On-Chip Micro Temperature Controllers Based on Freestanding Thermoelectric Nano Films for Low-Power Electronics
Corresponding Author: Heiko Reith
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 126
Abstract
Multidimensional integration and multifunctional component assembly have been greatly explored in recent years to extend Moore’s Law of modern microelectronics. However, this inevitably exacerbates the inhomogeneity of temperature distribution in microsystems, making precise temperature control for electronic components extremely challenging. Herein, we report an on-chip micro temperature controller including a pair of thermoelectric legs with a total area of 50 × 50 μm2, which are fabricated from dense and flat freestanding Bi2Te3-based thermoelectric nano films deposited on a newly developed nano graphene oxide membrane substrate. Its tunable equivalent thermal resistance is controlled by electrical currents to achieve energy-efficient temperature control for low-power electronics. A large cooling temperature difference of 44.5 K at 380 K is achieved with a power consumption of only 445 μW, resulting in an ultrahigh temperature control capability over 100 K mW−1. Moreover, an ultra-fast cooling rate exceeding 2000 K s−1 and excellent reliability of up to 1 million cycles are observed. Our proposed on-chip temperature controller is expected to enable further miniaturization and multifunctional integration on a single chip for microelectronics.
Highlights:
1 Dense and flat freestanding Bi2Te3-based thermoelectric nano films were successfully fabricated by sputtering technology using a newly developed nano graphene oxide membrane as a substrate.
2 On-chip micro temperature controllers were integrated using conventional micro-electromechanical system technology, to achieve energy-efficient temperature control for low-power electronics.
3 The tunable equivalent thermal resistance enables an ultrahigh temperature control capability of 100 K mW−1 and an ultra-fast cooling rate exceeding 2000 K s−1, as well as excellent reliability of up to 1 million cycles.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
- L.T. Yeh, Review of heat transfer technologies in electronic equipment. J. Electron. Packag. 117, 333–339 (1995). https://doi.org/10.1115/1.2792113
- K.A. Bannister, G. Giorgetti, S. Gupta, Wireless sensor networking for “Hot” applications: effects of temperature on signal strength, data collection and localization. In Proceedings of the 5th workshop on embedded networked sensors (HotEmNets’ 08). (2008), pp. 1–5
- A. Beccari, D.A. Visani, S.A. Fedorov, M.J. Bereyhi, V. Boureau et al., Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022). https://doi.org/10.1038/s41567-021-01498-4
- X. Xu, Q. Wang, J. Tian, L. Yang, Y. Fang et al., On the air buoyancy effect in MEMS-based gravity sensors for high resolution gravity measurements. IEEE Sens. J. 21, 22480–22488 (2021). https://doi.org/10.1109/JSEN.2021.3106667
- R.P. Middlemiss, A. Samarelli, D.J. Paul, J. Hough, S. Rowan et al., Measurement of the earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016). https://doi.org/10.1038/nature17397
- V. Lakshminarayanan, N. Sriraam, The effect of temperature on the reliability of electronic components. 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), (IEEE, Bangalore, India, 2014), pp. 1–6
- L.T. Yeh, R.C. Chu, W.S. Janna, Thermal management of microelectronic equipment: heat transfer theory, analysis methods, and design practices. ASME press book series on electronic packaging. Appl. Mech. Rev. 56, B46–B48 (2003). https://doi.org/10.1115/1.1566408
- C.T.C. Nguyen, MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54, 251–270 (2007). https://doi.org/10.1109/TUFFC.2007.240
- L. Comenencia Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin et al., Low-power dual mode MEMS resonators with PPB stability over temperature. J. Microelectromech. Syst. 29, 190–201 (2020). https://doi.org/10.1109/JMEMS.2020.2970609
- M. Corato-Zanarella, A. Gil-Molina, X. Ji, M.C. Shin, A. Mohanty et al., Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics 17, 157–164 (2023). https://doi.org/10.1038/s41566-022-01120-w
- G. Liang, H. Huang, A. Mohanty, M.C. Shin, X. Ji et al., Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 15, 908–913 (2021). https://doi.org/10.1038/s41566-021-00891-y
- W.T. Hsu, A.R. Brown, Frequency trimming for MEMS resonator oscillators. 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, (IEEE, Geneva, Switzerland, 2007), pp. 1088–1091
- J.C. Salvia, R. Melamud, S.A. Chandorkar, S.F. Lord, T.W. Kenny, Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromech. Syst. 19, 192–201 (2010). https://doi.org/10.1109/JMEMS.2009.2035932
- C.A. Boano, K. Römer, N. Tsiftes, Mitigating the adverse effects of temperature on low-power wireless protocols. 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, (IEEE, Philadelphia, PA, USA, 2014), pp. 336–344
- S. Olenik, H.S. Lee, F. Güder, The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021). https://doi.org/10.1038/s41578-021-00299-8
- E. Baptista, K. Buisman, J.C. Vaz, C. Fager, Analysis of thermal coupling effects in integrated MIMO transmitters. 2017 IEEE MTT-S International Microwave Symposium (IMS), (IEEE, Honololu, HI, USA, 2017), pp. 75–78
- X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2016). https://doi.org/10.1109/COMST.2015.2499783
- L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2023). https://doi.org/10.1038/s41928-022-00898-5
- W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing et al., More-than-Moore white paper. (International Roadmap for Semiconductors, 2010). http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf
- Y. Zhang, F. Udrea, H. Wang, Multidimensional device architectures for efficient power electronics. Nat. Electron. 5, 723–734 (2022). https://doi.org/10.1038/s41928-022-00860-5
- S. Datta, W. Chakraborty, M. Radosavljevic, Toward attojoule switching energy in logic transistors. Science 378, 733–740 (2022). https://doi.org/10.1126/science.ade7656
- R. Mahajan, C.-P. Chiu, G. Chrysler, Cooling a microprocessor chip. Proc. IEEE 94, 1476–1486 (2006). https://doi.org/10.1109/JPROC.2006.879800
- Z. He, Y. Yan, Z. Zhang, Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review. Energy 216, 119223 (2021). https://doi.org/10.1016/j.energy.2020.119223
- Y. Li, W. Li, T. Han, X. Zheng, J. Li et al., Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021). https://doi.org/10.1038/s41578-021-00283-2
- F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv et al., Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018). https://doi.org/10.1126/science.aat7932
- K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605
- R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
- H. Hou, S. Qian, I. Takeuchi, Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022). https://doi.org/10.1038/s41578-022-00428-x
- L.L. Baranowski, G. Jeffrey Snyder, E.S. Toberer, Effective thermal conductivity in thermoelectric materials. J. Appl. Phys. 113, 204904 (2013). https://doi.org/10.1063/1.4807314
- W.Y. Chen, X.L. Shi, J. Zou, Z.G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 (2022). https://doi.org/10.1016/j.mser.2022.100700
- G. Li, J. Garcia Fernandez, D.A. Lara Ramos, V. Barati, N. Pérez et al., Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat. Electron. 1, 555–561 (2018). https://doi.org/10.1038/s41928-018-0148-3
- H. Bottner, Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time. ICT 2005.24th International Conference on Thermoelectrics, (IEEE, Clemson, SC, USA, 2005), pp. 1–8
- Q. Zhang, K. Deng, L. Wilkens, H. Reith, K. Nielsch, Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022). https://doi.org/10.1038/s41928-022-00776-0
- Y. Su, J. Lu, D. Villaroman, D. Li, B. Huang, Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration. Nano Energy 48, 202–210 (2018). https://doi.org/10.1016/j.nanoen.2018.03.054
- Q. Jin, Y. Zhao, X. Long, S. Jiang, C. Qian et al., Flexible carbon nanotube-epitaxially grown nanocrystals for micro-thermoelectric modules. Adv. Mater. 35, 2304751 (2023). https://doi.org/10.1002/adma.202304751
- Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
- D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995)
- L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899
- G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528–531 (2003). https://doi.org/10.1038/nmat943
- G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno et al., Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016). https://doi.org/10.1038/ncomms10302
- Y. Chen, X. Nie, C. Sun, S. Ke, W. Xu et al., Realizing high-performance BiSbTe magnetic flexible films via acceleration movement and hopping migration of carriers. Adv. Funct. Mater. 32, 2111373 (2022). https://doi.org/10.1002/adfm.202111373
- J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021). https://doi.org/10.1038/s41563-020-00852-w
- A. Gross, G. Hwang, B. Huang, H. Yang, N. Ghafouri, et al., High-performance micro scale thermoelectric cooler: an optimized 6-stage cooler. TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, (IEEE, Denver, CO, USA, 2009), pp. 2413–2416
- R.N. Candler, W.-T. Park, H. Li, G. Yama, A. Partridge et al., Single wafer encapsulation of MEMS devices. IEEE Trans. Adv. Packag. 26, 227–232 (2003). https://doi.org/10.1109/TADVP.2003.818062
- G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, Heidelberg, 2001)
- L. Yin, F. Yang, X. Bao, W. Xue, Z. Du et al., Low-temperature sintering of Ag nanops for high-performance thermoelectric module design. Nat. Energy 8, 665–674 (2023). https://doi.org/10.1038/s41560-023-01245-4
- F. Kim, S.E. Yang, H. Ju, S. Choo, J. Lee et al., Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 4, 579–587 (2021). https://doi.org/10.1038/s41928-021-00622-9
- E. Younes, J. Christofferson, K. Maize, A. Shakouri, Short time transient behavior of SiGe-based microrefrigerators. MRS Online Proc. Libr. 1166, 106 (2009). https://doi.org/10.1557/PROC-1166-N01-06
- H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle et al., New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414–420 (2004). https://doi.org/10.1109/JMEMS.2004.828740
- V.A. Semeniouk, T.V. Pilipenko, Thermoelectric coolers with small response time. Fifteenth International Conference on Thermoelectrics. Proceedings ICT ’96, (IEEE, Pasadena, CA, USA, 2002), pp. 301–306
- Q. Jin, S. Jiang, Y. Zhao, D. Wang, J. Qiu et al., Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019). https://doi.org/10.1038/s41563-018-0217-z
- R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001). https://doi.org/10.1038/35098012
- J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage et al., High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019). https://doi.org/10.1126/science.aax7792
- Z. Liu, W. Gao, H. Oshima, K. Nagase, C.H. Lee et al., Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022). https://doi.org/10.1038/s41467-022-28798-4
References
A.L. Moore, L. Shi, Emerging challenges and materials for thermal management of electronics. Mater. Today 17(4), 163–174 (2014). https://doi.org/10.1016/j.mattod.2014.04.003
L.T. Yeh, Review of heat transfer technologies in electronic equipment. J. Electron. Packag. 117, 333–339 (1995). https://doi.org/10.1115/1.2792113
K.A. Bannister, G. Giorgetti, S. Gupta, Wireless sensor networking for “Hot” applications: effects of temperature on signal strength, data collection and localization. In Proceedings of the 5th workshop on embedded networked sensors (HotEmNets’ 08). (2008), pp. 1–5
A. Beccari, D.A. Visani, S.A. Fedorov, M.J. Bereyhi, V. Boureau et al., Strained crystalline nanomechanical resonators with quality factors above 10 billion. Nat. Phys. 18, 436–441 (2022). https://doi.org/10.1038/s41567-021-01498-4
X. Xu, Q. Wang, J. Tian, L. Yang, Y. Fang et al., On the air buoyancy effect in MEMS-based gravity sensors for high resolution gravity measurements. IEEE Sens. J. 21, 22480–22488 (2021). https://doi.org/10.1109/JSEN.2021.3106667
R.P. Middlemiss, A. Samarelli, D.J. Paul, J. Hough, S. Rowan et al., Measurement of the earth tides with a MEMS gravimeter. Nature 531, 614–617 (2016). https://doi.org/10.1038/nature17397
V. Lakshminarayanan, N. Sriraam, The effect of temperature on the reliability of electronic components. 2014 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), (IEEE, Bangalore, India, 2014), pp. 1–6
L.T. Yeh, R.C. Chu, W.S. Janna, Thermal management of microelectronic equipment: heat transfer theory, analysis methods, and design practices. ASME press book series on electronic packaging. Appl. Mech. Rev. 56, B46–B48 (2003). https://doi.org/10.1115/1.1566408
C.T.C. Nguyen, MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54, 251–270 (2007). https://doi.org/10.1109/TUFFC.2007.240
L. Comenencia Ortiz, H.K. Kwon, J. Rodriguez, Y. Chen, G.D. Vukasin et al., Low-power dual mode MEMS resonators with PPB stability over temperature. J. Microelectromech. Syst. 29, 190–201 (2020). https://doi.org/10.1109/JMEMS.2020.2970609
M. Corato-Zanarella, A. Gil-Molina, X. Ji, M.C. Shin, A. Mohanty et al., Widely tunable and narrow-linewidth chip-scale lasers from near-ultraviolet to near-infrared wavelengths. Nat. Photonics 17, 157–164 (2023). https://doi.org/10.1038/s41566-022-01120-w
G. Liang, H. Huang, A. Mohanty, M.C. Shin, X. Ji et al., Robust, efficient, micrometre-scale phase modulators at visible wavelengths. Nat. Photonics 15, 908–913 (2021). https://doi.org/10.1038/s41566-021-00891-y
W.T. Hsu, A.R. Brown, Frequency trimming for MEMS resonator oscillators. 2007 IEEE International Frequency Control Symposium Joint with the 21st European Frequency and Time Forum, (IEEE, Geneva, Switzerland, 2007), pp. 1088–1091
J.C. Salvia, R. Melamud, S.A. Chandorkar, S.F. Lord, T.W. Kenny, Real-time temperature compensation of MEMS oscillators using an integrated micro-oven and a phase-locked loop. J. Microelectromech. Syst. 19, 192–201 (2010). https://doi.org/10.1109/JMEMS.2009.2035932
C.A. Boano, K. Römer, N. Tsiftes, Mitigating the adverse effects of temperature on low-power wireless protocols. 2014 IEEE 11th International Conference on Mobile Ad Hoc and Sensor Systems, (IEEE, Philadelphia, PA, USA, 2014), pp. 336–344
S. Olenik, H.S. Lee, F. Güder, The future of near-field communication-based wireless sensing. Nat. Rev. Mater. 6, 286–288 (2021). https://doi.org/10.1038/s41578-021-00299-8
E. Baptista, K. Buisman, J.C. Vaz, C. Fager, Analysis of thermal coupling effects in integrated MIMO transmitters. 2017 IEEE MTT-S International Microwave Symposium (IMS), (IEEE, Honololu, HI, USA, 2017), pp. 75–78
X. Lu, P. Wang, D. Niyato, D.I. Kim, Z. Han, Wireless charging technologies: fundamentals, standards, and network applications. IEEE Commun. Surv. Tutor. 18, 1413–1452 (2016). https://doi.org/10.1109/COMST.2015.2499783
L. Portilla, K. Loganathan, H. Faber, A. Eid, J.G.D. Hester et al., Wirelessly powered large-area electronics for the Internet of Things. Nat. Electron. 6, 10–17 (2023). https://doi.org/10.1038/s41928-022-00898-5
W. Arden, M. Brillouët, P. Cogez, M. Graef, B. Huizing et al., More-than-Moore white paper. (International Roadmap for Semiconductors, 2010). http://www.itrs2.net/uploads/4/9/7/7/49775221/irc-itrs-mtm-v2_3.pdf
Y. Zhang, F. Udrea, H. Wang, Multidimensional device architectures for efficient power electronics. Nat. Electron. 5, 723–734 (2022). https://doi.org/10.1038/s41928-022-00860-5
S. Datta, W. Chakraborty, M. Radosavljevic, Toward attojoule switching energy in logic transistors. Science 378, 733–740 (2022). https://doi.org/10.1126/science.ade7656
R. Mahajan, C.-P. Chiu, G. Chrysler, Cooling a microprocessor chip. Proc. IEEE 94, 1476–1486 (2006). https://doi.org/10.1109/JPROC.2006.879800
Z. He, Y. Yan, Z. Zhang, Thermal management and temperature uniformity enhancement of electronic devices by micro heat sinks: a review. Energy 216, 119223 (2021). https://doi.org/10.1016/j.energy.2020.119223
Y. Li, W. Li, T. Han, X. Zheng, J. Li et al., Transforming heat transfer with thermal metamaterials and devices. Nat. Rev. Mater. 6, 488–507 (2021). https://doi.org/10.1038/s41578-021-00283-2
F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv et al., Unusual high thermal conductivity in boron arsenide bulk crystals. Science 361, 582–585 (2018). https://doi.org/10.1126/science.aat7932
K.M. Razeeb, E. Dalton, G.L.W. Cross, A.J. Robinson, Present and future thermal interface materials for electronic devices. Int. Mater. Rev. 63, 1–21 (2018). https://doi.org/10.1080/09506608.2017.1296605
R. van Erp, R. Soleimanzadeh, L. Nela, G. Kampitsis, E. Matioli, Co-designing electronics with microfluidics for more sustainable cooling. Nature 585, 211–216 (2020). https://doi.org/10.1038/s41586-020-2666-1
H. Hou, S. Qian, I. Takeuchi, Materials, physics and systems for multicaloric cooling. Nat. Rev. Mater. 7, 633–652 (2022). https://doi.org/10.1038/s41578-022-00428-x
L.L. Baranowski, G. Jeffrey Snyder, E.S. Toberer, Effective thermal conductivity in thermoelectric materials. J. Appl. Phys. 113, 204904 (2013). https://doi.org/10.1063/1.4807314
W.Y. Chen, X.L. Shi, J. Zou, Z.G. Chen, Thermoelectric coolers for on-chip thermal management: materials, design, and optimization. Mater. Sci. Eng. R. Rep. 151, 100700 (2022). https://doi.org/10.1016/j.mser.2022.100700
G. Li, J. Garcia Fernandez, D.A. Lara Ramos, V. Barati, N. Pérez et al., Integrated microthermoelectric coolers with rapid response time and high device reliability. Nat. Electron. 1, 555–561 (2018). https://doi.org/10.1038/s41928-018-0148-3
H. Bottner, Micropelt miniaturized thermoelectric devices: small size, high cooling power densities, short response time. ICT 2005.24th International Conference on Thermoelectrics, (IEEE, Clemson, SC, USA, 2005), pp. 1–8
Q. Zhang, K. Deng, L. Wilkens, H. Reith, K. Nielsch, Micro-thermoelectric devices. Nat. Electron. 5, 333–347 (2022). https://doi.org/10.1038/s41928-022-00776-0
Y. Su, J. Lu, D. Villaroman, D. Li, B. Huang, Free-standing planar thermoelectric microrefrigerators based on nano-grained SiGe thin films for on-chip refrigeration. Nano Energy 48, 202–210 (2018). https://doi.org/10.1016/j.nanoen.2018.03.054
Q. Jin, Y. Zhao, X. Long, S. Jiang, C. Qian et al., Flexible carbon nanotube-epitaxially grown nanocrystals for micro-thermoelectric modules. Adv. Mater. 35, 2304751 (2023). https://doi.org/10.1002/adma.202304751
Q. Zhu, S. Wang, X. Wang, A. Suwardi, M.H. Chua et al., Bottom-up engineering strategies for high-performance thermoelectric materials. Nano-Micro Lett. 13, 119 (2021). https://doi.org/10.1007/s40820-021-00637-z
D.M. Rowe, CRC Handbook of Thermoelectrics (CRC Press, Boca Raton, FL, 1995)
L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008). https://doi.org/10.1126/science.1158899
G.J. Snyder, J.R. Lim, C.K. Huang, J.P. Fleurial, Thermoelectric microdevice fabricated by a MEMS-like electrochemical process. Nat. Mater. 2, 528–531 (2003). https://doi.org/10.1038/nmat943
G. Bulman, P. Barletta, J. Lewis, N. Baldasaro, M. Manno et al., Superlattice-based thin-film thermoelectric modules with high cooling fluxes. Nat. Commun. 7, 10302 (2016). https://doi.org/10.1038/ncomms10302
Y. Chen, X. Nie, C. Sun, S. Ke, W. Xu et al., Realizing high-performance BiSbTe magnetic flexible films via acceleration movement and hopping migration of carriers. Adv. Funct. Mater. 32, 2111373 (2022). https://doi.org/10.1002/adfm.202111373
J. Mao, G. Chen, Z. Ren, Thermoelectric cooling materials. Nat. Mater. 20, 454–461 (2021). https://doi.org/10.1038/s41563-020-00852-w
A. Gross, G. Hwang, B. Huang, H. Yang, N. Ghafouri, et al., High-performance micro scale thermoelectric cooler: an optimized 6-stage cooler. TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference, (IEEE, Denver, CO, USA, 2009), pp. 2413–2416
R.N. Candler, W.-T. Park, H. Li, G. Yama, A. Partridge et al., Single wafer encapsulation of MEMS devices. IEEE Trans. Adv. Packag. 26, 227–232 (2003). https://doi.org/10.1109/TADVP.2003.818062
G.S. Nolas, J. Sharp, H.J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (Springer, Berlin, Heidelberg, 2001)
L. Yin, F. Yang, X. Bao, W. Xue, Z. Du et al., Low-temperature sintering of Ag nanops for high-performance thermoelectric module design. Nat. Energy 8, 665–674 (2023). https://doi.org/10.1038/s41560-023-01245-4
F. Kim, S.E. Yang, H. Ju, S. Choo, J. Lee et al., Direct ink writing of three-dimensional thermoelectric microarchitectures. Nat. Electron. 4, 579–587 (2021). https://doi.org/10.1038/s41928-021-00622-9
E. Younes, J. Christofferson, K. Maize, A. Shakouri, Short time transient behavior of SiGe-based microrefrigerators. MRS Online Proc. Libr. 1166, 106 (2009). https://doi.org/10.1557/PROC-1166-N01-06
H. Bottner, J. Nurnus, A. Gavrikov, G. Kuhner, M. Jagle et al., New thermoelectric components using microsystem technologies. J. Microelectromech. Syst. 13, 414–420 (2004). https://doi.org/10.1109/JMEMS.2004.828740
V.A. Semeniouk, T.V. Pilipenko, Thermoelectric coolers with small response time. Fifteenth International Conference on Thermoelectrics. Proceedings ICT ’96, (IEEE, Pasadena, CA, USA, 2002), pp. 301–306
Q. Jin, S. Jiang, Y. Zhao, D. Wang, J. Qiu et al., Flexible layer-structured Bi2Te3 thermoelectric on a carbon nanotube scaffold. Nat. Mater. 18, 62–68 (2019). https://doi.org/10.1038/s41563-018-0217-z
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597–602 (2001). https://doi.org/10.1038/35098012
J. Mao, H. Zhu, Z. Ding, Z. Liu, G.A. Gamage et al., High thermoelectric cooling performance of n-type Mg3Bi2-based materials. Science 365, 495–498 (2019). https://doi.org/10.1126/science.aax7792
Z. Liu, W. Gao, H. Oshima, K. Nagase, C.H. Lee et al., Maximizing the performance of n-type Mg3Bi2 based materials for room-temperature power generation and thermoelectric cooling. Nat. Commun. 13, 1120 (2022). https://doi.org/10.1038/s41467-022-28798-4