Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance
Corresponding Author: Nianjun Yang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 77
Abstract
Hydrogen peroxide (H2O2) is a high-demand organic chemical reagent and has been widely used in various modern industrial applications. Currently, the prominent method for the preparation of H2O2 is the anthraquinone oxidation. Unfortunately, it is not conducive to economic and sustainable development since it is a complex process and involves unfriendly environment and potential hazards. In this context, numerous approaches have been developed to synthesize H2O2. Among them, photo/electro-catalytic ones are considered as two of the most promising manners for on-site synthesis of H2O2. These alternatives are sustainable in that only water or O2 is required. Namely, water oxidation (WOR) or oxygen reduction (ORR) reactions can be further coupled with clean and sustainable energy. For photo/electro-catalytic reactions for H2O2 generation, the design of the catalysts is extremely important and has been extensively conducted with an aim to obtain ultimate catalytic performance. This article overviews the basic principles of WOR and ORR, followed by the summary of recent progresses and achievements on the design and performance of various photo/electro-catalysts for H2O2 generation. The related mechanisms for these approaches are highlighted from theoretical and experimental aspects. Scientific challenges and opportunities of engineering photo/electro-catalysts for H2O2 generation are also outlined and discussed.
Highlights:
1 Basic principles of photo- and electro-catalytic hydrogen peroxide generation.
2 Recent progresses on the design, performance and mechanisms of photo- and electro-catalysts for hydrogen peroxide generation.
3 Scientific challenges and prospects of engineering photo- and electro-catalysts for hydrogen peroxide production.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R.J. Lewis, G.J. Hutchings, Recent advances in the direct synthesis of H2O2. ChemCatChem 11, 298–308 (2019). https://doi.org/10.1002/cctc.201801435
- J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
- A. Torres-Pinto, M.J. Sampaio, C.G. Silva, J.L. Faria, A.M.T. Silva, Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts. Catalysts 9, 990 (2019). https://doi.org/10.3390/catal9120990
- S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
- S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/NMAT3795
- J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang et al., Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 13, 2808 (2022). https://doi.org/10.1038/s41467-022-30411-7
- J. Wu, Y. Han, Y. Bai, X. Wang, Y. Zhou et al., The electron transport regulation in carbon dots/In2O3 electrocatalyst enable 100% selectivity for oxygen reduction to hydrogen peroxide. Adv. Funct. Mater. 32, 2203647 (2022). https://doi.org/10.1002/adfm.202203647
- J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
- S.-I. Yamazaki, Z. Siroma, H. Senoh, T. Loroi, N. Fujiwara et al., A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sources 178, 20–25 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.013
- S.A.M. Shaegh, N. Nam-Trung, S.M.M. Ehteshami, S.H. Chan, A membraneless hydrogen peroxide fuel cell using prussian blue as cathode material. Energy Environ. Sci. 5, 8225–8228 (2012). https://doi.org/10.1039/c2ee21806b
- Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
- S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 6, 3756–3764 (2013). https://doi.org/10.1039/c3ee42815j
- Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka et al., Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 138, 10019–10025 (2016). https://doi.org/10.1021/jacs.6b05806
- S. Gogoi, N. Karak, Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nano-Micro Lett. 9, 40 (2017). https://doi.org/10.1007/s40820-017-0143-7
- K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016). https://doi.org/10.1038/ncomms11470
- X. Zeng, Y. Liu, X. Hu, X. Zhang, Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production. Green Chem. 23, 1466–1494 (2021). https://doi.org/10.1039/d0gc04236f
- Z. Yao, J. Zhao, R.J. Bunting, C. Zhao, P. Hu et al., Quantitative insights into the reaction mechanism for the direct synthesis of H2O2 over transition metals: coverage-dependent microkinetic modeling. ACS Catal. 11, 1202–1221 (2021). https://doi.org/10.1021/acscatal.0c04125
- S. Siahrostami, S.J. Villegas, A.H.B. Mostaghimi, S. Back, A.B. Farimani et al., A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen heroxide. ACS Catal. 10, 7495–7511 (2020). https://doi.org/10.1021/acscatal.0c01641
- G.-H. Han, S.-H. Lee, S.-Y. Hwang, K.-Y. Lee, Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 11, 2003121 (2021). https://doi.org/10.1002/aenm.202003121
- Y. Sun, L. Han, P. Strasser, A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020). https://doi.org/10.1039/d0cs00458h
- C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226 (2019). https://doi.org/10.1126/science.aay1844
- Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
- S.J. Freakley, Q. He, J.H. Harrhy, L. Lu, D.A. Crole et al., Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016). https://doi.org/10.1126/science.aad5705
- J.K. Edwards, S.J. Freakley, A.F. Carley, C.J. Kiely, G.J. Hutchings, Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Acc. Chem. Res. 47, 845–854 (2014). https://doi.org/10.1021/ar400177c
- J. Garcia-Serna, T. Moreno, P. Biasi, M.J. Cocero, J.-P. Mikkola et al., Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. Green Chem. 16, 2320–2343 (2014). https://doi.org/10.1039/c3gc41600c
- R.B. Rankin, J. Greeley, Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal. 2, 2664–2672 (2012). https://doi.org/10.1021/cs3003337
- J.K. Edwards, B. Solsona, A.F. Carley, A.A. Herzing, C.J. Kiely et al., Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009). https://doi.org/10.1126/science.1168980
- K. Dong, Y. Lei, H. Zhao, J. Liang, P. Ding et al., Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 8, 23123–23141 (2020). https://doi.org/10.1039/d0ta08894c
- H. Lu, X. Li, S.A. Monny, Z. Wang, L. Wang, Photo-electrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. Chin. J. Catal. 43, 1204–1215 (2022). https://doi.org/10.1016/S1872-2067(21)64028-7
- L.-H. Fu, C. Qi, J. Lin, P. Huang, Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 47, 6454–6472 (2018). https://doi.org/10.1039/c7cs00891k
- W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanops. ACS Nano 4, 7451–7458 (2010). https://doi.org/10.1021/nn102592h
- J. Fang, T. Sawa, T. Akaike, H. Maeda, Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res. 62, 3138–3143 (2002)
- A. Parra, E. Casero, F. Pariente, L. Vazquez, E. Lorenzo, Cholesterol oxidase modified gold electrodes as bioanalytical devices. Sens. Actuators B 124, 30–37 (2007). https://doi.org/10.1016/j.snb.2006.11.051
- S.C. Perry, S.M. Gateman, J. Sifakis, L. Pollegioni, J. Mauzeroll, Enhancement of the enzymatic biosensor response through targeted electrode surface roughness. J. Electrochem. Soc. 165, G3074–G3079 (2018). https://doi.org/10.1149/2.0121812jes
- D. Polcari, S.C. Perry, L. Pollegioni, M. Geissler, J. Mauzeroll et al., Localized detection of D-serine by using an enzymatic amperometric biosensor and scanning electrochemical microscopy. ChemElectroChem 4, 920–926 (2017). https://doi.org/10.1002/celc.201600766
- L. Wang, J. Zhang, Y. Zhang, H. Yu, Y. Qu et al., Inorganic metal-oxide photocatalyst for H2O2 production. Small 18, 2104561 (2022). https://doi.org/10.1002/smll.202104561
- S. Fukuzumi, Y.-M. Lee, W. Nam, Solar-driven production of hydrogen peroxide from water and dioxygen. Chem. Eur. J. 24, 5016 (2018). https://doi.org/10.1002/chem.201704512
- Y. Pang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms. J. Mater. Chem. A 8, 24996–25016 (2020). https://doi.org/10.1039/d0ta09122g
- X. Yang, Y. Zeng, W. Alnoush, Y. Hou, D. Higgins et al., Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 34, 2107954 (2022). https://doi.org/10.1002/adma.202107954
- H.-I. Kim, O.S. Kwon, S. Kim, W. Choi, J.-H. Kim, Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy Environ. Sci. 9, 1063–1073 (2016). https://doi.org/10.1039/c5ee03115j
- Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang et al., Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909 (2018). https://doi.org/10.1002/aenm.201801909
- Y.-J. Ko, K. Choi, B. Yang, W.H. Lee, J.-Y. Kim et al., A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation. J. Mater. Chem. A 8, 9859–9870 (2020). https://doi.org/10.1039/d0ta01869d
- L.E.B. Lucchetti, M.O. Almeida, J.M. de Almeida, P.A.S. Autreto, K.M. Honorio et al., Density functional theory studies of oxygen reduction reaction for hydrogen peroxide generation on graphene-based catalysts. J. Electroanal. Chem. 895, 115429 (2021). https://doi.org/10.1016/j.jelechem.2021.115429
- L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018). https://doi.org/10.1039/c7ee03640j
- J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018). https://doi.org/10.1002/aenm.201701503
- J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 28, 1801983 (2018). https://doi.org/10.1002/adfm.201801983
- H. Hou, X. Zeng, X. Zhang, Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020). https://doi.org/10.1002/anie.201911609
- Z. Liu, X. Sheng, D. Wang, X. Feng, Efficient hydrogen peroxide generation utilizing photocatalytic oxygen reduction at a triphase interface. Iscience 17, 67 (2019). https://doi.org/10.1016/j.isci.2019.06.023
- F. Xue, Y. Si, M. Wang, M. Liu, L. Guo, Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 62, 823–831 (2019). https://doi.org/10.1016/j.nanoen.2019.05.086
- A. Izgorodin, E. Izgorodina, D.R. MacFarlane, Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst. Energy Environ. Sci. 5, 9496–9501 (2012). https://doi.org/10.1039/c2ee21832a
- X.J. Shi, Y.R. Zhang, S. Siahrostami, X.L. Zheng, Light-driven BiVO4-C fuel cell with simultaneous production of H2O2. Adv. Energy Mater. 8, 1801158 (2018). https://doi.org/10.1002/aenm.201801158
- S. Back, J. Na, Z.W. Ulissi, Efficient discovery of active, selective, and stable catalysts for electrochemical H2O2 synthesis through active motif screening. ACS Catal. 11, 2483–2491 (2021). https://doi.org/10.1021/acscatal.0c05494
- J. Zhang, H. Zhang, M.-J. Cheng, Q. Lu, Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 16, 1902845 (2020). https://doi.org/10.1002/smll.201902845
- X. Shi, S. Back, T.M. Gill, S. Siahrostami, X. Zheng, Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7, 38–63 (2021). https://doi.org/10.1016/j.chempr.2020.09.013
- K. Wang, J. Huang, H. Chen, Y. Wang, S. Song, Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem. Commun. 56, 12109–12121 (2020). https://doi.org/10.1039/d0cc05156j
- S. Mavrikis, S.C. Perry, P.K. Leung, L. Wang, C.P. de Leon, Recent advances in electrochemical water oxidation to produce hydrogen peroxide: a mechanistic perspective. ACS Sustainable Chem. Eng. 9, 76–91 (2021). https://doi.org/10.1021/acssuschemeng.0c07263
- C. Xia, S. Back, S. Ringe, K. Jiang, F. Chen et al., Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020). https://doi.org/10.1038/s41929-019-0402-8
- Y. Xue, Y. Wang, Z. Pan, K. Sayama, Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 10469–10480 (2021). https://doi.org/10.1002/anie.202011215
- X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/NMAT2317
- X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen et al., Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680 (2009). https://doi.org/10.1021/ja809307s
- M. Wang, P. Ju, J. Li, Y. Zhao, X. Han et al., Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustainable Chem. Eng. 5, 7878–7886 (2017). https://doi.org/10.1021/acssuschemeng.7b01386
- L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng et al., Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
- Y.-X. Ye, C. Wen, J. Pan, J.-W. Wang, Y.-J. Tong et al., Visible-light driven efficient overall H2O2 production on modified graphitic carbon nitride under ambient conditions. Appl. Catal. B 285, 119726 (2021). https://doi.org/10.1016/j.apcatb.2020.119726
- G. Dong, L. Zhang, Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride. J. Phys. Chem. C 117, 4062–4068 (2013). https://doi.org/10.1021/jp3115226
- S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
- S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
- H. Piao, G. Choi, X. Jin, S.-J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
- Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto et al., Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774–780 (2014). https://doi.org/10.1021/cs401208c
- Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa et al., Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 5, 3058–3066 (2015). https://doi.org/10.1021/acscatal.5b00408
- Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl. Catal. B 232, 19–25 (2018). https://doi.org/10.1016/j.apcatb.2018.03.035
- S. Li, G. Dong, R. Hailili, L. Yang, Y. Li et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B 190, 26–35 (2016). https://doi.org/10.1016/j.apcatb.2016.03.004
- Y. You, S. Wang, K. Xiao, T. Ma, Y. Zhang et al., Z-Scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustainable Chem. Eng. 6, 16219–16227 (2018). https://doi.org/10.1021/acssuschemeng.8b03075
- R. Hao, G. Wang, C. Jiang, H. Tang, Q. Xu, In-situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surf. Sci. 411, 400–410 (2017). https://doi.org/10.1016/j.apsusc.2017.03.197
- W. Liu, C. Song, M. Kou, Y. Wang, Y. Deng et al., Fabrication of ultra-thin g-C3N4 nanoplates for efficient visible-light photocatalytic H2O2 production via two-electron oxygen reduction. Chem. Eng. J. 425, 130615 (2021). https://doi.org/10.1016/j.cej.2021.130615
- T. Mahvelati-Shamsabadi, H. Fattahimoghaddam, B.-K. Lee, S. Bae, J. Ryu, Synthesis of hexagonal rosettes of g-C3N4 with boosted charge transfer for the enhanced visible-light photocatalytic hydrogen evolution and hydrogen peroxide production. J. Colloid Interface Sci. 597, 345–360 (2021). https://doi.org/10.1016/j.jcis.2021.04.019
- G. Dong, W. Ho, Y. Li, L. Zhang, Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl. Catal. B 174, 477–485 (2015). https://doi.org/10.1016/j.apcatb.2015.03.035
- Y. Lv, Y. Liu, Y. Zhu, Y. Zhu, Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J. Mater. Chem. A 2, 1174–1182 (2014). https://doi.org/10.1039/c3ta13841k
- D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao et al., Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 118, 15300–15307 (2014). https://doi.org/10.1021/jp5033349
- L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin et al., Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14, 1703142 (2018). https://doi.org/10.1002/smll.201703142
- H. Zhao, Q. Jin, M.A. Khan, S. Larter, S. Siahrostami et al., Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem. Catalysis 2, 1720–1733 (2022). https://doi.org/10.1016/j.checat.2022.04.015
- H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J. Am. Chem. Soc. 137, 6393–6399 (2015). https://doi.org/10.1021/jacs.5b03105
- G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3, 23435–23441 (2015). https://doi.org/10.1039/c5ta06540b
- J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang et al., Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustainable Chem. Eng. 7, 16467–16473 (2019). https://doi.org/10.1021/acssuschemeng.9b03678
- P. Niu, G. Liu, H.-M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116, 11013–11018 (2012). https://doi.org/10.1021/jp301026y
- X. Qu, S. Hu, P. Li, Z. Li, H. Wang et al., The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment. Diamond Relat. Mater. 86, 159–166 (2018). https://doi.org/10.1016/j.diamond.2018.04.027
- H. Fattahimoghaddam, T. Mahvelati-Shamsabadi, B.-K. Lee, Enhancement in photocatalytic H2O2 production over g-C3N4 nanostructures: a collaborative approach of nitrogen deficiency and supramolecular precursors. ACS Sustainable Chem. Eng. 9, 4520–4530 (2021). https://doi.org/10.1021/acssuschemeng.0c08884
- J. Luo, Y. Liu, C. Fan, L. Tang, S. Yang et al., Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 11, 11440–11450 (2021). https://doi.org/10.1021/acscatal.1c03103
- X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang et al., Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28, 6781–6803 (2016). https://doi.org/10.1002/adma.201600305
- X. Chang, J. Yang, D. Han, B. Zhang, X. Xiang et al., Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts. Catalysts 8, 147 (2018). https://doi.org/10.3390/catal8040147
- G. Zuo, S. Liu, L. Wang, H. Song, P. Zong et al., Finely dispersed Au nanops on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catal. Commun. 123, 69–72 (2019). https://doi.org/10.1016/j.catcom.2019.02.011
- J. Cai, J. Huang, S. Wang, J. Iocozzia, Z. Sun et al., Crafting mussel-inspired metal nanop-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 31, 1806314 (2019). https://doi.org/10.1002/adma.201806314
- Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68–89 (2012). https://doi.org/10.1002/anie.201101182
- G. Liu, P. Niu, L. Yin, H.-M. Cheng, α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 134, 9070–9073 (2012). https://doi.org/10.1021/ja302897b
- T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
- Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi et al., Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008
- Q. Chen, J. Li, L. Cheng, H. Liu, Construction of CdLa2S4/MIL-88A(Fe) heterojunctions for enhanced photocatalytic H2 evolution activity via a direct Z-scheme electron transfer. Chem. Eng. J. 379, 122389 (2020). https://doi.org/10.1016/j.cej.2019.122389
- L. Yang, G. Dong, D.L. Jacobs, Y. Wang, L. Zang et al., Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J. Catal. 352, 274–281 (2017). https://doi.org/10.1016/j.jcat.2017.05.010
- Z. Li, N. Xiong, G. Gu, Fabrication of a full-spectrum-response Cu2(OH)2CO3/g-C3N4 heterojunction catalyst with outstanding photocatalytic H2O2 production performance via a self-sacrificial method. Dalton Trans. 48, 182–189 (2019). https://doi.org/10.1039/c8dt04081h
- X. Zhao, Y. You, S. Huang, Y. Wu, Y. Ma et al., Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B 278, 119251 (2020). https://doi.org/10.1016/j.apcatb.2020.119251
- D.-L. Long, E. Burkholder, L. Cronin, Polyoxometalate clusters, nanostructures and materials: from self- assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007). https://doi.org/10.1039/b502666k
- H. Lv, Y.V. Geletii, C. Zhao, J.W. Vickers, G. Zhu et al., Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012). https://doi.org/10.1039/c2cs35292c
- S.-S. Wang, G.-Y. Yang, Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015). https://doi.org/10.1021/cr500390v
- J. Ettedgui, Y. Diskin-Posner, L. Weiner, R. Neumann, Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex. J. Am. Chem. Soc. 133, 188–190 (2011). https://doi.org/10.1021/ja1078199
- B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014). https://doi.org/10.1126/science.1257443
- S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy 35, 405–414 (2017). https://doi.org/10.1016/j.nanoen.2017.04.017
- S. Zhao, X. Zhao, S. Ouyang, Y. Zhu, Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catal. Sci. Technol. 8, 1686–1695 (2018). https://doi.org/10.1039/c8cy00043c
- S. Zhao, X. Zhao, Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light. J. Catal. 366, 98–106 (2018). https://doi.org/10.1016/j.jcat.2018.08.003
- S. Zhao, X. Zhao, Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework. Appl. Catal. B 250, 408–418 (2019). https://doi.org/10.1016/j.apcatb.2019.02.031
- S. Hu, X. Qu, P. Li, F. Wang, Q. Li et al., Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites. Chem. Eng. J. 334, 410–418 (2018). https://doi.org/10.1016/j.cej.2017.10.016
- X. Qu, S. Hu, J. Bai, P. Li, G. Lu et al., Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method. J. Mater. Sci. Technol. 34, 1932–1938 (2018). https://doi.org/10.1016/j.jmst.2018.04.019
- Y. Chen, X. Yan, J. Xu, L. Wang, K+, Ni and carbon co-modification promoted two-electron O2 reduction for photocatalytic H2O2 production by crystalline carbon nitride. J. Mater. Chem. A 9, 24056–24063 (2021). https://doi.org/10.1039/d1ta06960h
- G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014). https://doi.org/10.1002/adma.201303611
- Z.-A. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B 192, 116–125 (2016). https://doi.org/10.1016/j.apcatb.2016.03.062
- C. Zhang, J. Bai, L. Ma, Y. Lv, F. Wang et al., Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X = Cl, Br) solution-hydrothermal post-treatment. Diamond Relat. Mater. 87, 215–222 (2018). https://doi.org/10.1016/j.diamond.2018.06.013
- S. Kim, G.-H. Moon, H. Kim, Y. Mun, P. Zhang et al., Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. J. Catal. 357, 51–58 (2018). https://doi.org/10.1016/j.jcat.2017.10.002
- L. Zhou, J. Lei, F. Wang, L. Wang, M.R. Hoffmann et al., Carbon nitride nanotubes with in-situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production. Appl. Catal. B 288, 119993 (2021). https://doi.org/10.1016/j.apcatb.2021.119993
- Y. Zheng, Y. Luo, Q. Ruan, J. Yu, X. Guo et al., Plasma-Tuned nitrogen vacancy graphitic carbon nitride sphere for efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 609, 75–85 (2022). https://doi.org/10.1016/j.jcis.2021.12.006
- Y. Shao, J. Hu, T. Yang, X. Yang, J. Qu et al., Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon 190, 337–347 (2022). https://doi.org/10.1016/j.carbon.2022.01.019
- J. Xiong, X. Li, J. Huang, X. Gao, Z. Chen et al., CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B 266, 118602 (2020). https://doi.org/10.1016/j.apcatb.2020.118602
- Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka et al., Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal. 6, 7021–7029 (2016). https://doi.org/10.1021/acscatal.6b02367
- Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan et al., Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 11, 2581–2589 (2018). https://doi.org/10.1039/c8ee01316k
- H.-I. Kim, Y. Choi, S. Hu, W. Choi, J.-H. Kim, Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B 229, 121–129 (2018). https://doi.org/10.1016/j.apcatb.2018.01.060
- S. Zhao, T. Guo, X. Li, T. Xu, B. Yang et al., Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl. Catal. B 224, 725–732 (2018). https://doi.org/10.1016/j.apcatb.2017.11.005
- C. Feng, L. Tang, Y. Deng, J. Wang, Y. Liu et al., A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl. Catal. B 281, 119539 (2021). https://doi.org/10.1016/j.apcatb.2020.119539
- N. Lu, N. Liu, Y. Hui, K. Shang, N. Jiang et al., Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production. Chemosphere 241, 124927 (2020). https://doi.org/10.1016/j.chemosphere.2019.124927
- Y. Li, W. Ho, K. Lv, B. Zhu, S.C. Lee, Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 430, 380–389 (2018). https://doi.org/10.1016/j.apsusc.2017.06.054
- Y. Zhao, Y. Liu, Z. Wang, Y. Ma, Y. Zhou et al., Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B 289, 120035 (2021). https://doi.org/10.1016/j.apcatb.2021.120035
- A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
- A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
- H. Goto, Y. Hanada, T. Ohno, M. Matsumura, Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 ps. J. Catal. 225, 223–229 (2004). https://doi.org/10.1016/j.jcat.2004.04.001
- T. Baran, S. Wojtyla, A. Minguzzi, S. Rondinini, A. Vertova, Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl. Catal. B 244, 303–312 (2019). https://doi.org/10.1016/j.apcatb.2018.11.044
- B.O. Burek, D.W. Bahnemann, J.Z. Bloh, Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 9, 25–37 (2019). https://doi.org/10.1021/acscatal.8b03638
- M. Teranishi, S.-I. Naya, H. Tada, In-situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanop-loaded titanium(IV) dioxide photocatalyst. J. Am. Chem. Soc. 132, 7850 (2010). https://doi.org/10.1021/ja102651g
- X.Z. Li, C.C. Chen, J.C. Zhao, Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17, 4118–4122 (2001). https://doi.org/10.1021/la010035s
- M. Teranishi, R. Hoshino, S.-I. Naya, H. Tada, Gold-nanop-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem. Int. Ed. 55, 12773–12777 (2016). https://doi.org/10.1002/anie.201606734
- M. Teranishi, S.-I. Naya, H. Tada, Temperature- and pH-dependence of hydrogen peroxide formation from molecular oxygen by gold nanop-loaded titanium(IV) oxide photocatalyst. J. Phys. Chem. C 120, 1083–1088 (2016). https://doi.org/10.1021/acs.jpcc.5b10626
- R. Miah, T. Ohsaka, Cathodic detection of H2O2 using iodide-modified gold electrode in alkaline media. Anal. Chem. 78, 1200–1205 (2006). https://doi.org/10.1021/ac0515935
- T. Hirakawa, K. Yawata, Y. Nosaka, Photocatalytic reactivity for O2·- and OH· radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A 325, 105–111 (2007). https://doi.org/10.1016/j.apcata.2007.03.015
- D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa et al., Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanops. ACS Catal. 2, 599–603 (2012). https://doi.org/10.1021/cs2006873
- E.M. Goliaei, N. Seriani, Structure and electronic properties of small silver-gold clusters on titania photocatalysts for H2O2 production: an investigation with density functional theory. J. Phys. Chem. C 123, 2855–2863 (2019). https://doi.org/10.1021/acs.jpcc.8b09300
- X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
- Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang et al., Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem. Commun. 46, 7319–7321 (2010). https://doi.org/10.1039/c0cc02374d
- L. Zheng, H. Su, J. Zhang, L.S. Walekar, H.V. Molamahmood et al., Highly selective photocatalytic production of H2O2 on sulfur and nitrogen for co-doped graphene quantum dots tuned TiO2. Appl. Catal. B 239, 475–484 (2018). https://doi.org/10.1016/j.apcatb.2018.08.031
- L. Zheng, J. Zhang, Y.H. Hu, M. Long, Enhanced photocatalytic production of H2O2 by nafion coatings on S, N-codoped graphene-quantum-dots-modified TiO2. J. Phys. Chem. C 123, 13693–13701 (2019). https://doi.org/10.1021/acs.jpcc.9b02311
- R.X. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide ps. J. Catal. 219, 214–218 (2003). https://doi.org/10.1016/S0021-9517(03)00197-0
- V. Maurino, C. Minero, E. Pelizzetti, G. Mariella, A. Arbezzano et al., Influence of Zn (II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2. Res. Chem. Intermed. 33, 319–332 (2007). https://doi.org/10.1163/156856707779238711
- V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Sustained production of H2O2 on irradiated TiO2 - fluoride systems. Chem. Commun. (2005). https://doi.org/10.1039/b418789j
- Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano et al., Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal. 3, 2222–2227 (2013). https://doi.org/10.1021/cs400511q
- G. Zuo, B. Li, Z. Guo, L. Wang, F. Yang et al., Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2. Catalysts 9, 623 (2019). https://doi.org/10.3390/catal9070623
- K. Awa, S.-I. Naya, M. Fujishima, H. Tada, A three-component plasmonic photocatalyst consisting of gold nanop and TiO2-SnO2 nanohybrid with heteroepitaxial junction: hydrogen peroxide synthesis. J. Phys. Chem. C 124, 7797–7802 (2020). https://doi.org/10.1021/acs.jpcc.9b11875
- M. Nagamitsu, K. Awa, H. Tada, Hydrogen peroxide synthesis from water and oxygen using a three-component nanohybrid photocatalyst consisting of Au p-loaded rutile TiO2 and RuO2 with a heteroepitaxial junction. Chem. Commun. 56, 8190–8193 (2020). https://doi.org/10.1039/d0cc03327h
- C. Chu, D. Huang, Q. Zhu, E. Stavitski, J.A. Spies et al., Electronic tuning of metal nanops for highly efficient photocatalytic hydrogen peroxide production. ACS Catal. 9, 626–631 (2019). https://doi.org/10.1021/acscatal.8b03738
- R. Ma, L. Wang, H. Wang, Z. Liu, M. Xing et al., Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of Titania nanotube with carbon dot. Appl. Catal. B 244, 594–603 (2019). https://doi.org/10.1016/j.apcatb.2018.11.087
- X. Wu, X. Zhang, S. Zhao, Y. Gong, R. Djellabi et al., Highly-efficient photocatalytic hydrogen peroxide production over polyoxometalates covalently immobilized onto titanium dioxide. Appl. Catal. A 591, 117271 (2020). https://doi.org/10.1016/j.apcata.2019.117271
- G.-H. Moon, W. Kim, A.D. Bokare, N.-E. Sung, W. Choi, Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 7, 4023–4028 (2014). https://doi.org/10.1039/c4ee02757d
- R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 3, 464–504 (2018). https://doi.org/10.1039/c8nh00062j
- L. Huang, Z. Duan, Y. Song, Q. Li, L. Chen, BiVO4 microplates with oxygen vacancies decorated with metallic Cu and Bi nanops for CO2 photoreduction. ACS Appl. Nano Mater. 4, 3576–3585 (2021). https://doi.org/10.1021/acsanm.1c00115
- J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31, 1806938 (2019). https://doi.org/10.1002/adma.201806938
- W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Li et al., A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism. Appl. Catal. B 245, 448–458 (2019). https://doi.org/10.1016/j.apcatb.2019.01.001
- T. Hirakawa, Y. Nosaka, Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J. Phys. Chem. C 112, 15818–15823 (2008). https://doi.org/10.1021/jp8055015
- M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011). https://doi.org/10.1016/j.surfrep.2011.01.001
- A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999). https://doi.org/10.1021/ja992541y
- H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa et al., Au nanops supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 6, 4976–4982 (2016). https://doi.org/10.1021/acscatal.6b01187
- V. Kumar, S. O’Donnell, B. Zoellner, J. Martinez, G. Wang et al., Interfacing plasmonic nanops with ferroelectrics for hot-carrier-driven photocatalysis: impact of schottky barrier height. ACS Appl. Energy Mater. 2, 7690–7699 (2019). https://doi.org/10.1021/acsaem.9b01682
- X. Chen, R.T. Pekarek, J. Gu, A. Zakutayev, K.E. Hurst et al., Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces 12, 40339–40346 (2020). https://doi.org/10.1021/acsami.0c11474
- K. Wang, M. Wang, J. Yu, D. Liao, H. Shi et al., BiVO4 microps decorated with Cu @Au core-shell nanostructures for photocatalytic H2O2 production. ACS Appl. Nano Mater. 4, 13158–13166 (2021). https://doi.org/10.1021/acsanm.1c02688
- M. Teranishi, T. Kunimoto, S.-I. Naya, H. Kobayashi, H. Tada, Visible-light-driven hydrogen peroxide synthesis by a hybrid photocatalyst consisting of bismuth vanadate and bis(hexafluoroacetylacetonato)copper (II) complex. J. Phys. Chem. C 124, 3715–3721 (2020). https://doi.org/10.1021/acs.jpcc.9b11568
- Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 5, 1500010 (2015). https://doi.org/10.1002/aenm.201500010
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). https://doi.org/10.1039/b800489g
- Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000). https://doi.org/10.2138/am-2000-0416
- Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang et al., Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133, 10878–10884 (2011). https://doi.org/10.1021/ja2025454
- S. Thakur, T. Kshetri, N.H. Kim, J.H. Lee, Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst. J. Catal. 345, 78–86 (2017). https://doi.org/10.1016/j.jcat.2016.10.028
- D. Stone, Y. Ben-Shahar, N. Waiskopf, U. Banin, The metal type governs photocatalytic reactive oxygen species formation by semiconductor-metal hybrid nanops. ChemCatChem 10, 5119–5123 (2018). https://doi.org/10.1002/cctc.201801306
- J.H. Lee, H. Cho, S.O. Park, J.M. Hwang, Y. Hong et al., High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl. Catal. B 284, 119690 (2021). https://doi.org/10.1016/j.apcatb.2020.119690
- J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen et al., Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/b807080f
- H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen et al., Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B 174, 445–454 (2015). https://doi.org/10.1016/j.apcatb.2015.03.037
- R. Li, W. Zhang, K. Zhou, Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 30, 1705512 (2018). https://doi.org/10.1002/adma.201705512
- J. Qiu, X. Zhang, Y. Feng, X. Zhang, H. Wang et al., Modified metal-organic frameworks as photocatalysts. Appl. Catal. B 231, 317–342 (2018). https://doi.org/10.1016/j.apcatb.2018.03.039
- J. Guo, Y. Wan, Y. Zhu, M. Zhao, Z. Tang et al., Advanced photocatalysts based on metal nanop/metal-organic framework composites. Nano Res. 14, 2037–2052 (2021). https://doi.org/10.1007/s12274-020-3182-1
- Y. Isaka, Y. Kondo, Y. Kawase, Y. Kuwahara, K. Mori et al., Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanops. Chem. Commun. 54, 9270–9273 (2018). https://doi.org/10.1039/c8cc02679c
- Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita et al., Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 58, 5402–5406 (2019). https://doi.org/10.1002/anie.201901961
- Y. Kawase, Y. Isaka, Y. Kuwahara, K. Mori, H. Yamashita et al., Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chem. Commun. 55, 6743–6746 (2019). https://doi.org/10.1039/c9cc02380a
- X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J. Mater. Chem. A 8, 1904–1910 (2020). https://doi.org/10.1039/c9ta11120d
- J.-D. Xiao, L. Han, J. Luo, S.-H. Yu, H.-L. Jiang et al., Integration of plasmonic effects and schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew. Chem. Int. Ed. 57, 1103–1107 (2018). https://doi.org/10.1002/anie.201711725
- C. Liu, Q. Sun, L. Lin, J. Wang, C. Zhang et al., Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat. Commun. 11, 4971 (2020). https://doi.org/10.1038/s41467-020-18776-z
- J. Ran, J. Qu, H. Zhang, T. Wen, H. Wang et al., 2D metal organic framework nanosheet: a universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 9, 1803402 (2019). https://doi.org/10.1002/aenm.201803402
- C. Liu, T. Bao, L. Yuan, C. Zhang, J. Wang et al., Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters. Adv. Funct. Mater. 32, 2111404 (2022). https://doi.org/10.1002/adfm.202111404
- S. Chen, T. Luo, X. Li, K. Chen, J. Fu et al., Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022). https://doi.org/10.1021/jacs.2c0119414505
- X. Li, S. Tang, S. Dou, H.J. Fan, T.S. Choksi et al., Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 34, 2104891 (2022). https://doi.org/10.1002/adma.202104891
- J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan et al., Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Adv. Mater. 34, 2202995 (2022). https://doi.org/10.1002/adma.202202995
- P.T. Smith, Y. Kim, B.P. Benke, K. Kim, C.J. Chang, Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 59, 4902–4907 (2020). https://doi.org/10.1002/anie.201916131
- J.Y. Zhang, C.A. Xia, H.F. Wang, C. Tang, Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 67, 432–450 (2022). https://doi.org/10.1016/j.jechem.2021.10.013
- S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvio, V. Colic et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
- A.W.E. Chan, R. Hoffmann, W. Ho, Theoretical aspects of photoinitiated chemisorption, dissociation, and desorption of oxygen on platinum (111). Langmuir 8, 1111–1119 (1992). https://doi.org/10.1021/la00040a017
- X. Song, N. Li, H. Zhang, H. Wang, L. Wang et al., Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: effects of size on oxygen reduction reaction pathway. J. Power Sources 435, 226771 (2019). https://doi.org/10.1016/j.jpowsour.2019.226771
- S. Yang, J. Kim, Y.J. Tak, A. Soon, H. Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241
- C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
- S. Yang, Y.J. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
- R.-Q. Zhang, T.-H. Lee, B.-D. Yu, C. Stampfl, A. Soon, The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys. Chem. Chem. Phys. 14, 16552–16557 (2012). https://doi.org/10.1039/c2cp41392b
- C.H. Choi, H.C. Kwon, S. Yook, H. Shin, H. Kim et al., Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894
- Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny et al., Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020). https://doi.org/10.1038/s41467-020-15843-3
- M. Ledendecker, E. Pizzutilo, G. Malta, G.V. Fortunato, K.J.J. Mayrhofer et al., Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catal. 10, 5928–5938 (2020). https://doi.org/10.1021/acscatal.0c01305
- Y.L. Wang, S. Gurses, N. Felyey, A. Boubnov, S.S. Mao et al., In-situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 9, 8453–8463 (2019). https://doi.org/10.1021/acscatal.9b01758
- D. Mei, Z.D. He, Y.L. Zheng, D.C. Jiang, Y.-X. Chen et al., Mechanistic and kinetic implications on the ORR on an Au (100) electrode: pH, temperature and H-D kinetic isotope effects. Phys. Chem. Chem. Phys. 16, 13762–13773 (2014). https://doi.org/10.1039/c4cp00257a
- Y. Lu, Y. Jiang, X. Gao, W. Chen, Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem. Commun. 50, 8464–8467 (2014). https://doi.org/10.1039/c4cc01841a
- H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, Effect of electronic structures of Au clusters stabilized by poly (N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009). https://doi.org/10.1021/ja810045y
- S. Siahrostami, A. Verdaguer-Casdevall, M. Karamad, I. Chorkendorff, I. Stephens et al., Activity and selectivity for O2 Reduction to H2O2 on transition metal surfaces. ECS Trans. 58, 53–62 (2013). https://doi.org/10.1149/05802.0053ecst
- J.S. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani et al., Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). https://doi.org/10.1021/ja206477z
- A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). https://doi.org/10.1021/nl500037x
- E. Pizzutilo, O. Kasian, C.H. Choi, S. Cherevko, G.J. Hutchings et al., Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanops: from fundamentals to continuous production. Chem. Phys. Lett. 683, 436–442 (2017). https://doi.org/10.1016/j.cplett.2017.01.071
- Y. Dong, J. Su, S. Zhou, M. Wang, S. Huang et al., Carbon-based dots for the electrochemical production of hydrogen peroxide. Chem. Commun. 56, 7609–7612 (2020). https://doi.org/10.1039/c9cc09987e
- Y.-L. Wang, S.-S. Li, X.-H. Yang, G.-Y. Xu, Z.-C. Zhu et al., One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. J. Mater. Chem. A 7, 21329–21337 (2019). https://doi.org/10.1039/c9ta04788c
- V. Colic, S. Yang, Z. Revay, I.E.L. Stephens, I. Chorkendorff, Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 272, 192–202 (2018). https://doi.org/10.1016/j.electacta.2018.03.170
- Y. Bu, Y. Wang, G.-F. Han, Y. Zhao, X. Ge et al., Carbon-based electrocatalysts for efficient hydrogen peroxide production. Adv. Mater. 33, 2103266 (2021). https://doi.org/10.1002/adma.202103266
- Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
- L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
- S. Chen, Z. Chen, S. Siahrostami, T.R. Kim, D. Nordlund et al., Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chem. Eng. 6, 311–317 (2018). https://doi.org/10.1021/acssuschemeng.7b02517
- Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
- M. Yeddala, P. Thakur, A. Anugraha, T.N. Narayanan, Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide. Beilstein J. Nanotechnol. 11, 432–442 (2020). https://doi.org/10.3762/bjnano.11.34
- X. Xu, D. Kong, J. Liang, Y. Gao, Q. Yang et al., Bottom-up construction of microporous catalyst with identical active sites for efficient hydrogen peroxide production. Carbon 171, 931–937 (2021). https://doi.org/10.1016/j.carbon.2020.09.080
- H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J.H. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
- W. Wang, Y. Hu, Y. Liu, Z. Zheng, S. Chen, Self-powered and highly efficient production of H2O2 through a Zn-air battery with oxygenated carbon electrocatalyst. ACS Appl. Mater. Interfaces 10, 31855–31859 (2018). https://doi.org/10.1021/acsami.8b11703
- H. Zhang, Y. Li, Y. Zhao, G. Li, F. Zhang, Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation. ACS Appl. Mater. Interfaces 11, 27846–27853 (2019). https://doi.org/10.1021/acsami.9b07765
- J. Zhu, X. Xiao, K. Zheng, F. Li, G. Ma et al., KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 153, 6–11 (2019). https://doi.org/10.1016/j.carbon.2019.07.009
- G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
- Y. Xue, X. Du, W. Cai, Z. Sun, Y. Zhang et al., Ramie biomass derived nitrogen-doped activated carbon for efficient electrocatalytic production of hydrogen peroxide. J. Electrochem. Soc. 165, E171–E176 (2018). https://doi.org/10.1149/2.0681805jes
- Y.-H. Lee, F. Li, K.-H. Chang, C.-C. Hu, T. Ohsaka, Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B 126, 208–214 (2012). https://doi.org/10.1016/j.apcatb.2012.06.031
- J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji et al., Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 163, 154–161 (2020). https://doi.org/10.1016/j.carbon.2020.02.084
- L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9, 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
- V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng et al., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in-situ production of hydrogen peroxide. Carbon 95, 949–963 (2015). https://doi.org/10.1016/j.carbon.2015.09.002
- D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576–591 (2014). https://doi.org/10.1039/c3ee43463j
- D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
- K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
- X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
- L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015). https://doi.org/10.1021/cr5003563
- T.-P. Fellinger, F. Hasche, P. Strasser, M. Antonietti, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012). https://doi.org/10.1021/ja300038p
- J. Park, Y. Nabae, T. Hayakawa, M.-A. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014). https://doi.org/10.1021/cs5008206
- Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp et al., Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 8, 2844–2856 (2018). https://doi.org/10.1021/acscatal.7b03464
- J. Li, C. Shi, A. Bao, J. Jia, Development of boron-doped mesoporous carbon materials for use in CO2 capture and electrochemical generation of H2O2. ACS Omega 6, 8438–8446 (2021). https://doi.org/10.1021/acsomega.1c00197
- G. Chen, J. Liu, Q. Li, P. Guan, X. Yu et al., A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 12, 2614–2622 (2019). https://doi.org/10.1007/s12274-019-2496-3
- S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund et al., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140, 7851–7859 (2018). https://doi.org/10.1021/jacs.8b02798
- X.-H. Yan, Z. Meng, J. Liu, T. Xue, Sodium ferric EDTA-derived Fe-N-C material for selectively electrocatalytic synthesis of hydrogen peroxide. Mater. Lett. 217, 171–173 (2018). https://doi.org/10.1016/j.matlet.2018.01.044
- A. Byeon, J. Cho, J.G.M. Kim, K.H. Chae, H.-Y. Park et al., High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horiz. 5, 832–838 (2020). https://doi.org/10.1039/c9nh00783k
- M. Suk, M.W. Chung, M.H. Han, H.-S. Oh, C.H. Choi et al., Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catal. Today 359, 99–105 (2021). https://doi.org/10.1016/j.cattod.2019.05.034
- B. You, N. Jiang, M. Sheng, W.S. Drisdell, J. Yano et al., Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 5, 7068–7076 (2015). https://doi.org/10.1021/acscatal.5b02325
- J. Gao, H.B. Yang, X. Huang, S.-F. Hung, W. Cai et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
- Y. Sun, L. Silvioli, N.R. Sahraie, W. Ju, J. Li et al., Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019). https://doi.org/10.1021/jacs.9b05576
- E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee et al., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. (2020). https://doi.org/10.1038/s41563-019-0571-5
- M. Jin, W. Liu, J. Sun, X. Wang, S. Zhang et al., Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 15, 5842–5847 (2022). https://doi.org/10.1007/s12274-022-4208-7
- Z. Zheng, Y.H. Ng, D.-W. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016). https://doi.org/10.1002/adma.201603662
- S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021). https://doi.org/10.1002/anie.202104480
- Z. Deng, X. Wang, Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres. Nano Res. 15, 4599–4605 (2022). https://doi.org/10.1007/s12274-022-4095-y
- Y. Sun, S. Li, Z.P. Jovanov, D. Bernsmeier, P. Strasser et al., structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production. Chemsuschem 11, 3388–3395 (2018). https://doi.org/10.1002/cssc.201801583
- Y. Hu, J. Zhang, T. Shen, Z. Li, K. Chen et al., Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 13, 29551–29557 (2021). https://doi.org/10.1021/acsami.1c05353
- H. Gong, Z. Wei, Z. Gong, J. Liu, G. Ye et al., Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 32, 2106886 (2022). https://doi.org/10.1002/adfm.202106886
- P.-T. Thuan-Nguyen, T. Petenzi, C. Ranjan, H.N. Randriamahazaka, J. Ghilane, Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide. Carbon 130, 544–552 (2018). https://doi.org/10.1016/j.carbon.2018.01.070
- L. Wang, L. Duan, L. Tong, L. Sun, Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. J. Catal. 306, 129–132 (2013). https://doi.org/10.1016/j.jcat.2013.06.023
- I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102–121 (2014). https://doi.org/10.1002/anie.201306588
- Z.-P. Wu, X.F. Lu, S.-Q. Zang, X.W. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 30, 1910274 (2020). https://doi.org/10.1002/adfm.201910274
- V. Viswanathan, H.A. Hansen, J.K. Norskov, Selective electrochemical generation of hydrogen peroxide from water oxidation. J. Phys. Chem. Lett. 6, 4224–4228 (2015). https://doi.org/10.1021/acs.jpclett.5b02178
- S. Siahrostami, G.-L. Li, V. Viswanathan, J.K. Norskov, One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017). https://doi.org/10.1021/acs.jpclett.6b02924
- X. Shi, S. Siahrostami, G.-L. Li, Y. Zhang, P. Chakthranont et al., Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 8, 701 (2017). https://doi.org/10.1038/s41467-017-00585-6
- A. Nadar, S.S. Gupta, Y. Kar, S. Shetty, A.P. van Bavel et al., Evaluating the reactivity of BiVO4 surfaces for efficient electrocatalytic H2O2 production: a combined experimental and computational study. J. Phys. Chem. C 124, 4152–4161 (2020). https://doi.org/10.1021/acs.jpcc.9b11418
- J.H. Baek, T.M. Gill, H. Abroshan, S. Park, X. Shi et al., Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett. 4, 720–728 (2019). https://doi.org/10.1021/acsenergylett.9b00277
- L. Li, Z. Hu, J.C. Yu, On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem. Int. Ed. 59, 20538–20544 (2020). https://doi.org/10.1002/anie.202008031
- T. Kang, B. Li, Q. Hao, W. Gao, F. Bin et al., Efficient hydrogen peroxide (H2O2) synthesis by CaSnO3 via two-electron water oxidation reaction. ACS Sustainable Chem. Eng. 8, 15005–15012 (2020). https://doi.org/10.1021/acssuschemeng.0c05449
- S.Y. Park, H. Abroshan, X. Shi, H.S. Jung, S. Siahrostami et al., CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2. ACS Energy Lett. 4, 352–357 (2019). https://doi.org/10.1021/acsenergylett.8b02303
- S.R. Kelly, X. Shi, S. Back, L. Vallez, S.Y. Park et al., ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catal. 9, 4593–4599 (2019). https://doi.org/10.1021/acscatal.8b04873
- J. Li, D. Solanki, Q. Zhu, X. Shen, G. Callander et al., Microstructural origin of selective water oxidation to hydrogen peroxide at low overpotentials: a study on Mn-alloyed TiO2. J. Mater. Chem. A 9, 18498–18505 (2021). https://doi.org/10.1039/d1ta05451a
- S.-G. Xue, L. Tang, Y.-K. Tang, C.-X. Li, M.-L. Li et al., Selective electrocatalytic water oxidation to produce H2O2 using a C, N codoped TiO2 electrode in an acidic electrolyte. ACS Appl. Mater. Interfaces 12, 4423–4431 (2020). https://doi.org/10.1021/acsami.9b16937
- K. Fuku, Y. Miyase, Y. Miseki, T. Gunji, K. Sayama, Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect 1, 5721–5726 (2016). https://doi.org/10.1002/slct.201601469
- Y. Miyase, S. Iguchi, Y. Miseki, T. Gunji, K. Sayama, Electrochemical H2O2 production and accumulation from H2O by composite effect of Al2O3 and BiVO4. J. Electrochem. Soc. 166, H644–H649 (2019). https://doi.org/10.1149/2.0561913jes
- F. Kuttassery, S. Mathew, S. Sagawa, S.N. Remello, A. Thomas et al., One electron-initiated two-electron oxidation of water by aluminum porphyrins with earth’s most abundant metal. Chemsuschem 10, 1909–1915 (2017). https://doi.org/10.1002/cssc.201700322
- S.N. Remello, F. Kuttassery, S. Mathew, A. Thomas, D. Yamamoto et al., Two-electron oxidation of water to form hydrogen peroxide catalysed by silicon-porphyrins. Sustainable Energy Fuels 2, 1966–1973 (2018). https://doi.org/10.1039/c8se00102b
- A. Sebastian, S.N. Remello, F. Kuttassery, S. Mathew, Y. Ohsaki et al., Protolytic behavior of water-soluble zinc (II) porphyrin and the electrocatalytic two-electron water oxidation to form hydrogen peroxide. J. Photochem. Photobiol. A 400, 112619 (2020). https://doi.org/10.1016/j.jphotochem.2020.112619
- Y. Ohsaki, A. Thomas, F. Kuttassery, S. Mathew, S.N. Remello et al., Two-electron oxidation of water to form hydrogen peroxide initiated by one-electron oxidation of Tin (IV)-porphyrins. J. Photochem. Photobiol. A 401, 112732 (2020). https://doi.org/10.1016/j.jphotochem.2020.112732
- Y. Ando, T. Tanaka, Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis. Int. J. Hydrogen Energy 29, 1349–1354 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.001
- J.V. Macpherson, A practical guide to using boron doped diamond in electrochemical res
References
R.J. Lewis, G.J. Hutchings, Recent advances in the direct synthesis of H2O2. ChemCatChem 11, 298–308 (2019). https://doi.org/10.1002/cctc.201801435
J. Gao, B. Liu, Progress of electrochemical hydrogen peroxide synthesis over single atom catalysts. ACS Mater. Lett. 2, 1008–1024 (2020). https://doi.org/10.1021/acsmaterialslett.0c00189
A. Torres-Pinto, M.J. Sampaio, C.G. Silva, J.L. Faria, A.M.T. Silva, Recent strategies for hydrogen peroxide production by metal-free carbon nitride photocatalysts. Catalysts 9, 990 (2019). https://doi.org/10.3390/catal9120990
S.C. Perry, D. Pangotra, L. Vieira, L.-I. Csepei, V. Sieber et al., Electrochemical synthesis of hydrogen peroxide from water and oxygen. Nat. Rev. Chem. 3, 442–458 (2019). https://doi.org/10.1038/s41570-019-0110-6
S. Siahrostami, A. Verdaguer-Casadevall, M. Karamad, D. Deiana, P. Malacrida et al., Enabling direct H2O2 production through rational electrocatalyst design. Nat. Mater. 12, 1137–1143 (2013). https://doi.org/10.1038/NMAT3795
J. Chen, Q. Ma, X. Zheng, Y. Fang, J. Wang et al., Kinetically restrained oxygen reduction to hydrogen peroxide with nearly 100% selectivity. Nat. Commun. 13, 2808 (2022). https://doi.org/10.1038/s41467-022-30411-7
J. Wu, Y. Han, Y. Bai, X. Wang, Y. Zhou et al., The electron transport regulation in carbon dots/In2O3 electrocatalyst enable 100% selectivity for oxygen reduction to hydrogen peroxide. Adv. Funct. Mater. 32, 2203647 (2022). https://doi.org/10.1002/adfm.202203647
J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro, Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. Angew. Chem. Int. Ed. 45, 6962–6984 (2006). https://doi.org/10.1002/anie.200503779
S.-I. Yamazaki, Z. Siroma, H. Senoh, T. Loroi, N. Fujiwara et al., A fuel cell with selective electrocatalysts using hydrogen peroxide as both an electron acceptor and a fuel. J. Power Sources 178, 20–25 (2008). https://doi.org/10.1016/j.jpowsour.2007.12.013
S.A.M. Shaegh, N. Nam-Trung, S.M.M. Ehteshami, S.H. Chan, A membraneless hydrogen peroxide fuel cell using prussian blue as cathode material. Energy Environ. Sci. 5, 8225–8228 (2012). https://doi.org/10.1039/c2ee21806b
Y. Liu, P. Vijayakumar, Q. Liu, T. Sakthivel, F. Chen et al., Shining light on anion-mixed nanocatalysts for efficient water electrolysis: fundamentals, progress, and perspectives. Nano-Micro Lett. 14, 43 (2022). https://doi.org/10.1007/s40820-021-00785-2
S. Kato, J. Jung, T. Suenobu, S. Fukuzumi, Production of hydrogen peroxide as a sustainable solar fuel from water and dioxygen. Energy Environ. Sci. 6, 3756–3764 (2013). https://doi.org/10.1039/c3ee42815j
Y. Kofuji, Y. Isobe, Y. Shiraishi, H. Sakamoto, S. Tanaka et al., Carbon nitride-aromatic diimide-graphene nanohybrids: metal-free photocatalysts for solar-to-hydrogen peroxide energy conversion with 0.2% efficiency. J. Am. Chem. Soc. 138, 10019–10025 (2016). https://doi.org/10.1021/jacs.6b05806
S. Gogoi, N. Karak, Solar-driven hydrogen peroxide production using polymer-supported carbon dots as heterogeneous catalyst. Nano-Micro Lett. 9, 40 (2017). https://doi.org/10.1007/s40820-017-0143-7
K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Seawater usable for production and consumption of hydrogen peroxide as a solar fuel. Nat. Commun. 7, 11470 (2016). https://doi.org/10.1038/ncomms11470
X. Zeng, Y. Liu, X. Hu, X. Zhang, Photoredox catalysis over semiconductors for light-driven hydrogen peroxide production. Green Chem. 23, 1466–1494 (2021). https://doi.org/10.1039/d0gc04236f
Z. Yao, J. Zhao, R.J. Bunting, C. Zhao, P. Hu et al., Quantitative insights into the reaction mechanism for the direct synthesis of H2O2 over transition metals: coverage-dependent microkinetic modeling. ACS Catal. 11, 1202–1221 (2021). https://doi.org/10.1021/acscatal.0c04125
S. Siahrostami, S.J. Villegas, A.H.B. Mostaghimi, S. Back, A.B. Farimani et al., A review on challenges and successes in atomic-scale design of catalysts for electrochemical synthesis of hydrogen heroxide. ACS Catal. 10, 7495–7511 (2020). https://doi.org/10.1021/acscatal.0c01641
G.-H. Han, S.-H. Lee, S.-Y. Hwang, K.-Y. Lee, Advanced development strategy of nano catalyst and DFT calculations for direct synthesis of hydrogen peroxide. Adv. Energy Mater. 11, 2003121 (2021). https://doi.org/10.1002/aenm.202003121
Y. Sun, L. Han, P. Strasser, A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem. Soc. Rev. 49, 6605–6631 (2020). https://doi.org/10.1039/d0cs00458h
C. Xia, Y. Xia, P. Zhu, L. Fan, H. Wang, Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226 (2019). https://doi.org/10.1126/science.aay1844
Z. Lu, G. Chen, S. Siahrostami, Z. Chen, K. Liu et al., High-efficiency oxygen reduction to hydrogen peroxide catalysed by oxidized carbon materials. Nat. Catal. 1, 156–162 (2018). https://doi.org/10.1038/s41929-017-0017-x
S.J. Freakley, Q. He, J.H. Harrhy, L. Lu, D.A. Crole et al., Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351, 965–968 (2016). https://doi.org/10.1126/science.aad5705
J.K. Edwards, S.J. Freakley, A.F. Carley, C.J. Kiely, G.J. Hutchings, Strategies for designing supported gold-palladium bimetallic catalysts for the direct synthesis of hydrogen peroxide. Acc. Chem. Res. 47, 845–854 (2014). https://doi.org/10.1021/ar400177c
J. Garcia-Serna, T. Moreno, P. Biasi, M.J. Cocero, J.-P. Mikkola et al., Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions. Green Chem. 16, 2320–2343 (2014). https://doi.org/10.1039/c3gc41600c
R.B. Rankin, J. Greeley, Trends in selective hydrogen peroxide production on transition metal surfaces from first principles. ACS Catal. 2, 2664–2672 (2012). https://doi.org/10.1021/cs3003337
J.K. Edwards, B. Solsona, A.F. Carley, A.A. Herzing, C.J. Kiely et al., Switching off hydrogen peroxide hydrogenation in the direct synthesis process. Science 323, 1037–1041 (2009). https://doi.org/10.1126/science.1168980
K. Dong, Y. Lei, H. Zhao, J. Liang, P. Ding et al., Noble-metal-free electrocatalysts toward H2O2 production. J. Mater. Chem. A 8, 23123–23141 (2020). https://doi.org/10.1039/d0ta08894c
H. Lu, X. Li, S.A. Monny, Z. Wang, L. Wang, Photo-electrocatalytic hydrogen peroxide production based on transition-metal-oxide semiconductors. Chin. J. Catal. 43, 1204–1215 (2022). https://doi.org/10.1016/S1872-2067(21)64028-7
L.-H. Fu, C. Qi, J. Lin, P. Huang, Catalytic chemistry of glucose oxidase in cancer diagnosis and treatment. Chem. Soc. Rev. 47, 6454–6472 (2018). https://doi.org/10.1039/c7cs00891k
W. Luo, C. Zhu, S. Su, D. Li, Y. He et al., Self-catalyzed, self-limiting growth of glucose oxidase-mimicking gold nanops. ACS Nano 4, 7451–7458 (2010). https://doi.org/10.1021/nn102592h
J. Fang, T. Sawa, T. Akaike, H. Maeda, Tumor-targeted delivery of polyethylene glycol-conjugated D-amino acid oxidase for antitumor therapy via enzymatic generation of hydrogen peroxide. Cancer Res. 62, 3138–3143 (2002)
A. Parra, E. Casero, F. Pariente, L. Vazquez, E. Lorenzo, Cholesterol oxidase modified gold electrodes as bioanalytical devices. Sens. Actuators B 124, 30–37 (2007). https://doi.org/10.1016/j.snb.2006.11.051
S.C. Perry, S.M. Gateman, J. Sifakis, L. Pollegioni, J. Mauzeroll, Enhancement of the enzymatic biosensor response through targeted electrode surface roughness. J. Electrochem. Soc. 165, G3074–G3079 (2018). https://doi.org/10.1149/2.0121812jes
D. Polcari, S.C. Perry, L. Pollegioni, M. Geissler, J. Mauzeroll et al., Localized detection of D-serine by using an enzymatic amperometric biosensor and scanning electrochemical microscopy. ChemElectroChem 4, 920–926 (2017). https://doi.org/10.1002/celc.201600766
L. Wang, J. Zhang, Y. Zhang, H. Yu, Y. Qu et al., Inorganic metal-oxide photocatalyst for H2O2 production. Small 18, 2104561 (2022). https://doi.org/10.1002/smll.202104561
S. Fukuzumi, Y.-M. Lee, W. Nam, Solar-driven production of hydrogen peroxide from water and dioxygen. Chem. Eur. J. 24, 5016 (2018). https://doi.org/10.1002/chem.201704512
Y. Pang, H. Xie, Y. Sun, M.-M. Titirici, G.-L. Chai, Electrochemical oxygen reduction for H2O2 production: catalysts, pH effects and mechanisms. J. Mater. Chem. A 8, 24996–25016 (2020). https://doi.org/10.1039/d0ta09122g
X. Yang, Y. Zeng, W. Alnoush, Y. Hou, D. Higgins et al., Tuning two-electron oxygen-reduction pathways for H2O2 electrosynthesis via engineering atomically dispersed single metal site catalysts. Adv. Mater. 34, 2107954 (2022). https://doi.org/10.1002/adma.202107954
H.-I. Kim, O.S. Kwon, S. Kim, W. Choi, J.-H. Kim, Harnessing low energy photons (635 nm) for the production of H2O2 using upconversion nanohybrid photocatalysts. Energy Environ. Sci. 9, 1063–1073 (2016). https://doi.org/10.1039/c5ee03115j
Y. Jiang, P. Ni, C. Chen, Y. Lu, P. Yang et al., Selective electrochemical H2O2 production through two-electron oxygen electrochemistry. Adv. Energy Mater. 8, 1801909 (2018). https://doi.org/10.1002/aenm.201801909
Y.-J. Ko, K. Choi, B. Yang, W.H. Lee, J.-Y. Kim et al., A catalyst design for selective electrochemical reactions: direct production of hydrogen peroxide in advanced electrochemical oxidation. J. Mater. Chem. A 8, 9859–9870 (2020). https://doi.org/10.1039/d0ta01869d
L.E.B. Lucchetti, M.O. Almeida, J.M. de Almeida, P.A.S. Autreto, K.M. Honorio et al., Density functional theory studies of oxygen reduction reaction for hydrogen peroxide generation on graphene-based catalysts. J. Electroanal. Chem. 895, 115429 (2021). https://doi.org/10.1016/j.jelechem.2021.115429
L. Cheng, Q. Xiang, Y. Liao, H. Zhang, CdS-based photocatalysts. Energy Environ. Sci. 11, 1362–1391 (2018). https://doi.org/10.1039/c7ee03640j
J. Fu, J. Yu, C. Jiang, B. Cheng, g-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8, 1701503 (2018). https://doi.org/10.1002/aenm.201701503
J. Xiong, J. Di, J. Xia, W. Zhu, H. Li, Surface defect engineering in 2D nanomaterials for photocatalysis. Adv. Funct. Mater. 28, 1801983 (2018). https://doi.org/10.1002/adfm.201801983
H. Hou, X. Zeng, X. Zhang, Production of hydrogen peroxide by photocatalytic processes. Angew. Chem. Int. Ed. 59, 17356–17376 (2020). https://doi.org/10.1002/anie.201911609
Z. Liu, X. Sheng, D. Wang, X. Feng, Efficient hydrogen peroxide generation utilizing photocatalytic oxygen reduction at a triphase interface. Iscience 17, 67 (2019). https://doi.org/10.1016/j.isci.2019.06.023
F. Xue, Y. Si, M. Wang, M. Liu, L. Guo, Toward efficient photocatalytic pure water splitting for simultaneous H2 and H2O2 production. Nano Energy 62, 823–831 (2019). https://doi.org/10.1016/j.nanoen.2019.05.086
A. Izgorodin, E. Izgorodina, D.R. MacFarlane, Low overpotential water oxidation to hydrogen peroxide on a MnOx catalyst. Energy Environ. Sci. 5, 9496–9501 (2012). https://doi.org/10.1039/c2ee21832a
X.J. Shi, Y.R. Zhang, S. Siahrostami, X.L. Zheng, Light-driven BiVO4-C fuel cell with simultaneous production of H2O2. Adv. Energy Mater. 8, 1801158 (2018). https://doi.org/10.1002/aenm.201801158
S. Back, J. Na, Z.W. Ulissi, Efficient discovery of active, selective, and stable catalysts for electrochemical H2O2 synthesis through active motif screening. ACS Catal. 11, 2483–2491 (2021). https://doi.org/10.1021/acscatal.0c05494
J. Zhang, H. Zhang, M.-J. Cheng, Q. Lu, Tailoring the electrochemical production of H2O2: strategies for the rational design of high-performance electrocatalysts. Small 16, 1902845 (2020). https://doi.org/10.1002/smll.201902845
X. Shi, S. Back, T.M. Gill, S. Siahrostami, X. Zheng, Electrochemical synthesis of H2O2 by two-electron water oxidation reaction. Chem 7, 38–63 (2021). https://doi.org/10.1016/j.chempr.2020.09.013
K. Wang, J. Huang, H. Chen, Y. Wang, S. Song, Recent advances in electrochemical 2e oxygen reduction reaction for on-site hydrogen peroxide production and beyond. Chem. Commun. 56, 12109–12121 (2020). https://doi.org/10.1039/d0cc05156j
S. Mavrikis, S.C. Perry, P.K. Leung, L. Wang, C.P. de Leon, Recent advances in electrochemical water oxidation to produce hydrogen peroxide: a mechanistic perspective. ACS Sustainable Chem. Eng. 9, 76–91 (2021). https://doi.org/10.1021/acssuschemeng.0c07263
C. Xia, S. Back, S. Ringe, K. Jiang, F. Chen et al., Confined local oxygen gas promotes electrochemical water oxidation to hydrogen peroxide. Nat. Catal. 3, 125–134 (2020). https://doi.org/10.1038/s41929-019-0402-8
Y. Xue, Y. Wang, Z. Pan, K. Sayama, Electrochemical and photoelectrochemical water oxidation for hydrogen peroxide production. Angew. Chem. Int. Ed. 60, 10469–10480 (2021). https://doi.org/10.1002/anie.202011215
X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin et al., A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009). https://doi.org/10.1038/NMAT2317
X. Wang, K. Maeda, X. Chen, K. Takanabe, K. Domen et al., Polymer semiconductors for artificial photosynthesis: hydrogen evolution by mesoporous graphitic carbon nitride with visible light. J. Am. Chem. Soc. 131, 1680 (2009). https://doi.org/10.1021/ja809307s
M. Wang, P. Ju, J. Li, Y. Zhao, X. Han et al., Facile synthesis of MoS2/g-C3N4/GO ternary heterojunction with enhanced photocatalytic activity for water splitting. ACS Sustainable Chem. Eng. 5, 7878–7886 (2017). https://doi.org/10.1021/acssuschemeng.7b01386
L. Jiang, X. Yuan, Y. Pan, J. Liang, G. Zeng et al., Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B 217, 388–406 (2017). https://doi.org/10.1016/j.apcatb.2017.06.003
Y.-X. Ye, C. Wen, J. Pan, J.-W. Wang, Y.-J. Tong et al., Visible-light driven efficient overall H2O2 production on modified graphitic carbon nitride under ambient conditions. Appl. Catal. B 285, 119726 (2021). https://doi.org/10.1016/j.apcatb.2020.119726
G. Dong, L. Zhang, Synthesis and enhanced Cr(VI) photoreduction property of formate anion containing graphitic carbon nitride. J. Phys. Chem. C 117, 4062–4068 (2013). https://doi.org/10.1021/jp3115226
S. Cao, J. Low, J. Yu, M. Jaroniec, Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015). https://doi.org/10.1002/adma.201500033
S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma et al., Exfoliated graphitic carbon nitride nanosheets as efficient catalysts for hydrogen evolution under visible light. Adv. Mater. 25, 2452–2456 (2013). https://doi.org/10.1002/adma.201204453
H. Piao, G. Choi, X. Jin, S.-J. Hwang, Y.J. Song et al., Monolayer graphitic carbon nitride as metal-free catalyst with enhanced performance in photo- and electro-catalysis. Nano-Micro Lett. 14, 55 (2022). https://doi.org/10.1007/s40820-022-00794-9
Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto et al., Highly selective production of hydrogen peroxide on graphitic carbon nitride (g-C3N4) photocatalyst activated by visible light. ACS Catal. 4, 774–780 (2014). https://doi.org/10.1021/cs401208c
Y. Shiraishi, Y. Kofuji, H. Sakamoto, S. Tanaka, S. Ichikawa et al., Effects of surface defects on photocatalytic H2O2 production by mesoporous graphitic carbon nitride under visible light irradiation. ACS Catal. 5, 3058–3066 (2015). https://doi.org/10.1021/acscatal.5b00408
Z. Zhu, H. Pan, M. Murugananthan, J. Gong, Y. Zhang, Visible light-driven photocatalytically active g-C3N4 material for enhanced generation of H2O2. Appl. Catal. B 232, 19–25 (2018). https://doi.org/10.1016/j.apcatb.2018.03.035
S. Li, G. Dong, R. Hailili, L. Yang, Y. Li et al., Effective photocatalytic H2O2 production under visible light irradiation at g-C3N4 modulated by carbon vacancies. Appl. Catal. B 190, 26–35 (2016). https://doi.org/10.1016/j.apcatb.2016.03.004
Y. You, S. Wang, K. Xiao, T. Ma, Y. Zhang et al., Z-Scheme g-C3N4/Bi4NbO8Cl heterojunction for enhanced photocatalytic hydrogen production. ACS Sustainable Chem. Eng. 6, 16219–16227 (2018). https://doi.org/10.1021/acssuschemeng.8b03075
R. Hao, G. Wang, C. Jiang, H. Tang, Q. Xu, In-situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for Rhodamine B degradation. Appl. Surf. Sci. 411, 400–410 (2017). https://doi.org/10.1016/j.apsusc.2017.03.197
W. Liu, C. Song, M. Kou, Y. Wang, Y. Deng et al., Fabrication of ultra-thin g-C3N4 nanoplates for efficient visible-light photocatalytic H2O2 production via two-electron oxygen reduction. Chem. Eng. J. 425, 130615 (2021). https://doi.org/10.1016/j.cej.2021.130615
T. Mahvelati-Shamsabadi, H. Fattahimoghaddam, B.-K. Lee, S. Bae, J. Ryu, Synthesis of hexagonal rosettes of g-C3N4 with boosted charge transfer for the enhanced visible-light photocatalytic hydrogen evolution and hydrogen peroxide production. J. Colloid Interface Sci. 597, 345–360 (2021). https://doi.org/10.1016/j.jcis.2021.04.019
G. Dong, W. Ho, Y. Li, L. Zhang, Facile synthesis of porous graphene-like carbon nitride (C6N9H3) with excellent photocatalytic activity for NO removal. Appl. Catal. B 174, 477–485 (2015). https://doi.org/10.1016/j.apcatb.2015.03.035
Y. Lv, Y. Liu, Y. Zhu, Y. Zhu, Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J. Mater. Chem. A 2, 1174–1182 (2014). https://doi.org/10.1039/c3ta13841k
D. Chen, Z. Wang, T. Ren, H. Ding, W. Yao et al., Influence of defects on the photocatalytic activity of ZnO. J. Phys. Chem. C 118, 15300–15307 (2014). https://doi.org/10.1021/jp5033349
L. Shi, L. Yang, W. Zhou, Y. Liu, L. Yin et al., Photoassisted construction of holey defective g-C3N4 photocatalysts for efficient visible-light-driven H2O2 production. Small 14, 1703142 (2018). https://doi.org/10.1002/smll.201703142
H. Zhao, Q. Jin, M.A. Khan, S. Larter, S. Siahrostami et al., Rational design of carbon nitride for remarkable photocatalytic H2O2 production. Chem. Catalysis 2, 1720–1733 (2022). https://doi.org/10.1016/j.checat.2022.04.015
H. Li, J. Shang, Z. Ai, L. Zhang, Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed 001 facets. J. Am. Chem. Soc. 137, 6393–6399 (2015). https://doi.org/10.1021/jacs.5b03105
G. Dong, W. Ho, C. Wang, Selective photocatalytic N2 fixation dependent on g-C3N4 induced by nitrogen vacancies. J. Mater. Chem. A 3, 23435–23441 (2015). https://doi.org/10.1039/c5ta06540b
J. Lei, B. Chen, W. Lv, L. Zhou, L. Wang et al., Robust photocatalytic H2O2 production over inverse opal g-C3N4 with carbon vacancy under visible light. ACS Sustainable Chem. Eng. 7, 16467–16473 (2019). https://doi.org/10.1021/acssuschemeng.9b03678
P. Niu, G. Liu, H.-M. Cheng, Nitrogen vacancy-promoted photocatalytic activity of graphitic carbon nitride. J. Phys. Chem. C 116, 11013–11018 (2012). https://doi.org/10.1021/jp301026y
X. Qu, S. Hu, P. Li, Z. Li, H. Wang et al., The effect of embedding N vacancies into g-C3N4 on the photocatalytic H2O2 production ability via H2 plasma treatment. Diamond Relat. Mater. 86, 159–166 (2018). https://doi.org/10.1016/j.diamond.2018.04.027
H. Fattahimoghaddam, T. Mahvelati-Shamsabadi, B.-K. Lee, Enhancement in photocatalytic H2O2 production over g-C3N4 nanostructures: a collaborative approach of nitrogen deficiency and supramolecular precursors. ACS Sustainable Chem. Eng. 9, 4520–4530 (2021). https://doi.org/10.1021/acssuschemeng.0c08884
J. Luo, Y. Liu, C. Fan, L. Tang, S. Yang et al., Direct attack and indirect transfer mechanisms dominated by reactive oxygen species for photocatalytic H2O2 production on g-C3N4 possessing nitrogen vacancies. ACS Catal. 11, 11440–11450 (2021). https://doi.org/10.1021/acscatal.1c03103
X. Meng, L. Liu, S. Ouyang, H. Xu, D. Wang et al., Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv. Mater. 28, 6781–6803 (2016). https://doi.org/10.1002/adma.201600305
X. Chang, J. Yang, D. Han, B. Zhang, X. Xiang et al., Enhancing light-driven production of hydrogen peroxide by anchoring Au onto C3N4 catalysts. Catalysts 8, 147 (2018). https://doi.org/10.3390/catal8040147
G. Zuo, S. Liu, L. Wang, H. Song, P. Zong et al., Finely dispersed Au nanops on graphitic carbon nitride as highly active photocatalyst for hydrogen peroxide production. Catal. Commun. 123, 69–72 (2019). https://doi.org/10.1016/j.catcom.2019.02.011
J. Cai, J. Huang, S. Wang, J. Iocozzia, Z. Sun et al., Crafting mussel-inspired metal nanop-decorated ultrathin graphitic carbon nitride for the degradation of chemical pollutants and production of chemical resources. Adv. Mater. 31, 1806314 (2019). https://doi.org/10.1002/adma.201806314
Y. Wang, X. Wang, M. Antonietti, Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68–89 (2012). https://doi.org/10.1002/anie.201101182
G. Liu, P. Niu, L. Yin, H.-M. Cheng, α-Sulfur crystals as a visible-light-active photocatalyst. J. Am. Chem. Soc. 134, 9070–9073 (2012). https://doi.org/10.1021/ja302897b
T. Xiong, W. Cen, Y. Zhang, F. Dong, Bridging the g-C3N4 interlayers for enhanced photocatalysis. ACS Catal. 6, 2462–2472 (2016). https://doi.org/10.1021/acscatal.5b02922
Q. Xu, L. Zhang, J. Yu, S. Wageh, A.A. Al-Ghamdi et al., Direct Z-scheme photocatalysts: principles, synthesis, and applications. Mater. Today 21, 1042–1063 (2018). https://doi.org/10.1016/j.mattod.2018.04.008
Q. Chen, J. Li, L. Cheng, H. Liu, Construction of CdLa2S4/MIL-88A(Fe) heterojunctions for enhanced photocatalytic H2 evolution activity via a direct Z-scheme electron transfer. Chem. Eng. J. 379, 122389 (2020). https://doi.org/10.1016/j.cej.2019.122389
L. Yang, G. Dong, D.L. Jacobs, Y. Wang, L. Zang et al., Two-channel photocatalytic production of H2O2 over g-C3N4 nanosheets modified with perylene imides. J. Catal. 352, 274–281 (2017). https://doi.org/10.1016/j.jcat.2017.05.010
Z. Li, N. Xiong, G. Gu, Fabrication of a full-spectrum-response Cu2(OH)2CO3/g-C3N4 heterojunction catalyst with outstanding photocatalytic H2O2 production performance via a self-sacrificial method. Dalton Trans. 48, 182–189 (2019). https://doi.org/10.1039/c8dt04081h
X. Zhao, Y. You, S. Huang, Y. Wu, Y. Ma et al., Z-scheme photocatalytic production of hydrogen peroxide over Bi4O5Br2/g-C3N4 heterostructure under visible light. Appl. Catal. B 278, 119251 (2020). https://doi.org/10.1016/j.apcatb.2020.119251
D.-L. Long, E. Burkholder, L. Cronin, Polyoxometalate clusters, nanostructures and materials: from self- assembly to designer materials and devices. Chem. Soc. Rev. 36, 105–121 (2007). https://doi.org/10.1039/b502666k
H. Lv, Y.V. Geletii, C. Zhao, J.W. Vickers, G. Zhu et al., Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 41, 7572–7589 (2012). https://doi.org/10.1039/c2cs35292c
S.-S. Wang, G.-Y. Yang, Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015). https://doi.org/10.1021/cr500390v
J. Ettedgui, Y. Diskin-Posner, L. Weiner, R. Neumann, Photoreduction of carbon dioxide to carbon monoxide with hydrogen catalyzed by a rhenium(I) phenanthroline-polyoxometalate hybrid complex. J. Am. Chem. Soc. 133, 188–190 (2011). https://doi.org/10.1021/ja1078199
B. Rausch, M.D. Symes, G. Chisholm, L. Cronin, Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting. Science 345, 1326–1330 (2014). https://doi.org/10.1126/science.1257443
S. Zhao, X. Zhao, H. Zhang, J. Li, Y. Zhu, Covalent combination of polyoxometalate and graphitic carbon nitride for light-driven hydrogen peroxide production. Nano Energy 35, 405–414 (2017). https://doi.org/10.1016/j.nanoen.2017.04.017
S. Zhao, X. Zhao, S. Ouyang, Y. Zhu, Polyoxometalates covalently combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production. Catal. Sci. Technol. 8, 1686–1695 (2018). https://doi.org/10.1039/c8cy00043c
S. Zhao, X. Zhao, Polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework for photocatalytic hydrogen peroxide production under visible light. J. Catal. 366, 98–106 (2018). https://doi.org/10.1016/j.jcat.2018.08.003
S. Zhao, X. Zhao, Insights into the role of singlet oxygen in the photocatalytic hydrogen peroxide production over polyoxometalates-derived metal oxides incorporated into graphitic carbon nitride framework. Appl. Catal. B 250, 408–418 (2019). https://doi.org/10.1016/j.apcatb.2019.02.031
S. Hu, X. Qu, P. Li, F. Wang, Q. Li et al., Photocatalytic oxygen reduction to hydrogen peroxide over copper doped graphitic carbon nitride hollow microsphere: the effect of Cu(I)-N active sites. Chem. Eng. J. 334, 410–418 (2018). https://doi.org/10.1016/j.cej.2017.10.016
X. Qu, S. Hu, J. Bai, P. Li, G. Lu et al., Synthesis of band gap-tunable alkali metal modified graphitic carbon nitride with outstanding photocatalytic H2O2 production ability via molten salt method. J. Mater. Sci. Technol. 34, 1932–1938 (2018). https://doi.org/10.1016/j.jmst.2018.04.019
Y. Chen, X. Yan, J. Xu, L. Wang, K+, Ni and carbon co-modification promoted two-electron O2 reduction for photocatalytic H2O2 production by crystalline carbon nitride. J. Mater. Chem. A 9, 24056–24063 (2021). https://doi.org/10.1039/d1ta06960h
G. Zhang, M. Zhang, X. Ye, X. Qiu, S. Lin et al., Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 26, 805–809 (2014). https://doi.org/10.1002/adma.201303611
Z.-A. Lan, G. Zhang, X. Wang, A facile synthesis of Br-modified g-C3N4 semiconductors for photoredox water splitting. Appl. Catal. B 192, 116–125 (2016). https://doi.org/10.1016/j.apcatb.2016.03.062
C. Zhang, J. Bai, L. Ma, Y. Lv, F. Wang et al., Synthesis of halogen doped graphite carbon nitride nanorods with outstanding photocatalytic H2O2 production ability via saturated NH4X (X = Cl, Br) solution-hydrothermal post-treatment. Diamond Relat. Mater. 87, 215–222 (2018). https://doi.org/10.1016/j.diamond.2018.06.013
S. Kim, G.-H. Moon, H. Kim, Y. Mun, P. Zhang et al., Selective charge transfer to dioxygen on KPF6-modified carbon nitride for photocatalytic synthesis of H2O2 under visible light. J. Catal. 357, 51–58 (2018). https://doi.org/10.1016/j.jcat.2017.10.002
L. Zhou, J. Lei, F. Wang, L. Wang, M.R. Hoffmann et al., Carbon nitride nanotubes with in-situ grafted hydroxyl groups for highly efficient spontaneous H2O2 production. Appl. Catal. B 288, 119993 (2021). https://doi.org/10.1016/j.apcatb.2021.119993
Y. Zheng, Y. Luo, Q. Ruan, J. Yu, X. Guo et al., Plasma-Tuned nitrogen vacancy graphitic carbon nitride sphere for efficient photocatalytic H2O2 production. J. Colloid Interface Sci. 609, 75–85 (2022). https://doi.org/10.1016/j.jcis.2021.12.006
Y. Shao, J. Hu, T. Yang, X. Yang, J. Qu et al., Significantly enhanced photocatalytic in-situ H2O2 production and consumption activities for efficient sterilization by ZnIn2S4/g-C3N4 heterojunction. Carbon 190, 337–347 (2022). https://doi.org/10.1016/j.carbon.2022.01.019
J. Xiong, X. Li, J. Huang, X. Gao, Z. Chen et al., CN/rGO@BPQDs high-low junctions with stretching spatial charge separation ability for photocatalytic degradation and H2O2 production. Appl. Catal. B 266, 118602 (2020). https://doi.org/10.1016/j.apcatb.2020.118602
Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka et al., Graphitic carbon nitride doped with biphenyl diimide: efficient photocatalyst for hydrogen peroxide production from water and molecular oxygen by sunlight. ACS Catal. 6, 7021–7029 (2016). https://doi.org/10.1021/acscatal.6b02367
Z. Wei, M. Liu, Z. Zhang, W. Yao, H. Tan et al., Efficient visible-light-driven selective oxygen reduction to hydrogen peroxide by oxygen-enriched graphitic carbon nitride polymers. Energy Environ. Sci. 11, 2581–2589 (2018). https://doi.org/10.1039/c8ee01316k
H.-I. Kim, Y. Choi, S. Hu, W. Choi, J.-H. Kim, Photocatalytic hydrogen peroxide production by anthraquinone-augmented polymeric carbon nitride. Appl. Catal. B 229, 121–129 (2018). https://doi.org/10.1016/j.apcatb.2018.01.060
S. Zhao, T. Guo, X. Li, T. Xu, B. Yang et al., Carbon nanotubes covalent combined with graphitic carbon nitride for photocatalytic hydrogen peroxide production under visible light. Appl. Catal. B 224, 725–732 (2018). https://doi.org/10.1016/j.apcatb.2017.11.005
C. Feng, L. Tang, Y. Deng, J. Wang, Y. Liu et al., A novel sulfur-assisted annealing method of g-C3N4 nanosheet compensates for the loss of light absorption with further promoted charge transfer for photocatalytic production of H2 and H2O2. Appl. Catal. B 281, 119539 (2021). https://doi.org/10.1016/j.apcatb.2020.119539
N. Lu, N. Liu, Y. Hui, K. Shang, N. Jiang et al., Characterization of highly effective plasma-treated g-C3N4 and application to the photocatalytic H2O2 production. Chemosphere 241, 124927 (2020). https://doi.org/10.1016/j.chemosphere.2019.124927
Y. Li, W. Ho, K. Lv, B. Zhu, S.C. Lee, Carbon vacancy-induced enhancement of the visible light-driven photocatalytic oxidation of NO over g-C3N4 nanosheets. Appl. Surf. Sci. 430, 380–389 (2018). https://doi.org/10.1016/j.apsusc.2017.06.054
Y. Zhao, Y. Liu, Z. Wang, Y. Ma, Y. Zhou et al., Carbon nitride assisted 2D conductive metal-organic frameworks composite photocatalyst for efficient visible light-driven H2O2 production. Appl. Catal. B 289, 120035 (2021). https://doi.org/10.1016/j.apcatb.2021.120035
A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972). https://doi.org/10.1038/238037a0
A. Fujishima, T.N. Rao, D.A. Tryk, Titanium dioxide photocatalysis. J. Photochem. Photobiol. C 1, 1–21 (2000). https://doi.org/10.1016/S1389-5567(00)00002-2
H. Goto, Y. Hanada, T. Ohno, M. Matsumura, Quantitative analysis of superoxide ion and hydrogen peroxide produced from molecular oxygen on photoirradiated TiO2 ps. J. Catal. 225, 223–229 (2004). https://doi.org/10.1016/j.jcat.2004.04.001
T. Baran, S. Wojtyla, A. Minguzzi, S. Rondinini, A. Vertova, Achieving efficient H2O2 production by a visible-light absorbing, highly stable photosensitized TiO2. Appl. Catal. B 244, 303–312 (2019). https://doi.org/10.1016/j.apcatb.2018.11.044
B.O. Burek, D.W. Bahnemann, J.Z. Bloh, Modeling and optimization of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over titanium dioxide. ACS Catal. 9, 25–37 (2019). https://doi.org/10.1021/acscatal.8b03638
M. Teranishi, S.-I. Naya, H. Tada, In-situ liquid phase synthesis of hydrogen peroxide from molecular oxygen using gold nanop-loaded titanium(IV) dioxide photocatalyst. J. Am. Chem. Soc. 132, 7850 (2010). https://doi.org/10.1021/ja102651g
X.Z. Li, C.C. Chen, J.C. Zhao, Mechanism of photodecomposition of H2O2 on TiO2 surfaces under visible light irradiation. Langmuir 17, 4118–4122 (2001). https://doi.org/10.1021/la010035s
M. Teranishi, R. Hoshino, S.-I. Naya, H. Tada, Gold-nanop-loaded carbonate-modified titanium(IV) oxide surface: visible-light-driven formation of hydrogen peroxide from oxygen. Angew. Chem. Int. Ed. 55, 12773–12777 (2016). https://doi.org/10.1002/anie.201606734
M. Teranishi, S.-I. Naya, H. Tada, Temperature- and pH-dependence of hydrogen peroxide formation from molecular oxygen by gold nanop-loaded titanium(IV) oxide photocatalyst. J. Phys. Chem. C 120, 1083–1088 (2016). https://doi.org/10.1021/acs.jpcc.5b10626
R. Miah, T. Ohsaka, Cathodic detection of H2O2 using iodide-modified gold electrode in alkaline media. Anal. Chem. 78, 1200–1205 (2006). https://doi.org/10.1021/ac0515935
T. Hirakawa, K. Yawata, Y. Nosaka, Photocatalytic reactivity for O2·- and OH· radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition. Appl. Catal. A 325, 105–111 (2007). https://doi.org/10.1016/j.apcata.2007.03.015
D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa et al., Photocatalytic H2O2 production from ethanol/O2 system using TiO2 loaded with Au-Ag bimetallic alloy nanops. ACS Catal. 2, 599–603 (2012). https://doi.org/10.1021/cs2006873
E.M. Goliaei, N. Seriani, Structure and electronic properties of small silver-gold clusters on titania photocatalysts for H2O2 production: an investigation with density functional theory. J. Phys. Chem. C 123, 2855–2863 (2019). https://doi.org/10.1021/acs.jpcc.8b09300
X.T. Zheng, A. Ananthanarayanan, K.Q. Luo, P. Chen, Glowing graphene quantum dots and carbon dots: properties, syntheses, and biological applications. Small 11, 1620–1636 (2015). https://doi.org/10.1002/smll.201402648
Q. Mei, K. Zhang, G. Guan, B. Liu, S. Wang et al., Highly efficient photoluminescent graphene oxide with tunable surface properties. Chem. Commun. 46, 7319–7321 (2010). https://doi.org/10.1039/c0cc02374d
L. Zheng, H. Su, J. Zhang, L.S. Walekar, H.V. Molamahmood et al., Highly selective photocatalytic production of H2O2 on sulfur and nitrogen for co-doped graphene quantum dots tuned TiO2. Appl. Catal. B 239, 475–484 (2018). https://doi.org/10.1016/j.apcatb.2018.08.031
L. Zheng, J. Zhang, Y.H. Hu, M. Long, Enhanced photocatalytic production of H2O2 by nafion coatings on S, N-codoped graphene-quantum-dots-modified TiO2. J. Phys. Chem. C 123, 13693–13701 (2019). https://doi.org/10.1021/acs.jpcc.9b02311
R.X. Cai, Y. Kubota, A. Fujishima, Effect of copper ions on the formation of hydrogen peroxide from photocatalytic titanium dioxide ps. J. Catal. 219, 214–218 (2003). https://doi.org/10.1016/S0021-9517(03)00197-0
V. Maurino, C. Minero, E. Pelizzetti, G. Mariella, A. Arbezzano et al., Influence of Zn (II) adsorption on the photocatalytic activity and the production of H2O2 over irradiated TiO2. Res. Chem. Intermed. 33, 319–332 (2007). https://doi.org/10.1163/156856707779238711
V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Sustained production of H2O2 on irradiated TiO2 - fluoride systems. Chem. Commun. (2005). https://doi.org/10.1039/b418789j
Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano et al., Selective hydrogen peroxide formation by titanium dioxide photocatalysis with benzylic alcohols and molecular oxygen in water. ACS Catal. 3, 2222–2227 (2013). https://doi.org/10.1021/cs400511q
G. Zuo, B. Li, Z. Guo, L. Wang, F. Yang et al., Efficient photocatalytic hydrogen peroxide production over TiO2 passivated by SnO2. Catalysts 9, 623 (2019). https://doi.org/10.3390/catal9070623
K. Awa, S.-I. Naya, M. Fujishima, H. Tada, A three-component plasmonic photocatalyst consisting of gold nanop and TiO2-SnO2 nanohybrid with heteroepitaxial junction: hydrogen peroxide synthesis. J. Phys. Chem. C 124, 7797–7802 (2020). https://doi.org/10.1021/acs.jpcc.9b11875
M. Nagamitsu, K. Awa, H. Tada, Hydrogen peroxide synthesis from water and oxygen using a three-component nanohybrid photocatalyst consisting of Au p-loaded rutile TiO2 and RuO2 with a heteroepitaxial junction. Chem. Commun. 56, 8190–8193 (2020). https://doi.org/10.1039/d0cc03327h
C. Chu, D. Huang, Q. Zhu, E. Stavitski, J.A. Spies et al., Electronic tuning of metal nanops for highly efficient photocatalytic hydrogen peroxide production. ACS Catal. 9, 626–631 (2019). https://doi.org/10.1021/acscatal.8b03738
R. Ma, L. Wang, H. Wang, Z. Liu, M. Xing et al., Solid acids accelerate the photocatalytic hydrogen peroxide synthesis over a hybrid catalyst of Titania nanotube with carbon dot. Appl. Catal. B 244, 594–603 (2019). https://doi.org/10.1016/j.apcatb.2018.11.087
X. Wu, X. Zhang, S. Zhao, Y. Gong, R. Djellabi et al., Highly-efficient photocatalytic hydrogen peroxide production over polyoxometalates covalently immobilized onto titanium dioxide. Appl. Catal. A 591, 117271 (2020). https://doi.org/10.1016/j.apcata.2019.117271
G.-H. Moon, W. Kim, A.D. Bokare, N.-E. Sung, W. Choi, Solar production of H2O2 on reduced graphene oxide-TiO2 hybrid photocatalysts consisting of earth-abundant elements only. Energy Environ. Sci. 7, 4023–4028 (2014). https://doi.org/10.1039/c4ee02757d
R. He, D. Xu, B. Cheng, J. Yu, W. Ho, Review on nanoscale Bi-based photocatalysts. Nanoscale Horiz. 3, 464–504 (2018). https://doi.org/10.1039/c8nh00062j
L. Huang, Z. Duan, Y. Song, Q. Li, L. Chen, BiVO4 microplates with oxygen vacancies decorated with metallic Cu and Bi nanops for CO2 photoreduction. ACS Appl. Nano Mater. 4, 3576–3585 (2021). https://doi.org/10.1021/acsanm.1c00115
J.H. Kim, J.S. Lee, Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 31, 1806938 (2019). https://doi.org/10.1002/adma.201806938
W. Zhao, Y. Feng, H. Huang, P. Zhou, J. Li et al., A novel Z-scheme Ag3VO4/BiVO4 heterojunction photocatalyst: study on the excellent photocatalytic performance and photocatalytic mechanism. Appl. Catal. B 245, 448–458 (2019). https://doi.org/10.1016/j.apcatb.2019.01.001
T. Hirakawa, Y. Nosaka, Selective production of superoxide ions and hydrogen peroxide over nitrogen- and sulfur-doped TiO2 photocatalysts with visible light in aqueous suspension systems. J. Phys. Chem. C 112, 15818–15823 (2008). https://doi.org/10.1021/jp8055015
M.A. Henderson, A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011). https://doi.org/10.1016/j.surfrep.2011.01.001
A. Kudo, K. Omori, H. Kato, A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999). https://doi.org/10.1021/ja992541y
H. Hirakawa, S. Shiota, Y. Shiraishi, H. Sakamoto, S. Ichikawa et al., Au nanops supported on BiVO4: effective inorganic photocatalysts for H2O2 production from water and O2 under visible light. ACS Catal. 6, 4976–4982 (2016). https://doi.org/10.1021/acscatal.6b01187
V. Kumar, S. O’Donnell, B. Zoellner, J. Martinez, G. Wang et al., Interfacing plasmonic nanops with ferroelectrics for hot-carrier-driven photocatalysis: impact of schottky barrier height. ACS Appl. Energy Mater. 2, 7690–7699 (2019). https://doi.org/10.1021/acsaem.9b01682
X. Chen, R.T. Pekarek, J. Gu, A. Zakutayev, K.E. Hurst et al., Transient evolution of the built-in field at junctions of GaAs. ACS Appl. Mater. Interfaces 12, 40339–40346 (2020). https://doi.org/10.1021/acsami.0c11474
K. Wang, M. Wang, J. Yu, D. Liao, H. Shi et al., BiVO4 microps decorated with Cu @Au core-shell nanostructures for photocatalytic H2O2 production. ACS Appl. Nano Mater. 4, 13158–13166 (2021). https://doi.org/10.1021/acsanm.1c02688
M. Teranishi, T. Kunimoto, S.-I. Naya, H. Kobayashi, H. Tada, Visible-light-driven hydrogen peroxide synthesis by a hybrid photocatalyst consisting of bismuth vanadate and bis(hexafluoroacetylacetonato)copper (II) complex. J. Phys. Chem. C 124, 3715–3721 (2020). https://doi.org/10.1021/acs.jpcc.9b11568
Q. Li, X. Li, S. Wageh, A.A. Al-Ghamdi, J. Yu, CdS/graphene nanocomposite photocatalysts. Adv. Energy Mater. 5, 1500010 (2015). https://doi.org/10.1002/aenm.201500010
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). https://doi.org/10.1039/b800489g
Y. Xu, M.A.A. Schoonen, The absolute energy positions of conduction and valence bands of selected semiconducting minerals. Am. Mineral. 85, 543–556 (2000). https://doi.org/10.2138/am-2000-0416
Q. Li, B. Guo, J. Yu, J. Ran, B. Zhang et al., Highly efficient visible-light-driven photocatalytic hydrogen production of CdS-cluster-decorated graphene nanosheets. J. Am. Chem. Soc. 133, 10878–10884 (2011). https://doi.org/10.1021/ja2025454
S. Thakur, T. Kshetri, N.H. Kim, J.H. Lee, Sunlight-driven sustainable production of hydrogen peroxide using a CdS-graphene hybrid photocatalyst. J. Catal. 345, 78–86 (2017). https://doi.org/10.1016/j.jcat.2016.10.028
D. Stone, Y. Ben-Shahar, N. Waiskopf, U. Banin, The metal type governs photocatalytic reactive oxygen species formation by semiconductor-metal hybrid nanops. ChemCatChem 10, 5119–5123 (2018). https://doi.org/10.1002/cctc.201801306
J.H. Lee, H. Cho, S.O. Park, J.M. Hwang, Y. Hong et al., High performance H2O2 production achieved by sulfur-doped carbon on CdS photocatalyst via inhibiting reverse H2O2 decomposition. Appl. Catal. B 284, 119690 (2021). https://doi.org/10.1016/j.apcatb.2020.119690
J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen et al., Metal-organic framework materials as catalysts. Chem. Soc. Rev. 38, 1450–1459 (2009). https://doi.org/10.1039/b807080f
H. Wang, X. Yuan, Y. Wu, G. Zeng, X. Chen et al., Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal. Appl. Catal. B 174, 445–454 (2015). https://doi.org/10.1016/j.apcatb.2015.03.037
R. Li, W. Zhang, K. Zhou, Metal-organic-framework-based catalysts for photoreduction of CO2. Adv. Mater. 30, 1705512 (2018). https://doi.org/10.1002/adma.201705512
J. Qiu, X. Zhang, Y. Feng, X. Zhang, H. Wang et al., Modified metal-organic frameworks as photocatalysts. Appl. Catal. B 231, 317–342 (2018). https://doi.org/10.1016/j.apcatb.2018.03.039
J. Guo, Y. Wan, Y. Zhu, M. Zhao, Z. Tang et al., Advanced photocatalysts based on metal nanop/metal-organic framework composites. Nano Res. 14, 2037–2052 (2021). https://doi.org/10.1007/s12274-020-3182-1
Y. Isaka, Y. Kondo, Y. Kawase, Y. Kuwahara, K. Mori et al., Photocatalytic production of hydrogen peroxide through selective two-electron reduction of dioxygen utilizing amine-functionalized MIL-125 deposited with nickel oxide nanops. Chem. Commun. 54, 9270–9273 (2018). https://doi.org/10.1039/c8cc02679c
Y. Isaka, Y. Kawase, Y. Kuwahara, K. Mori, H. Yamashita et al., Two-phase system utilizing hydrophobic metal-organic frameworks (MOFs) for photocatalytic synthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 58, 5402–5406 (2019). https://doi.org/10.1002/anie.201901961
Y. Kawase, Y. Isaka, Y. Kuwahara, K. Mori, H. Yamashita et al., Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chem. Commun. 55, 6743–6746 (2019). https://doi.org/10.1039/c9cc02380a
X. Chen, Y. Kuwahara, K. Mori, C. Louis, H. Yamashita, A hydrophobic titanium doped zirconium-based metal organic framework for photocatalytic hydrogen peroxide production in a two-phase system. J. Mater. Chem. A 8, 1904–1910 (2020). https://doi.org/10.1039/c9ta11120d
J.-D. Xiao, L. Han, J. Luo, S.-H. Yu, H.-L. Jiang et al., Integration of plasmonic effects and schottky junctions into metal-organic framework composites: steering charge flow for enhanced visible-light photocatalysis. Angew. Chem. Int. Ed. 57, 1103–1107 (2018). https://doi.org/10.1002/anie.201711725
C. Liu, Q. Sun, L. Lin, J. Wang, C. Zhang et al., Ternary MOF-on-MOF heterostructures with controllable architectural and compositional complexity via multiple selective assembly. Nat. Commun. 11, 4971 (2020). https://doi.org/10.1038/s41467-020-18776-z
J. Ran, J. Qu, H. Zhang, T. Wen, H. Wang et al., 2D metal organic framework nanosheet: a universal platform promoting highly efficient visible-light-induced hydrogen production. Adv. Energy Mater. 9, 1803402 (2019). https://doi.org/10.1002/aenm.201803402
C. Liu, T. Bao, L. Yuan, C. Zhang, J. Wang et al., Semiconducting MOF@ZnS heterostructures for photocatalytic hydrogen peroxide production: heterojunction coverage matters. Adv. Funct. Mater. 32, 2111404 (2022). https://doi.org/10.1002/adfm.202111404
S. Chen, T. Luo, X. Li, K. Chen, J. Fu et al., Identification of the highly active Co-N4 coordination motif for selective oxygen reduction to hydrogen peroxide. J. Am. Chem. Soc. 144, 14505–14516 (2022). https://doi.org/10.1021/jacs.2c0119414505
X. Li, S. Tang, S. Dou, H.J. Fan, T.S. Choksi et al., Molecule confined isolated metal sites enable the electrocatalytic synthesis of hydrogen peroxide. Adv. Mater. 34, 2104891 (2022). https://doi.org/10.1002/adma.202104891
J. Wu, M. Hou, Z. Chen, W. Hao, X. Pan et al., Composition engineering of amorphous nickel boride nanoarchitectures enabling highly efficient electrosynthesis of hydrogen peroxide. Adv. Mater. 34, 2202995 (2022). https://doi.org/10.1002/adma.202202995
P.T. Smith, Y. Kim, B.P. Benke, K. Kim, C.J. Chang, Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 59, 4902–4907 (2020). https://doi.org/10.1002/anie.201916131
J.Y. Zhang, C.A. Xia, H.F. Wang, C. Tang, Recent advances in electrocatalytic oxygen reduction for on-site hydrogen peroxide synthesis in acidic media. J. Energy Chem. 67, 432–450 (2022). https://doi.org/10.1016/j.jechem.2021.10.013
S. Yang, A. Verdaguer-Casadevall, L. Arnarson, L. Silvio, V. Colic et al., Toward the decentralized electrochemical production of H2O2: a focus on the catalysis. ACS Catal. 8, 4064–4081 (2018). https://doi.org/10.1021/acscatal.8b00217
A.W.E. Chan, R. Hoffmann, W. Ho, Theoretical aspects of photoinitiated chemisorption, dissociation, and desorption of oxygen on platinum (111). Langmuir 8, 1111–1119 (1992). https://doi.org/10.1021/la00040a017
X. Song, N. Li, H. Zhang, H. Wang, L. Wang et al., Promotion of hydrogen peroxide production on graphene-supported atomically dispersed platinum: effects of size on oxygen reduction reaction pathway. J. Power Sources 435, 226771 (2019). https://doi.org/10.1016/j.jpowsour.2019.226771
S. Yang, J. Kim, Y.J. Tak, A. Soon, H. Lee, Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016). https://doi.org/10.1002/anie.201509241
C.H. Choi, M. Kim, H.C. Kwon, S.J. Cho, S. Yun et al., Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016). https://doi.org/10.1038/ncomms10922
S. Yang, Y.J. Tak, J. Kim, A. Soon, H. Lee, Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017). https://doi.org/10.1021/acscatal.6b02899
R.-Q. Zhang, T.-H. Lee, B.-D. Yu, C. Stampfl, A. Soon, The role of titanium nitride supports for single-atom platinum-based catalysts in fuel cell technology. Phys. Chem. Chem. Phys. 14, 16552–16557 (2012). https://doi.org/10.1039/c2cp41392b
C.H. Choi, H.C. Kwon, S. Yook, H. Shin, H. Kim et al., Hydrogen peroxide synthesis via enhanced two-electron oxygen reduction pathway on carbon-coated Pt surface. J. Phys. Chem. C 118, 30063–30070 (2014). https://doi.org/10.1021/jp5113894
Q. Chang, P. Zhang, A.H.B. Mostaghimi, X. Zhao, S.R. Denny et al., Promoting H2O2 production via 2-electron oxygen reduction by coordinating partially oxidized Pd with defect carbon. Nat. Commun. 11, 2178 (2020). https://doi.org/10.1038/s41467-020-15843-3
M. Ledendecker, E. Pizzutilo, G. Malta, G.V. Fortunato, K.J.J. Mayrhofer et al., Isolated Pd sites as selective catalysts for electrochemical and direct hydrogen peroxide synthesis. ACS Catal. 10, 5928–5938 (2020). https://doi.org/10.1021/acscatal.0c01305
Y.L. Wang, S. Gurses, N. Felyey, A. Boubnov, S.S. Mao et al., In-situ deposition of Pd during oxygen reduction yields highly selective and active electrocatalysts for direct H2O2 production. ACS Catal. 9, 8453–8463 (2019). https://doi.org/10.1021/acscatal.9b01758
D. Mei, Z.D. He, Y.L. Zheng, D.C. Jiang, Y.-X. Chen et al., Mechanistic and kinetic implications on the ORR on an Au (100) electrode: pH, temperature and H-D kinetic isotope effects. Phys. Chem. Chem. Phys. 16, 13762–13773 (2014). https://doi.org/10.1039/c4cp00257a
Y. Lu, Y. Jiang, X. Gao, W. Chen, Charge state-dependent catalytic activity of [Au25(SC12H25)18] nanoclusters for the two-electron reduction of dioxygen to hydrogen peroxide. Chem. Commun. 50, 8464–8467 (2014). https://doi.org/10.1039/c4cc01841a
H. Tsunoyama, N. Ichikuni, H. Sakurai, T. Tsukuda, Effect of electronic structures of Au clusters stabilized by poly (N-vinyl-2-pyrrolidone) on aerobic oxidation catalysis. J. Am. Chem. Soc. 131, 7086–7093 (2009). https://doi.org/10.1021/ja810045y
S. Siahrostami, A. Verdaguer-Casdevall, M. Karamad, I. Chorkendorff, I. Stephens et al., Activity and selectivity for O2 Reduction to H2O2 on transition metal surfaces. ECS Trans. 58, 53–62 (2013). https://doi.org/10.1149/05802.0053ecst
J.S. Jirkovsky, I. Panas, E. Ahlberg, M. Halasa, S. Romani et al., Single atom hot-spots at Au-Pd nanoalloys for electrocatalytic H2O2 production. J. Am. Chem. Soc. 133, 19432–19441 (2011). https://doi.org/10.1021/ja206477z
A. Verdaguer-Casadevall, D. Deiana, M. Karamad, S. Siahrostami, P. Malacrida et al., Trends in the electrochemical synthesis of H2O2: enhancing activity and selectivity by electrocatalytic site engineering. Nano Lett. 14, 1603–1608 (2014). https://doi.org/10.1021/nl500037x
E. Pizzutilo, O. Kasian, C.H. Choi, S. Cherevko, G.J. Hutchings et al., Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanops: from fundamentals to continuous production. Chem. Phys. Lett. 683, 436–442 (2017). https://doi.org/10.1016/j.cplett.2017.01.071
Y. Dong, J. Su, S. Zhou, M. Wang, S. Huang et al., Carbon-based dots for the electrochemical production of hydrogen peroxide. Chem. Commun. 56, 7609–7612 (2020). https://doi.org/10.1039/c9cc09987e
Y.-L. Wang, S.-S. Li, X.-H. Yang, G.-Y. Xu, Z.-C. Zhu et al., One minute from pristine carbon to an electrocatalyst for hydrogen peroxide production. J. Mater. Chem. A 7, 21329–21337 (2019). https://doi.org/10.1039/c9ta04788c
V. Colic, S. Yang, Z. Revay, I.E.L. Stephens, I. Chorkendorff, Carbon catalysts for electrochemical hydrogen peroxide production in acidic media. Electrochim. Acta 272, 192–202 (2018). https://doi.org/10.1016/j.electacta.2018.03.170
Y. Bu, Y. Wang, G.-F. Han, Y. Zhao, X. Ge et al., Carbon-based electrocatalysts for efficient hydrogen peroxide production. Adv. Mater. 33, 2103266 (2021). https://doi.org/10.1002/adma.202103266
Y. Liu, X. Quan, X. Fan, H. Wang, S. Chen, High-yield electrosynthesis of hydrogen peroxide from oxygen reduction by hierarchically porous carbon. Angew. Chem. Int. Ed. 54, 6837–6841 (2015). https://doi.org/10.1002/anie.201502396
L. Tao, Q. Wang, S. Dou, Z. Ma, J. Huo et al., Edge-rich and dopant-free graphene as a highly efficient metal-free electrocatalyst for the oxygen reduction reaction. Chem. Commun. 52, 2764–2767 (2016). https://doi.org/10.1039/c5cc09173j
S. Chen, Z. Chen, S. Siahrostami, T.R. Kim, D. Nordlund et al., Defective carbon-based materials for the electrochemical synthesis of hydrogen peroxide. ACS Sustainable Chem. Eng. 6, 311–317 (2018). https://doi.org/10.1021/acssuschemeng.7b02517
Y.J. Sa, J.H. Kim, S.H. Joo, Active edge-site-rich carbon nanocatalysts with enhanced electron transfer for efficient electrochemical hydrogen peroxide production. Angew. Chem. Int. Ed. 58, 1100–1105 (2019). https://doi.org/10.1002/anie.201812435
M. Yeddala, P. Thakur, A. Anugraha, T.N. Narayanan, Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide. Beilstein J. Nanotechnol. 11, 432–442 (2020). https://doi.org/10.3762/bjnano.11.34
X. Xu, D. Kong, J. Liang, Y. Gao, Q. Yang et al., Bottom-up construction of microporous catalyst with identical active sites for efficient hydrogen peroxide production. Carbon 171, 931–937 (2021). https://doi.org/10.1016/j.carbon.2020.09.080
H.W. Kim, M.B. Ross, N. Kornienko, L. Zhang, J.H. Guo et al., Efficient hydrogen peroxide generation using reduced graphene oxide-based oxygen reduction electrocatalysts. Nat. Catal. 1, 282–290 (2018). https://doi.org/10.1038/s41929-018-0044-2
W. Wang, Y. Hu, Y. Liu, Z. Zheng, S. Chen, Self-powered and highly efficient production of H2O2 through a Zn-air battery with oxygenated carbon electrocatalyst. ACS Appl. Mater. Interfaces 10, 31855–31859 (2018). https://doi.org/10.1021/acsami.8b11703
H. Zhang, Y. Li, Y. Zhao, G. Li, F. Zhang, Carbon black oxidized by air calcination for enhanced H2O2 generation and effective organics degradation. ACS Appl. Mater. Interfaces 11, 27846–27853 (2019). https://doi.org/10.1021/acsami.9b07765
J. Zhu, X. Xiao, K. Zheng, F. Li, G. Ma et al., KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon 153, 6–11 (2019). https://doi.org/10.1016/j.carbon.2019.07.009
G.-F. Han, F. Li, W. Zou, M. Karamad, J.-P. Jeon et al., Building and identifying highly active oxygenated groups in carbon materials for oxygen reduction to H2O2. Nat. Commun. 11, 2209 (2020). https://doi.org/10.1038/s41467-020-15782-z
Y. Xue, X. Du, W. Cai, Z. Sun, Y. Zhang et al., Ramie biomass derived nitrogen-doped activated carbon for efficient electrocatalytic production of hydrogen peroxide. J. Electrochem. Soc. 165, E171–E176 (2018). https://doi.org/10.1149/2.0681805jes
Y.-H. Lee, F. Li, K.-H. Chang, C.-C. Hu, T. Ohsaka, Novel synthesis of N-doped porous carbons from collagen for electrocatalytic production of H2O2. Appl. Catal. B 126, 208–214 (2012). https://doi.org/10.1016/j.apcatb.2012.06.031
J. Zhang, G. Zhang, S. Jin, Y. Zhou, Q. Ji et al., Graphitic N in nitrogen-doped carbon promotes hydrogen peroxide synthesis from electrocatalytic oxygen reduction. Carbon 163, 154–161 (2020). https://doi.org/10.1016/j.carbon.2020.02.084
L. Han, Y. Sun, S. Li, C. Cheng, C.E. Halbig et al., In-plane carbon lattice-defect regulating electrochemical oxygen reduction to hydrogen peroxide production over nitrogen-doped graphene. ACS Catal. 9, 1283–1288 (2019). https://doi.org/10.1021/acscatal.8b03734
V. Perazzolo, C. Durante, R. Pilot, A. Paduano, J. Zheng et al., Nitrogen and sulfur doped mesoporous carbon as metal-free electrocatalysts for the in-situ production of hydrogen peroxide. Carbon 95, 949–963 (2015). https://doi.org/10.1016/j.carbon.2015.09.002
D.-W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 7, 576–591 (2014). https://doi.org/10.1039/c3ee43463j
D. Iglesias, A. Giuliani, M. Melchionna, S. Marchesan, A. Criado et al., N-doped graphitized carbon nanohorns as a forefront electrocatalyst in highly selective O2 reduction to H2O2. Chem 4, 106–123 (2018). https://doi.org/10.1016/j.chempr.2017.10.013
K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760–764 (2009). https://doi.org/10.1126/science.1168049
X. Liu, L. Dai, Carbon-based metal-free catalysts. Nat. Rev. Mater. 1, 16064 (2016). https://doi.org/10.1038/natrevmats.2016.64
L. Dai, Y. Xue, L. Qu, H.-J. Choi, J.-B. Baek, Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823–4892 (2015). https://doi.org/10.1021/cr5003563
T.-P. Fellinger, F. Hasche, P. Strasser, M. Antonietti, Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of hydrogen peroxide. J. Am. Chem. Soc. 134, 4072–4075 (2012). https://doi.org/10.1021/ja300038p
J. Park, Y. Nabae, T. Hayakawa, M.-A. Kakimoto, Highly selective two-electron oxygen reduction catalyzed by mesoporous nitrogen-doped carbon. ACS Catal. 4, 3749–3754 (2014). https://doi.org/10.1021/cs5008206
Y. Sun, I. Sinev, W. Ju, A. Bergmann, S. Dresp et al., Efficient electrochemical hydrogen peroxide production from molecular oxygen on nitrogen-doped mesoporous carbon catalysts. ACS Catal. 8, 2844–2856 (2018). https://doi.org/10.1021/acscatal.7b03464
J. Li, C. Shi, A. Bao, J. Jia, Development of boron-doped mesoporous carbon materials for use in CO2 capture and electrochemical generation of H2O2. ACS Omega 6, 8438–8446 (2021). https://doi.org/10.1021/acsomega.1c00197
G. Chen, J. Liu, Q. Li, P. Guan, X. Yu et al., A direct H2O2 production based on hollow porous carbon sphere-sulfur nanocrystal composites by confinement effect as oxygen reduction electrocatalysts. Nano Res. 12, 2614–2622 (2019). https://doi.org/10.1007/s12274-019-2496-3
S. Chen, Z. Chen, S. Siahrostami, D. Higgins, D. Nordlund et al., Designing boron nitride islands in carbon materials for efficient electrochemical synthesis of hydrogen peroxide. J. Am. Chem. Soc. 140, 7851–7859 (2018). https://doi.org/10.1021/jacs.8b02798
X.-H. Yan, Z. Meng, J. Liu, T. Xue, Sodium ferric EDTA-derived Fe-N-C material for selectively electrocatalytic synthesis of hydrogen peroxide. Mater. Lett. 217, 171–173 (2018). https://doi.org/10.1016/j.matlet.2018.01.044
A. Byeon, J. Cho, J.G.M. Kim, K.H. Chae, H.-Y. Park et al., High-yield electrochemical hydrogen peroxide production from an enhanced two-electron oxygen reduction pathway by mesoporous nitrogen-doped carbon and manganese hybrid electrocatalysts. Nanoscale Horiz. 5, 832–838 (2020). https://doi.org/10.1039/c9nh00783k
M. Suk, M.W. Chung, M.H. Han, H.-S. Oh, C.H. Choi et al., Selective H2O2 production on surface-oxidized metal-nitrogen-carbon electrocatalysts. Catal. Today 359, 99–105 (2021). https://doi.org/10.1016/j.cattod.2019.05.034
B. You, N. Jiang, M. Sheng, W.S. Drisdell, J. Yano et al., Bimetal-organic framework self-adjusted synthesis of support-free nonprecious electrocatalysts for efficient oxygen reduction. ACS Catal. 5, 7068–7076 (2015). https://doi.org/10.1021/acscatal.5b02325
J. Gao, H.B. Yang, X. Huang, S.-F. Hung, W. Cai et al., Enabling direct H2O2 production in acidic media through rational design of transition metal single atom catalyst. Chem 6, 658–674 (2020). https://doi.org/10.1016/j.chempr.2019.12.008
Y. Sun, L. Silvioli, N.R. Sahraie, W. Ju, J. Li et al., Activity-selectivity trends in the electrochemical production of hydrogen peroxide over single-site metal-nitrogen-carbon catalysts. J. Am. Chem. Soc. 141, 12372–12381 (2019). https://doi.org/10.1021/jacs.9b05576
E. Jung, H. Shin, B.-H. Lee, V. Efremov, S. Lee et al., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H2O2 production. Nat. Mater. (2020). https://doi.org/10.1038/s41563-019-0571-5
M. Jin, W. Liu, J. Sun, X. Wang, S. Zhang et al., Highly dispersed Ag clusters for active and stable hydrogen peroxide production. Nano Res. 15, 5842–5847 (2022). https://doi.org/10.1007/s12274-022-4208-7
Z. Zheng, Y.H. Ng, D.-W. Wang, R. Amal, Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H2O2 production. Adv. Mater. 28, 9949–9955 (2016). https://doi.org/10.1002/adma.201603662
S. Chen, T. Luo, K. Chen, Y. Lin, J. Fu et al., Chemical identification of catalytically active sites on oxygen-doped carbon nanosheet to decipher the high activity for electro-synthesis hydrogen peroxide. Angew. Chem. Int. Ed. 60, 16607–16614 (2021). https://doi.org/10.1002/anie.202104480
Z. Deng, X. Wang, Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres. Nano Res. 15, 4599–4605 (2022). https://doi.org/10.1007/s12274-022-4095-y
Y. Sun, S. Li, Z.P. Jovanov, D. Bernsmeier, P. Strasser et al., structure, activity, and faradaic efficiency of nitrogen-doped porous carbon catalysts for direct electrochemical hydrogen peroxide production. Chemsuschem 11, 3388–3395 (2018). https://doi.org/10.1002/cssc.201801583
Y. Hu, J. Zhang, T. Shen, Z. Li, K. Chen et al., Efficient electrochemical production of H2O2 on hollow N-doped carbon nanospheres with abundant micropores. ACS Appl. Mater. Interfaces 13, 29551–29557 (2021). https://doi.org/10.1021/acsami.1c05353
H. Gong, Z. Wei, Z. Gong, J. Liu, G. Ye et al., Low-coordinated Co-N-C on oxygenated graphene for efficient electrocatalytic H2O2 production. Adv. Funct. Mater. 32, 2106886 (2022). https://doi.org/10.1002/adfm.202106886
P.-T. Thuan-Nguyen, T. Petenzi, C. Ranjan, H.N. Randriamahazaka, J. Ghilane, Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide. Carbon 130, 544–552 (2018). https://doi.org/10.1016/j.carbon.2018.01.070
L. Wang, L. Duan, L. Tong, L. Sun, Visible light-driven water oxidation catalyzed by mononuclear ruthenium complexes. J. Catal. 306, 129–132 (2013). https://doi.org/10.1016/j.jcat.2013.06.023
I. Katsounaros, S. Cherevko, A.R. Zeradjanin, K.J.J. Mayrhofer, Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew. Chem. Int. Ed. 53, 102–121 (2014). https://doi.org/10.1002/anie.201306588
Z.-P. Wu, X.F. Lu, S.-Q. Zang, X.W. Lou, Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 30, 1910274 (2020). https://doi.org/10.1002/adfm.201910274
V. Viswanathan, H.A. Hansen, J.K. Norskov, Selective electrochemical generation of hydrogen peroxide from water oxidation. J. Phys. Chem. Lett. 6, 4224–4228 (2015). https://doi.org/10.1021/acs.jpclett.5b02178
S. Siahrostami, G.-L. Li, V. Viswanathan, J.K. Norskov, One- or two-electron water oxidation, hydroxyl radical, or H2O2 evolution. J. Phys. Chem. Lett. 8, 1157–1160 (2017). https://doi.org/10.1021/acs.jpclett.6b02924
X. Shi, S. Siahrostami, G.-L. Li, Y. Zhang, P. Chakthranont et al., Understanding activity trends in electrochemical water oxidation to form hydrogen peroxide. Nat. Commun. 8, 701 (2017). https://doi.org/10.1038/s41467-017-00585-6
A. Nadar, S.S. Gupta, Y. Kar, S. Shetty, A.P. van Bavel et al., Evaluating the reactivity of BiVO4 surfaces for efficient electrocatalytic H2O2 production: a combined experimental and computational study. J. Phys. Chem. C 124, 4152–4161 (2020). https://doi.org/10.1021/acs.jpcc.9b11418
J.H. Baek, T.M. Gill, H. Abroshan, S. Park, X. Shi et al., Selective and efficient Gd-doped BiVO4 photoanode for two-electron water oxidation to H2O2. ACS Energy Lett. 4, 720–728 (2019). https://doi.org/10.1021/acsenergylett.9b00277
L. Li, Z. Hu, J.C. Yu, On-demand synthesis of H2O2 by water oxidation for sustainable resource production and organic pollutant degradation. Angew. Chem. Int. Ed. 59, 20538–20544 (2020). https://doi.org/10.1002/anie.202008031
T. Kang, B. Li, Q. Hao, W. Gao, F. Bin et al., Efficient hydrogen peroxide (H2O2) synthesis by CaSnO3 via two-electron water oxidation reaction. ACS Sustainable Chem. Eng. 8, 15005–15012 (2020). https://doi.org/10.1021/acssuschemeng.0c05449
S.Y. Park, H. Abroshan, X. Shi, H.S. Jung, S. Siahrostami et al., CaSnO3: an electrocatalyst for two-electron water oxidation reaction to form H2O2. ACS Energy Lett. 4, 352–357 (2019). https://doi.org/10.1021/acsenergylett.8b02303
S.R. Kelly, X. Shi, S. Back, L. Vallez, S.Y. Park et al., ZnO as an active and selective catalyst for electrochemical water oxidation to hydrogen peroxide. ACS Catal. 9, 4593–4599 (2019). https://doi.org/10.1021/acscatal.8b04873
J. Li, D. Solanki, Q. Zhu, X. Shen, G. Callander et al., Microstructural origin of selective water oxidation to hydrogen peroxide at low overpotentials: a study on Mn-alloyed TiO2. J. Mater. Chem. A 9, 18498–18505 (2021). https://doi.org/10.1039/d1ta05451a
S.-G. Xue, L. Tang, Y.-K. Tang, C.-X. Li, M.-L. Li et al., Selective electrocatalytic water oxidation to produce H2O2 using a C, N codoped TiO2 electrode in an acidic electrolyte. ACS Appl. Mater. Interfaces 12, 4423–4431 (2020). https://doi.org/10.1021/acsami.9b16937
K. Fuku, Y. Miyase, Y. Miseki, T. Gunji, K. Sayama, Enhanced oxidative hydrogen peroxide production on conducting glass anodes modified with metal oxides. ChemistrySelect 1, 5721–5726 (2016). https://doi.org/10.1002/slct.201601469
Y. Miyase, S. Iguchi, Y. Miseki, T. Gunji, K. Sayama, Electrochemical H2O2 production and accumulation from H2O by composite effect of Al2O3 and BiVO4. J. Electrochem. Soc. 166, H644–H649 (2019). https://doi.org/10.1149/2.0561913jes
F. Kuttassery, S. Mathew, S. Sagawa, S.N. Remello, A. Thomas et al., One electron-initiated two-electron oxidation of water by aluminum porphyrins with earth’s most abundant metal. Chemsuschem 10, 1909–1915 (2017). https://doi.org/10.1002/cssc.201700322
S.N. Remello, F. Kuttassery, S. Mathew, A. Thomas, D. Yamamoto et al., Two-electron oxidation of water to form hydrogen peroxide catalysed by silicon-porphyrins. Sustainable Energy Fuels 2, 1966–1973 (2018). https://doi.org/10.1039/c8se00102b
A. Sebastian, S.N. Remello, F. Kuttassery, S. Mathew, Y. Ohsaki et al., Protolytic behavior of water-soluble zinc (II) porphyrin and the electrocatalytic two-electron water oxidation to form hydrogen peroxide. J. Photochem. Photobiol. A 400, 112619 (2020). https://doi.org/10.1016/j.jphotochem.2020.112619
Y. Ohsaki, A. Thomas, F. Kuttassery, S. Mathew, S.N. Remello et al., Two-electron oxidation of water to form hydrogen peroxide initiated by one-electron oxidation of Tin (IV)-porphyrins. J. Photochem. Photobiol. A 401, 112732 (2020). https://doi.org/10.1016/j.jphotochem.2020.112732
Y. Ando, T. Tanaka, Proposal for a new system for simultaneous production of hydrogen and hydrogen peroxide by water electrolysis. Int. J. Hydrogen Energy 29, 1349–1354 (2004). https://doi.org/10.1016/j.ijhydene.2004.02.001
J.V. Macpherson, A practical guide to using boron doped diamond in electrochemical res