Single-Crystal Diamond Nanowires Embedded with Platinum Nanoparticles for High-Temperature Solar-Blind Photodetector
Corresponding Author: Dongming Sun
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 220
Abstract
Diamond, an ultrawide-bandgap semiconductor material, is promising for solar-blind ultraviolet photodetectors in extreme environments. However, when exposed to high-temperature conditions, diamond photodetector surfaces are unavoidably terminated with oxygen, leading to low photoresponsivity. To address this limitation, single-crystalline diamond nanowires (DNWs) embedded with platinum (Pt) nanoparticles were developed using Pt film deposition followed by chemical vapor deposition (CVD) homoepitaxial growth. During the CVD, Pt nanoparticles (approximately 20 nm in diameter) undergo dewetting and become uniformly embedded within the single-crystalline DNWs. Photodetectors fabricated with these Pt nanoparticles-embedded DNWs achieve a responsivity of 68.5 A W−1 under 220 nm illumination at room temperature, representing an improvement of approximately 2000 times compared to oxygen-terminated bulk diamond devices. Notably, the responsivity further increases with temperature, reaching an exceptional value of 3098.7 A W−1 at 275 °C. This outstanding performance is attributed to the synergistic effects of the one-dimensional nanowire structure, deep-level defects, the localized surface plasmon resonance effects induced by embedded Pt nanoparticles, and localized Schottky junctions at the Pt/diamond interface, which enhance optical absorption, carrier generation, and separation efficiency. These results highlight the significant potential of Pt nanoparticles-embedded DNWs for advanced deep ultraviolet detection in harsh environments, including aerospace, industrial monitoring, and other applications.
Highlights:
1 Single-crystalline diamond nanowires embedded with platinum nanoparticles were fabricated for high-temperature solar-blind photodetection.
2 At room temperature, the photodetector's responsivity represents a 2000-fold enhancement compared to bulk diamond. At 275 °C, the device demonstrates a responsivity of 3098.7 A W-1, while maintaining excellent spectral selectivity.
3 Multiple factors synergistically enhance performance, including one-dimensional carrier transport channels, deep-level defects, localized surface plasmon resonance effect, and localized Schottky junctions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- C. Xie, X.T. Lu, X.W. Tong, Z.X. Zhang, F.X. Liang et al., Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 29(9), 1806006 (2019). https://doi.org/10.1002/adfm.201806006
- S. Kunwar, S. Pandit, J.-H. Jeong, J. Lee, Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanops on GaN through the resonant coupling of localized surface plasmon resonance. Nano-Micro Lett. 12(1), 91 (2020). https://doi.org/10.1007/s40820-020-00437-x
- T. Yang, S.L. Chen, X.X. Li, X.J. Xu, F.M. Gao et al., High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater. 29(11), 1806250 (2019). https://doi.org/10.1002/adfm.201806250
- L. Jia, W. Zheng, F. Huang, Vacuum-Ultraviolet Photodetectors. PhotoniX 1(1), 22 (2020). https://doi.org/10.1186/s43074-020-00022-w
- A. Vijayakumar, R.M. Todi, K.B. Sundaram, Amorphous-SiCBN-based metal–semiconductor–metal photodetector for high-temperature applications. IEEE Electron Device Lett. 28(8), 713–715 (2007). https://doi.org/10.1109/LED.2007.902083
- H. Fei, D. Sang, L. Zou, S. Ge, Y. Yao et al., Research progress of optoelectronic devices based on diamond materials. Front. Phys. 11, 1226374 (2023). https://doi.org/10.3389/fphy.2023.1226374
- C.J.H. Wort, R.S. Balmer, Diamond as an electronic material. Mater. Today 11(1–2), 22–28 (2008). https://doi.org/10.1016/S1369-7021(07)70349-8
- M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez et al., Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Jpn. J. Appl. Phys. 51(9R), 090115 (2012). https://doi.org/10.1143/jjap.51.090115
- C.N. Lin, Y.J. Lu, X. Yang, Y.Z. Tian, C.J. Gao et al., Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 6(15), 1800068 (2018). https://doi.org/10.1002/adom.201800068
- Z. Liu, D. Zhao, J.-P. Ao, W. Wang, X. Chang et al., Enhanced ultraviolet photoresponse of diamond photodetector using patterned diamond film and two-step growth process. Mater. Sci. Semicond. Process. 89, 110–115 (2019). https://doi.org/10.1016/j.mssp.2018.08.031
- K.G. Crawford, I. Maini, D.A. MacDonald, D.A.J. Moran, Surface transfer doping of diamond: a review. Prog. Surf. Sci. 96(1), 100613 (2021). https://doi.org/10.1016/j.progsurf.2021.100613
- K.G. Crawford, D.C. Qi, J. McGlynn, T.G. Ivanov, P.B. Shah et al., Thermally stable, high performance transfer doping of diamond using transition metal oxides. Sci. Rep. 8, 3342 (2018). https://doi.org/10.1038/s41598-018-21579-4
- L. Ge, Y. Peng, B. Li, X. Chen, M. Xu et al., A highly responsive hydrogen-terminated diamond-based phototransistor. IEEE Electron Device Lett. 43(8), 1271–1274 (2022). https://doi.org/10.1109/led.2022.3180845
- A. Hiraiwa, A. Daicho, S. Kurihara, Y. Yokoyama, H. Kawarada, Refractory two-dimensional hole gas on hydrogenated diamond surface. J. Appl. Phys. 112(12), 124504 (2012). https://doi.org/10.1063/1.4769404
- Y. Itoh, Y. Sumikawa, H. Umezawa, H. Kawarada, Trapping mechanism on oxygen-terminated diamond surfaces. Appl. Phys. Lett. 89(20), 203503 (2006). https://doi.org/10.1063/1.2387983
- J. Forneris, A. Lo Giudice, P. Olivero, F. Picollo, A. Re et al., A 3-dimensional interdigitated electrode geometry for the enhancement of charge collection efficiency in diamond detectors. EPL (2014). https://doi.org/10.1209/0295-5075/108/18001
- K. Liu, B. Dai, V. Ralchenko, Y. Xia, B. Quan et al., Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity. Sens. Actuat. A Phys. 259, 121–126 (2017). https://doi.org/10.1016/j.sna.2017.01.027
- A.F. Zhou, R. Velázquez, X. Wang, P.X. Feng, Nanoplasmonic 1D diamond UV photodetectors with high performance. ACS Appl. Mater. Interfaces 11(41), 38068–38074 (2019). https://doi.org/10.1021/acsami.9b13321
- X. Chang, Y.-F. Wang, X. Zhang, Z. Liu, J. Fu et al., Enhanced ultraviolet absorption in diamond surface via localized surface plasmon resonance in palladium nanops. Appl. Surf. Sci. 464, 455–457 (2019). https://doi.org/10.1016/j.apsusc.2018.09.087
- P. Qiao, K. Liu, B. Dai, B. Liu, W. Zhang et al., Ultraviolet responsivity enhancement for diamond photodetectors via localized surface plasmon resonance in Indium nanoislands. Diam. Relat. Mater. 136, 109943 (2023). https://doi.org/10.1016/j.diamond.2023.109943
- X. Tang, H. Jiang, Z. Lin, X. Wang, W. Wang et al., Wafer-scale vertical 1D GaN nanorods/2D MoS2/PEDOT:PSS for piezophototronic effect-enhanced self-powered flexible photodetectors. Nano-Micro Lett. 17(1), 56 (2024). https://doi.org/10.1007/s40820-024-01553-8
- J. Zheng, H. Chong, L. Wang, S. Chen, W. Yang et al., A robust SiC nanoarray blue-light photodetector. J. Mater. Chem. C 8(18), 6072–6078 (2020). https://doi.org/10.1039/d0tc00552e
- J. Lu, B. Yang, H. Li, X. Guo, N. Huang et al., Revealing impurity evolution in silicon-doped diamond film via thermal oxidation. Carbon 203, 337–346 (2023). https://doi.org/10.1016/j.carbon.2022.11.070
- S. Prawer, R.J. Nemanich, Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1824), 2537–2565 (2004). https://doi.org/10.1098/rsta.2004.1451
- J. Lu, B. Yang, B. Yu, H. Li, N. Huang et al., Fabrication of diamond nanoneedle arrays containing high-brightness silicon-vacancy centers. Adv. Opt. Mater. 9(22), 2101427 (2021). https://doi.org/10.1002/adom.202101427
- A.C. Ferrari, J. Robertson, Origin of the 1150–cm–1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63(12), 121405 (2001). https://doi.org/10.1103/physrevb.63.121405
- M. Liao, J. Alvarez, M. Imura, Y. Koide, Submicron metal-semiconductor-metal diamond photodiodes toward improving the responsivity. Appl. Phys. Lett. 91(16), 163510 (2007). https://doi.org/10.1063/1.2800801
- K. Dong, T. Jiang, G. Chen, H. Cui, S. Wang et al., Light management in 2D perovskite toward high-performance optoelectronic applications. Nano-Micro Lett. 17(1), 131 (2025). https://doi.org/10.1007/s40820-024-01643-7
- W. Gajewski, P. Achatz, O.A. Williams, K. Haenen, E. Bustarret et al., Electronic and optical properties of boron-doped nanocrystalline diamond films. Phys. Rev. B 79(4), 045206 (2009). https://doi.org/10.1103/physrevb.79.045206
- M. Hou, H. So, A.J. Suria, A.S. Yalamarthy, D.G. Senesky, Suppression of persistent photoconductivity in AlGaN/GaN ultraviolet photodetectors using in situ heating. IEEE Electron Device Lett. 38(1), 56–59 (2017). https://doi.org/10.1109/LED.2016.2626388
- X. Zou, D. Xie, Y. Sun, C. Wang, Nanowires mediated growth of β-Ga2O3 nanobelts for high-temperature (> 573 K) solar-blind photodetectors. Nano Res. 16(4), 5548–5554 (2023). https://doi.org/10.1007/s12274-022-5243-0
- D.-S. Tsai, W.-C. Lien, D.-H. Lien, K.-M. Chen, M.-L. Tsai et al., Solar-blind photodetectors for harsh electronics. Sci. Rep. 3, 2628 (2013). https://doi.org/10.1038/srep02628
- A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi et al., A new approach for fabrications of SiC based photodetectors. Sci. Rep. 6, 23457 (2016). https://doi.org/10.1038/srep23457
- F. Xie, H. Lu, D. Chen, R. Zhang, Y. Zheng, GaN MSM photodetectors fabricated on bulk GaN with low dark-current and high UV/visible rejection ratio. Phys. Status Solidi C 8(7–8), 2473–2475 (2011). https://doi.org/10.1002/pssc.201000884
- L.W. Sang, M.Y. Liao, Y. Koide, M. Sumiya, InGaN photodiodes using CaF2 insulator for high-temperature UV detection. Phys. Status Solidi C 9(3–4), 953–956 (2012). https://doi.org/10.1002/pssc.201100374
- S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim et al., Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 34(4), 041207 (2016)
- R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang et al., High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts. Small 10(9), 1848–1856 (2014). https://doi.org/10.1002/smll.201302705
- M. De Vittorio, M. T. Todaro, et al., High temperature characterization of GaN-based photodetectors. Sens Actuators A: Phys 113(3), 329–333 (2004). https://doi.org/10.1016/j.sna.2004.04.016
- S.Y. Liang, Y.Z. Dai, G. Wang, H. Xia, J.H. Zhao, Room-temperature fabrication of sic microwire photodetectors on rigid and flexible substrates via femtosecond laser direct writing. Nanoscale 12, 23200–23205 (2020). https://doi.org/10.1039/d0nr05299j
- X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu et al., High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv. Mater. 34(1), e2106923 (2022). https://doi.org/10.1002/adma.202106923
- P. Zhang, K. Liu, Y. Zhu, Q. Ai, J. Yang et al., Vacuum ultraviolet photodetector with low dark current and fast response speed based on polycrystalline AlN thin film. Phys. Status Solidi RRL 17(2), 2200343 (2023). https://doi.org/10.1002/pssr.202200343
- X. Tang, X. Liu, C. Zhao, K. Niu, Z. Li et al., High-temperature ultraviolet photodetector and amplifying integrated circuits based on AlGaN/GaN heterostructure. J. Phys. D Appl. Phys. (2025). https://doi.org/10.1088/1361-6463/ad9d53
- H. So, J. Lim, D.G. Senesky, Continuous V-grooved AlGaN/GaN surfaces for high-temperature ultraviolet photodetectors. IEEE Sens. J. 16(10), 3633–3639 (2016). https://doi.org/10.1109/JSEN.2016.2531181
- H. Huang, H. Yin, K. Han, Y. Wang, Z. Wang et al., Robust deep UV photodetectors based on one-step-grown polycrystalline Ga2O3 film via pulsed laser deposition toward extreme-environment application. Adv. Opt. Mater. 12(24), 2400788 (2024). https://doi.org/10.1002/adom.202400788
- C. Fang, T. Li, Y. Shao, Y. Wang, H. Hu et al., High-performance solar-blind ultraviolet photodetectors based on a Ni/β-Ga2O3 vertical Schottky barrier diode. Nano Lett. 25(2), 914–921 (2025). https://doi.org/10.1021/acs.nanolett.4c05997
- C. Zhou, J. Wang, L. Shu, J. Hu, Z. Xi et al., ε-Ga2O3 solar-blind photodetector: pyroelectric effect and flame sensing application. Vacuum 234, 114060 (2025). https://doi.org/10.1016/j.vacuum.2025.114060
- D. Ji, B. Ercan, G. Benson, A.K.M. Newaz, S. Chowdhury, 60 A/W high voltage GaN avalanche photodiode demonstrating robust avalanche and high gain up to 525 K. Appl. Phys. Lett. 116, 211102 (2020). https://doi.org/10.1063/1.5140005
- T.A. Pham, A. Qamar, T. Dinh, M.K. Masud, M. Rais-Zadeh et al., Nanoarchitectonics for wide bandgap semiconductor nanowires: toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv. Sci. 7(21), 2001294 (2020). https://doi.org/10.1002/advs.202001294
- X. Zhou, Q. Zhang, L. Gan, X. Li, H. Li et al., High: performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 26(5), 704–712 (2016). https://doi.org/10.1002/adfm.201504135
- X. Li, S. Aftab, M. Mukhtar, F. Kabir, M.F. Khan et al., Exploring nanoscale perovskite materials for next-generation photodetectors: a comprehensive review and future directions. Nano-Micro Lett. 17(1), 28 (2024). https://doi.org/10.1007/s40820-024-01501-6
- Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15(1), 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
- M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup et al., The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1–45 (2013). https://doi.org/10.1016/j.physrep.2013.02.001
- P. Sittimart, S. Ohmagari, H. Umezawa, H. Kato, K. Ishiji et al., Thermally stable and radiation-proof visible-light photodetectors made from N-doped diamond. Adv. Opt. Mater. 11, 2203006 (2023). https://doi.org/10.1002/adom.202203006
- M. Liao, Y. Koide, J. Alvarez, M. Imura, J.-P. Kleider, Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors. Phys. Rev. B 78(4), 045112 (2008). https://doi.org/10.1103/physrevb.78.045112
- C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.R. Aplin et al., ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007). https://doi.org/10.1021/nl070111x
References
C. Xie, X.T. Lu, X.W. Tong, Z.X. Zhang, F.X. Liang et al., Recent progress in solar-blind deep-ultraviolet photodetectors based on inorganic ultrawide bandgap semiconductors. Adv. Funct. Mater. 29(9), 1806006 (2019). https://doi.org/10.1002/adfm.201806006
S. Kunwar, S. Pandit, J.-H. Jeong, J. Lee, Improved photoresponse of UV photodetectors by the incorporation of plasmonic nanops on GaN through the resonant coupling of localized surface plasmon resonance. Nano-Micro Lett. 12(1), 91 (2020). https://doi.org/10.1007/s40820-020-00437-x
T. Yang, S.L. Chen, X.X. Li, X.J. Xu, F.M. Gao et al., High-performance SiC nanobelt photodetectors with long-term stability against 300 °C up to 180 days. Adv. Funct. Mater. 29(11), 1806250 (2019). https://doi.org/10.1002/adfm.201806250
L. Jia, W. Zheng, F. Huang, Vacuum-Ultraviolet Photodetectors. PhotoniX 1(1), 22 (2020). https://doi.org/10.1186/s43074-020-00022-w
A. Vijayakumar, R.M. Todi, K.B. Sundaram, Amorphous-SiCBN-based metal–semiconductor–metal photodetector for high-temperature applications. IEEE Electron Device Lett. 28(8), 713–715 (2007). https://doi.org/10.1109/LED.2007.902083
H. Fei, D. Sang, L. Zou, S. Ge, Y. Yao et al., Research progress of optoelectronic devices based on diamond materials. Front. Phys. 11, 1226374 (2023). https://doi.org/10.3389/fphy.2023.1226374
C.J.H. Wort, R.S. Balmer, Diamond as an electronic material. Mater. Today 11(1–2), 22–28 (2008). https://doi.org/10.1016/S1369-7021(07)70349-8
M. Liao, L. Sang, T. Teraji, M. Imura, J. Alvarez et al., Comprehensive investigation of single crystal diamond deep-ultraviolet detectors. Jpn. J. Appl. Phys. 51(9R), 090115 (2012). https://doi.org/10.1143/jjap.51.090115
C.N. Lin, Y.J. Lu, X. Yang, Y.Z. Tian, C.J. Gao et al., Diamond-based all-carbon photodetectors for solar-blind imaging. Adv. Opt. Mater. 6(15), 1800068 (2018). https://doi.org/10.1002/adom.201800068
Z. Liu, D. Zhao, J.-P. Ao, W. Wang, X. Chang et al., Enhanced ultraviolet photoresponse of diamond photodetector using patterned diamond film and two-step growth process. Mater. Sci. Semicond. Process. 89, 110–115 (2019). https://doi.org/10.1016/j.mssp.2018.08.031
K.G. Crawford, I. Maini, D.A. MacDonald, D.A.J. Moran, Surface transfer doping of diamond: a review. Prog. Surf. Sci. 96(1), 100613 (2021). https://doi.org/10.1016/j.progsurf.2021.100613
K.G. Crawford, D.C. Qi, J. McGlynn, T.G. Ivanov, P.B. Shah et al., Thermally stable, high performance transfer doping of diamond using transition metal oxides. Sci. Rep. 8, 3342 (2018). https://doi.org/10.1038/s41598-018-21579-4
L. Ge, Y. Peng, B. Li, X. Chen, M. Xu et al., A highly responsive hydrogen-terminated diamond-based phototransistor. IEEE Electron Device Lett. 43(8), 1271–1274 (2022). https://doi.org/10.1109/led.2022.3180845
A. Hiraiwa, A. Daicho, S. Kurihara, Y. Yokoyama, H. Kawarada, Refractory two-dimensional hole gas on hydrogenated diamond surface. J. Appl. Phys. 112(12), 124504 (2012). https://doi.org/10.1063/1.4769404
Y. Itoh, Y. Sumikawa, H. Umezawa, H. Kawarada, Trapping mechanism on oxygen-terminated diamond surfaces. Appl. Phys. Lett. 89(20), 203503 (2006). https://doi.org/10.1063/1.2387983
J. Forneris, A. Lo Giudice, P. Olivero, F. Picollo, A. Re et al., A 3-dimensional interdigitated electrode geometry for the enhancement of charge collection efficiency in diamond detectors. EPL (2014). https://doi.org/10.1209/0295-5075/108/18001
K. Liu, B. Dai, V. Ralchenko, Y. Xia, B. Quan et al., Single crystal diamond UV detector with a groove-shaped electrode structure and enhanced sensitivity. Sens. Actuat. A Phys. 259, 121–126 (2017). https://doi.org/10.1016/j.sna.2017.01.027
A.F. Zhou, R. Velázquez, X. Wang, P.X. Feng, Nanoplasmonic 1D diamond UV photodetectors with high performance. ACS Appl. Mater. Interfaces 11(41), 38068–38074 (2019). https://doi.org/10.1021/acsami.9b13321
X. Chang, Y.-F. Wang, X. Zhang, Z. Liu, J. Fu et al., Enhanced ultraviolet absorption in diamond surface via localized surface plasmon resonance in palladium nanops. Appl. Surf. Sci. 464, 455–457 (2019). https://doi.org/10.1016/j.apsusc.2018.09.087
P. Qiao, K. Liu, B. Dai, B. Liu, W. Zhang et al., Ultraviolet responsivity enhancement for diamond photodetectors via localized surface plasmon resonance in Indium nanoislands. Diam. Relat. Mater. 136, 109943 (2023). https://doi.org/10.1016/j.diamond.2023.109943
X. Tang, H. Jiang, Z. Lin, X. Wang, W. Wang et al., Wafer-scale vertical 1D GaN nanorods/2D MoS2/PEDOT:PSS for piezophototronic effect-enhanced self-powered flexible photodetectors. Nano-Micro Lett. 17(1), 56 (2024). https://doi.org/10.1007/s40820-024-01553-8
J. Zheng, H. Chong, L. Wang, S. Chen, W. Yang et al., A robust SiC nanoarray blue-light photodetector. J. Mater. Chem. C 8(18), 6072–6078 (2020). https://doi.org/10.1039/d0tc00552e
J. Lu, B. Yang, H. Li, X. Guo, N. Huang et al., Revealing impurity evolution in silicon-doped diamond film via thermal oxidation. Carbon 203, 337–346 (2023). https://doi.org/10.1016/j.carbon.2022.11.070
S. Prawer, R.J. Nemanich, Raman spectroscopy of diamond and doped diamond. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362(1824), 2537–2565 (2004). https://doi.org/10.1098/rsta.2004.1451
J. Lu, B. Yang, B. Yu, H. Li, N. Huang et al., Fabrication of diamond nanoneedle arrays containing high-brightness silicon-vacancy centers. Adv. Opt. Mater. 9(22), 2101427 (2021). https://doi.org/10.1002/adom.202101427
A.C. Ferrari, J. Robertson, Origin of the 1150–cm–1 Raman mode in nanocrystalline diamond. Phys. Rev. B 63(12), 121405 (2001). https://doi.org/10.1103/physrevb.63.121405
M. Liao, J. Alvarez, M. Imura, Y. Koide, Submicron metal-semiconductor-metal diamond photodiodes toward improving the responsivity. Appl. Phys. Lett. 91(16), 163510 (2007). https://doi.org/10.1063/1.2800801
K. Dong, T. Jiang, G. Chen, H. Cui, S. Wang et al., Light management in 2D perovskite toward high-performance optoelectronic applications. Nano-Micro Lett. 17(1), 131 (2025). https://doi.org/10.1007/s40820-024-01643-7
W. Gajewski, P. Achatz, O.A. Williams, K. Haenen, E. Bustarret et al., Electronic and optical properties of boron-doped nanocrystalline diamond films. Phys. Rev. B 79(4), 045206 (2009). https://doi.org/10.1103/physrevb.79.045206
M. Hou, H. So, A.J. Suria, A.S. Yalamarthy, D.G. Senesky, Suppression of persistent photoconductivity in AlGaN/GaN ultraviolet photodetectors using in situ heating. IEEE Electron Device Lett. 38(1), 56–59 (2017). https://doi.org/10.1109/LED.2016.2626388
X. Zou, D. Xie, Y. Sun, C. Wang, Nanowires mediated growth of β-Ga2O3 nanobelts for high-temperature (> 573 K) solar-blind photodetectors. Nano Res. 16(4), 5548–5554 (2023). https://doi.org/10.1007/s12274-022-5243-0
D.-S. Tsai, W.-C. Lien, D.-H. Lien, K.-M. Chen, M.-L. Tsai et al., Solar-blind photodetectors for harsh electronics. Sci. Rep. 3, 2628 (2013). https://doi.org/10.1038/srep02628
A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi et al., A new approach for fabrications of SiC based photodetectors. Sci. Rep. 6, 23457 (2016). https://doi.org/10.1038/srep23457
F. Xie, H. Lu, D. Chen, R. Zhang, Y. Zheng, GaN MSM photodetectors fabricated on bulk GaN with low dark-current and high UV/visible rejection ratio. Phys. Status Solidi C 8(7–8), 2473–2475 (2011). https://doi.org/10.1002/pssc.201000884
L.W. Sang, M.Y. Liao, Y. Koide, M. Sumiya, InGaN photodiodes using CaF2 insulator for high-temperature UV detection. Phys. Status Solidi C 9(3–4), 953–956 (2012). https://doi.org/10.1002/pssc.201100374
S. Ahn, F. Ren, S. Oh, Y. Jung, J. Kim et al., Elevated temperature performance of Si-implanted solar-blind β-Ga2O3 photodetectors. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 34(4), 041207 (2016)
R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang et al., High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (l00) facet-oriented β-Ga2O3 nanobelts. Small 10(9), 1848–1856 (2014). https://doi.org/10.1002/smll.201302705
M. De Vittorio, M. T. Todaro, et al., High temperature characterization of GaN-based photodetectors. Sens Actuators A: Phys 113(3), 329–333 (2004). https://doi.org/10.1016/j.sna.2004.04.016
S.Y. Liang, Y.Z. Dai, G. Wang, H. Xia, J.H. Zhao, Room-temperature fabrication of sic microwire photodetectors on rigid and flexible substrates via femtosecond laser direct writing. Nanoscale 12, 23200–23205 (2020). https://doi.org/10.1039/d0nr05299j
X. Hou, X. Zhao, Y. Zhang, Z. Zhang, Y. Liu et al., High-performance harsh-environment-resistant GaOX solar-blind photodetectors via defect and doping engineering. Adv. Mater. 34(1), e2106923 (2022). https://doi.org/10.1002/adma.202106923
P. Zhang, K. Liu, Y. Zhu, Q. Ai, J. Yang et al., Vacuum ultraviolet photodetector with low dark current and fast response speed based on polycrystalline AlN thin film. Phys. Status Solidi RRL 17(2), 2200343 (2023). https://doi.org/10.1002/pssr.202200343
X. Tang, X. Liu, C. Zhao, K. Niu, Z. Li et al., High-temperature ultraviolet photodetector and amplifying integrated circuits based on AlGaN/GaN heterostructure. J. Phys. D Appl. Phys. (2025). https://doi.org/10.1088/1361-6463/ad9d53
H. So, J. Lim, D.G. Senesky, Continuous V-grooved AlGaN/GaN surfaces for high-temperature ultraviolet photodetectors. IEEE Sens. J. 16(10), 3633–3639 (2016). https://doi.org/10.1109/JSEN.2016.2531181
H. Huang, H. Yin, K. Han, Y. Wang, Z. Wang et al., Robust deep UV photodetectors based on one-step-grown polycrystalline Ga2O3 film via pulsed laser deposition toward extreme-environment application. Adv. Opt. Mater. 12(24), 2400788 (2024). https://doi.org/10.1002/adom.202400788
C. Fang, T. Li, Y. Shao, Y. Wang, H. Hu et al., High-performance solar-blind ultraviolet photodetectors based on a Ni/β-Ga2O3 vertical Schottky barrier diode. Nano Lett. 25(2), 914–921 (2025). https://doi.org/10.1021/acs.nanolett.4c05997
C. Zhou, J. Wang, L. Shu, J. Hu, Z. Xi et al., ε-Ga2O3 solar-blind photodetector: pyroelectric effect and flame sensing application. Vacuum 234, 114060 (2025). https://doi.org/10.1016/j.vacuum.2025.114060
D. Ji, B. Ercan, G. Benson, A.K.M. Newaz, S. Chowdhury, 60 A/W high voltage GaN avalanche photodiode demonstrating robust avalanche and high gain up to 525 K. Appl. Phys. Lett. 116, 211102 (2020). https://doi.org/10.1063/1.5140005
T.A. Pham, A. Qamar, T. Dinh, M.K. Masud, M. Rais-Zadeh et al., Nanoarchitectonics for wide bandgap semiconductor nanowires: toward the next generation of nanoelectromechanical systems for environmental monitoring. Adv. Sci. 7(21), 2001294 (2020). https://doi.org/10.1002/advs.202001294
X. Zhou, Q. Zhang, L. Gan, X. Li, H. Li et al., High: performance solar-blind deep ultraviolet photodetector based on individual single-crystalline Zn2GeO4 nanowire. Adv. Funct. Mater. 26(5), 704–712 (2016). https://doi.org/10.1002/adfm.201504135
X. Li, S. Aftab, M. Mukhtar, F. Kabir, M.F. Khan et al., Exploring nanoscale perovskite materials for next-generation photodetectors: a comprehensive review and future directions. Nano-Micro Lett. 17(1), 28 (2024). https://doi.org/10.1007/s40820-024-01501-6
Y. Zhao, X. Yin, P. Li, Z. Ren, Z. Gu et al., Multifunctional perovskite photodetectors: from molecular-scale crystal structure design to micro/nano-scale morphology manipulation. Nano-Micro Lett. 15(1), 187 (2023). https://doi.org/10.1007/s40820-023-01161-y
M.W. Doherty, N.B. Manson, P. Delaney, F. Jelezko, J. Wrachtrup et al., The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528(1), 1–45 (2013). https://doi.org/10.1016/j.physrep.2013.02.001
P. Sittimart, S. Ohmagari, H. Umezawa, H. Kato, K. Ishiji et al., Thermally stable and radiation-proof visible-light photodetectors made from N-doped diamond. Adv. Opt. Mater. 11, 2203006 (2023). https://doi.org/10.1002/adom.202203006
M. Liao, Y. Koide, J. Alvarez, M. Imura, J.-P. Kleider, Persistent positive and transient absolute negative photoconductivity observed in diamond photodetectors. Phys. Rev. B 78(4), 045112 (2008). https://doi.org/10.1103/physrevb.78.045112
C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.R. Aplin et al., ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7(4), 1003–1009 (2007). https://doi.org/10.1021/nl070111x