanium dioxide nanomaterials cause endothelial cell leakiness by disrupting the homophilic interaction of VE-cadherin. Nat. Commun. 4, 1673 (2013). https://doi.org/10.1038/ncomms2655
C.Y. Tay, M.I. Setyawati, D.T. Leong, Nanoparticle density: a critical biophysical regulator of endothelial permeability. ACS Nano 11(3), 2764–2772 (2017). https://doi.org/10.1021/acsnano.6b07806
F. Peng, M.I. Setyawati, J.K. Tee, X.G. Ding, J.P. Wang, M.E. Nga, H.K. Ho, D.T. Leong, Nanoparticles promote in vivo breast cancer cell intravasation and extravasation by inducing endothelial leakiness. Nat. Nanotechnol. 14, 279–286 (2019). https://doi.org/10.1038/s41565-018-0356-z
Y.Y. Su, F. Peng, Z.Y. Jiang, Y.L. Zhong, Y.M. Lu et al., In vivo distribution, pharmacokinetics, and toxicity of aqueous synthesized cadmium-containing quantum dots. Biomaterials 32(15), 5855–5862 (2011). https://doi.org/10.1016/j.biomaterials.2011.04.063
Y.M. Lu, Y.Y. Su, Y.F. Zhou, J. Wang, F. Peng et al., In vivo behavior of near infrared-emitting quantum dots. Biomaterials 34(17), 4302–4308 (2013). https://doi.org/10.1016/j.biomaterials.2013.02.054