Prompt Electrodeposition of Ni Nanodots on Ni Foam to Construct a High-Performance Water-Splitting Electrode: Efficient, Scalable, and Recyclable
Corresponding Author: Yan Lu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 41
Abstract
In past decades, Ni-based catalytic materials and electrodes have been intensively explored as low-cost hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalysts for water splitting. With increasing demands for Ni worldwide, simplifying the fabrication process, increasing Ni recycling, and reducing waste are tangible sustainability goals. Here, binder-free, heteroatom-free, and recyclable Ni-based bifunctional catalytic electrodes were fabricated via a one-step quick electrodeposition method. Typically, active Ni nanodot (NiND) clusters are electrodeposited on Ni foam (NF) in Ni(NO3)2 acetonitrile solution. After drying in air, NiO/NiND composites are obtained, leading to a binder-free and heteroatom-free NiO/NiNDs@NF catalytic electrode. The electrode shows high efficiency and long-term stability for catalyzing hydrogen and oxygen evolution reactions at low overpotentials (10ηHER = 119 mV and 50ηOER = 360 mV) and can promote water catalysis at 1.70 V@10 mA cm−2. More importantly, the recovery of raw materials (NF and Ni(NO3)2) is quite easy because of the solubility of NiO/NiNDs composites in acid solution for recycling the electrodes. Additionally, a large-sized (S ~ 70 cm2) NiO/NiNDs@NF catalytic electrode with high durability has also been constructed. This method provides a simple and fast technology to construct high-performance, low-cost, and environmentally friendly Ni-based bifunctional electrocatalytic electrodes for water splitting.
Highlights:
1 Facile electrodeposition for fabricating active Ni nanodots (NiNDs) on Ni foam (NF) is shown.
2 Binder- and heteroatom-free recyclable NiO/NiNDs@NF electrodes are efficiently made.
3 NiO/NiNDs@NF bifunctional catalytic electrodes are used for water splitting.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. ACC Chem. Res. 28, 141–145 (1995). https://doi.org/10.1021/ar00051a007
- J. Chow, R.J. Kopp, P.R. Portney, Energy resources and global development. Science 302, 1528–1531 (2003). https://doi.org/10.1126/science.1091939
- J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans, D. Blake, Renewable hydrogen production. Int. J. Energy Res. 32, 379–407 (2008). https://doi.org/10.1002/er.1372
- S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235–264 (2002). https://doi.org/10.1016/S0360-3199(01)00131-8
- J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009). https://doi.org/10.1016/j.cattod.2008.08.039
- A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). https://doi.org/10.1039/B800489G
- N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
- M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
- Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015). https://doi.org/10.1002/anie.201407031
- E.A. Hernández-Pagán, N.M. Vargas-Barbosa, T. Wang, Y. Zhao, E.S. Smotkin, T.E. Mallouk, Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 5, 7582–7589 (2012). https://doi.org/10.1039/C2EE03422K
- J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Mater. Sustain. Energy (2010). https://doi.org/10.1142/9789814317665_0041
- W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A
- K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. 36, 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
- L. Ji, C. Lv, Z. Chen, Z. Huang, C. Zhang, Nickel-based (photo) electrocatalysts for hydrogen production. Adv. Mater. 30, 1705653 (2018). https://doi.org/10.1002/adma.201705653
- Y. Fan, Y. Wu, G. Clavel, M.H. Raza, P. Amsalem, N. Koch, N. Pinna, Optimization of the activity of Ni-based nanostructures for the oxygen evolution reaction. ACS Appl. Energy Mater. 1, 4554–4563 (2018). https://doi.org/10.1021/acsaem.8b00666
- Z.Y. Zhang, S.S. Liu, F. Xiao, S. Wang, Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: flexible bifunctional gas-evolving electrode for highly efficient overall water splitting. ACS Sustain. Chem. Eng. 5, 529–536 (2017). https://doi.org/10.1021/acssuschemeng.6b01879
- F. Jing, Q.Y. Lv, J. Xiao, Q.J. Wang, S. Wang, Highly active and dual-function self-supported multiphase NiS–NiS2–Ni3S2/NF electrodes for overall water splitting. J. Mater. Chem. A 6, 14207–14214 (2018). https://doi.org/10.1039/C8TA03862G
- L. Guang, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 11, 1664–1675 (2018). https://doi.org/10.1007/s12274-017-1783-0
- G. Liu, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochim. Acta 253, 498–505 (2017). https://doi.org/10.1016/j.electacta.2017.09.057
- Z.Z. Ma, H.J. Meng, M. Wang, B. Tang, J.P. Li, X.G. Wang, Porous Ni–Mo–S nanowire network film electrode as a high–efficiency bifunctional electrocatalyst for overall water splitting. ChemElectroChem 5, 335–342 (2018). https://doi.org/10.1002/celc.201700965
- Z.Z. Ma, R.X. Li, M. Wang, H.J. Meng, F. Zhang, X.-Q. Bao, B. Tang, Self-supported porous Ni–Fe–P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochim. Acta 219, 194–203 (2016). https://doi.org/10.1016/j.electacta.2016.10.004
- H.J. Meng, W.J. Zhang, Z.Z. Ma, F. Zhang, B. Tang, J.P. Li, X.G. Wang, Self-supported ternary Ni–S–Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: experimental investigation and DFT calculation. ACS Appl. Mater. Interfaces 10, 2430–2441 (2018). https://doi.org/10.1021/acsami.7b14506
- Z.Z. Ma, Q. Zhao, J.P. Li, B. Tang, Z.H. Zhang, X.G. Wang, Three-dimensional well-mixed/highly-densed NiS-CoS nanorod arrays: an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim. Acta 260, 82–91 (2018). https://doi.org/10.1016/j.electacta.2017.11.055
- H. Bates, C. Richardson, Nickel and sustainability: towards a circular economy. Nickel Magazine 33, 2 (2018). https://www.nickelinstitute.org/library/articles/nickel-magazine-33-2-translated. Accessed Sept 2018.
- M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
- H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li, R. Che, Z. Lyu, J. Xiong, L. Yang, X. Wang, Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 9, 2053–2060 (2016). https://doi.org/10.1039/C6EE00603E
- Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017). https://doi.org/10.1002/adma.201702698
- J. Xiao, Z.Y. Zhang, Y. Zhang, Q.Y. Lv, F. Jing, K. Chi, S. Wang, Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy 51, 223–230 (2018). https://doi.org/10.1016/j.nanoen.2018.06.040
- G. Liu, R. Yao, Y. Zhao, M.H. Wang, N. Li, Y.B. Li, X. Bo, J.P. Li, C. Zhao, Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale 10, 3997–4003 (2018). https://doi.org/10.1039/C7NR09446A
- Y.B. Li, X. Tan, S. Chen, X. Bo, H.J. Ren, S.C. Smith, C. Zhao, Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution. Angew. Chem. Int. Ed. 131, 471–476 (2019). https://doi.org/10.1002/ange.201808629
- Q. Zhang, H.X. Zhong, F.L. Meng, D. Bao, X.B. Zhang, X.L. Wei, Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 11, 1294–1300 (2018). https://doi.org/10.1007/s12274-017-1743-8
- G. Liu, X.S. Gao, K.F. Wang, D.Y. He, J.P. Li, Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 41, 17976–17986 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.268
- M. Wang, W.J. Zhang, F.F. Zhang, Z.H. Zhang, B. Tang, J.P. Li, X.G. Wang, Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 9, 1489–1502 (2019). https://doi.org/10.1021/acscatal.8b04502
- Y.-L. Zhu, Y. Katayama, T. Miura, Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochim. Acta 55, 9019–9023 (2010). https://doi.org/10.1016/j.electacta.2010.07.097
- H. Yu, Y. Li, X. Li, L. Fan, S. Yang, Electrochemical preparation of N-doped cobalt oxide nanoparticles with high electrocatalytic activity for the oxygen-reduction reaction. Chem. Eur. J. 20, 3457–3462 (2014). https://doi.org/10.1002/chem.201303814
- H. Yu, Y. Li, X. Li, L. Fan, S. Yang, Highly dispersible and charge-tunable magnetic Fe3O4 nanoparticles: facile fabrication and reversible binding to GO for efficient removal of dye pollutants. J. Mater. Chem. A 2, 15763–15767 (2014). https://doi.org/10.1039/C4TA03476G
- M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, Y. Tong, Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129 (2014). https://doi.org/10.1038/am.2014.78
- Y. Li, X. Li, Z. Wang, H. Guo, T. Li, One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries. Ceram. Int. 42, 14565–14572 (2016). https://doi.org/10.1016/j.ceramint.2016.06.071
- T. Hou, L. Yuan, T. Ye, L. Gong, J. Tu, M. Yamamoto, Y. Torimoto, Q. Li, Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. Int. J. Hydrogen Energy 34, 9095–9107 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.012
- Q. Lu, M.W. Lattanzi, Y. Chen, X. Kou, W. Li et al., Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem. Int. Ed. 123, 6850–6979 (2011). https://doi.org/10.1002/ange.201101083
- J.W. Weidner, P. Timmerman, Effect of proton diffusion, electron conductivity, and charge-transfer resistance on nickel hydroxide discharge curves. J. Electrochem. Soc. 141, 346–351 (1994). https://doi.org/10.1149/1.2054729
- N. Liu, J. Li, W. Ma, W. Liu, Y. Shi et al., Ultrathin and lightweight 3D free-standing Ni@ NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. ACS Appl. Energy Mater. 6, 13627–13634 (2014). https://doi.org/10.1021/am503108x
- Y.-G. Wang, Y.-Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim. Acta 51, 3223–3227 (2006). https://doi.org/10.1016/j.electacta.2005.09.013
- Y.-J. Huang, C.-H. Lai, P.-W. Wu, L.-Y. Chen, Ni inverse opals for water electrolysis in an alkaline electrolyte. J. Electrochem. Soc. 157, 18–22 (2010). https://doi.org/10.1149/1.3281332
- E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013). https://doi.org/10.1021/ja403440e
- T.-W. Lin, C.-J. Liu, C.-S. Dai, Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl. Catal. B: Environ. 154, 213–220 (2014). https://doi.org/10.1016/j.apcatb.2014.02.017
- S. Baranton, C. Coutanceau, Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction. Appl. Catal. B: Environ. 136, 1–8 (2013). https://doi.org/10.1016/j.apcatb.2013.01.051
- T. Sun, C. Zhang, J. Chen, Y. Yan, A.A. Zakhidov, R.H. Baughman, L. Xu, Three-dimensionally ordered macro-/mesoporous Ni as a highly efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 11367–11375 (2015). https://doi.org/10.1039/C5TA01383F
- L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
- D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7, 15122–15126 (2015). https://doi.org/10.1039/C5NR04064G
- M. Ledendecker, S. Krick Calderón, C. Papp, H.P. Steinrück, M. Antonietti, M. Shalom, The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 127, 12365–12538 (2015). https://doi.org/10.1002/ange.201502438
- Q. Liu, S. Gu, C.M. Li, Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. J. Power Sources 299, 342–346 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.027
- J. Shi, J. Hu, Y. Luo, X. Sun, A.M. Asiri, Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catal. Sci. Technol. 5, 4954–4958 (2015). https://doi.org/10.1039/C5CY01121C
- T. Liu, Q. Liu, A.M. Asiri, Y. Luo, X. Sun, An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 51, 16683–16686 (2015). https://doi.org/10.1039/C5CC06892D
- L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
- J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014). https://doi.org/10.1126/science.1258307
- W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52, 1486–1489 (2016). https://doi.org/10.1039/C5CC08064A
References
A.J. Bard, M.A. Fox, Artificial photosynthesis: solar splitting of water to hydrogen and oxygen. ACC Chem. Res. 28, 141–145 (1995). https://doi.org/10.1021/ar00051a007
J. Chow, R.J. Kopp, P.R. Portney, Energy resources and global development. Science 302, 1528–1531 (2003). https://doi.org/10.1126/science.1091939
J. Turner, G. Sverdrup, M.K. Mann, P.C. Maness, B. Kroposki, M. Ghirardi, R.J. Evans, D. Blake, Renewable hydrogen production. Int. J. Energy Res. 32, 379–407 (2008). https://doi.org/10.1002/er.1372
S. Dunn, Hydrogen futures: toward a sustainable energy system. Int. J. Hydrogen Energy 27, 235–264 (2002). https://doi.org/10.1016/S0360-3199(01)00131-8
J.D. Holladay, J. Hu, D.L. King, Y. Wang, An overview of hydrogen production technologies. Catal. Today 139, 244–260 (2009). https://doi.org/10.1016/j.cattod.2008.08.039
A. Kudo, Y. Miseki, Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009). https://doi.org/10.1039/B800489G
N.S. Lewis, D.G. Nocera, Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103
M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013). https://doi.org/10.1016/j.ijhydene.2013.01.151
Y. Zheng, Y. Jiao, M. Jaroniec, S.Z. Qiao, Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory. Angew. Chem. Int. Ed. 54, 52–65 (2015). https://doi.org/10.1002/anie.201407031
E.A. Hernández-Pagán, N.M. Vargas-Barbosa, T. Wang, Y. Zhao, E.S. Smotkin, T.E. Mallouk, Resistance and polarization losses in aqueous buffer–membrane electrolytes for water-splitting photoelectrochemical cells. Energy Environ. Sci. 5, 7582–7589 (2012). https://doi.org/10.1039/C2EE03422K
J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Mater. Sustain. Energy (2010). https://doi.org/10.1142/9789814317665_0041
W. Sheng, M. Myint, J.G. Chen, Y. Yan, Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 6, 1509–1512 (2013). https://doi.org/10.1039/C3EE00045A
K. Zeng, D. Zhang, Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. 36, 307–326 (2010). https://doi.org/10.1016/j.pecs.2009.11.002
L. Ji, C. Lv, Z. Chen, Z. Huang, C. Zhang, Nickel-based (photo) electrocatalysts for hydrogen production. Adv. Mater. 30, 1705653 (2018). https://doi.org/10.1002/adma.201705653
Y. Fan, Y. Wu, G. Clavel, M.H. Raza, P. Amsalem, N. Koch, N. Pinna, Optimization of the activity of Ni-based nanostructures for the oxygen evolution reaction. ACS Appl. Energy Mater. 1, 4554–4563 (2018). https://doi.org/10.1021/acsaem.8b00666
Z.Y. Zhang, S.S. Liu, F. Xiao, S. Wang, Facile synthesis of heterostructured nickel/nickel oxide wrapped carbon fiber: flexible bifunctional gas-evolving electrode for highly efficient overall water splitting. ACS Sustain. Chem. Eng. 5, 529–536 (2017). https://doi.org/10.1021/acssuschemeng.6b01879
F. Jing, Q.Y. Lv, J. Xiao, Q.J. Wang, S. Wang, Highly active and dual-function self-supported multiphase NiS–NiS2–Ni3S2/NF electrodes for overall water splitting. J. Mater. Chem. A 6, 14207–14214 (2018). https://doi.org/10.1039/C8TA03862G
L. Guang, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Amorphous NiFeB nanoparticles realizing highly active and stable oxygen evolving reaction for water splitting. Nano Res. 11, 1664–1675 (2018). https://doi.org/10.1007/s12274-017-1783-0
G. Liu, D.Y. He, R. Yao, Y. Zhao, J.P. Li, Enhancing the water oxidation activity of Ni2P nanocatalysts by iron-doping and electrochemical activation. Electrochim. Acta 253, 498–505 (2017). https://doi.org/10.1016/j.electacta.2017.09.057
Z.Z. Ma, H.J. Meng, M. Wang, B. Tang, J.P. Li, X.G. Wang, Porous Ni–Mo–S nanowire network film electrode as a high–efficiency bifunctional electrocatalyst for overall water splitting. ChemElectroChem 5, 335–342 (2018). https://doi.org/10.1002/celc.201700965
Z.Z. Ma, R.X. Li, M. Wang, H.J. Meng, F. Zhang, X.-Q. Bao, B. Tang, Self-supported porous Ni–Fe–P composite as an efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline medium. Electrochim. Acta 219, 194–203 (2016). https://doi.org/10.1016/j.electacta.2016.10.004
H.J. Meng, W.J. Zhang, Z.Z. Ma, F. Zhang, B. Tang, J.P. Li, X.G. Wang, Self-supported ternary Ni–S–Se nanorod arrays as highly active electrocatalyst for hydrogen generation in both acidic and basic media: experimental investigation and DFT calculation. ACS Appl. Mater. Interfaces 10, 2430–2441 (2018). https://doi.org/10.1021/acsami.7b14506
Z.Z. Ma, Q. Zhao, J.P. Li, B. Tang, Z.H. Zhang, X.G. Wang, Three-dimensional well-mixed/highly-densed NiS-CoS nanorod arrays: an efficient and stable bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. Electrochim. Acta 260, 82–91 (2018). https://doi.org/10.1016/j.electacta.2017.11.055
H. Bates, C. Richardson, Nickel and sustainability: towards a circular economy. Nickel Magazine 33, 2 (2018). https://www.nickelinstitute.org/library/articles/nickel-magazine-33-2-translated. Accessed Sept 2018.
M. Gong, W. Zhou, M.-C. Tsai, J. Zhou, M. Guan et al., Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis. Nat. Commun. 5, 4695 (2014). https://doi.org/10.1038/ncomms5695
H. Lai, Q. Wu, J. Zhao, L. Shang, H. Li, R. Che, Z. Lyu, J. Xiong, L. Yang, X. Wang, Mesostructured NiO/Ni composites for high-performance electrochemical energy storage. Energy Environ. Sci. 9, 2053–2060 (2016). https://doi.org/10.1039/C6EE00603E
Y. Zeng, Y. Meng, Z. Lai, X. Zhang, M. Yu, P. Fang, M. Wu, Y. Tong, X. Lu, An ultrastable and high-performance flexible fiber-shaped Ni–Zn battery based on a Ni–NiO heterostructured nanosheet cathode. Adv. Mater. 29, 1702698 (2017). https://doi.org/10.1002/adma.201702698
J. Xiao, Z.Y. Zhang, Y. Zhang, Q.Y. Lv, F. Jing, K. Chi, S. Wang, Large-scale printing synthesis of transition metal phosphides encapsulated in N, P co-doped carbon as highly efficient hydrogen evolution cathodes. Nano Energy 51, 223–230 (2018). https://doi.org/10.1016/j.nanoen.2018.06.040
G. Liu, R. Yao, Y. Zhao, M.H. Wang, N. Li, Y.B. Li, X. Bo, J.P. Li, C. Zhao, Encapsulation of Ni/Fe3O4 heterostructures inside onion-like N-doped carbon nanorods enables synergistic electrocatalysis for water oxidation. Nanoscale 10, 3997–4003 (2018). https://doi.org/10.1039/C7NR09446A
Y.B. Li, X. Tan, S. Chen, X. Bo, H.J. Ren, S.C. Smith, C. Zhao, Processable surface modification of nickel-heteroatom (N, S) bridge sites for promoted alkaline hydrogen evolution. Angew. Chem. Int. Ed. 131, 471–476 (2019). https://doi.org/10.1002/ange.201808629
Q. Zhang, H.X. Zhong, F.L. Meng, D. Bao, X.B. Zhang, X.L. Wei, Three-dimensional interconnected Ni(Fe)OxHy nanosheets on stainless steel mesh as a robust integrated oxygen evolution electrode. Nano Res. 11, 1294–1300 (2018). https://doi.org/10.1007/s12274-017-1743-8
G. Liu, X.S. Gao, K.F. Wang, D.Y. He, J.P. Li, Uniformly mesoporous NiO/NiFe2O4 biphasic nanorods as efficient oxygen evolving catalyst for water splitting. Int. J. Hydrogen Energy 41, 17976–17986 (2016). https://doi.org/10.1016/j.ijhydene.2016.07.268
M. Wang, W.J. Zhang, F.F. Zhang, Z.H. Zhang, B. Tang, J.P. Li, X.G. Wang, Theoretical expectation and experimental implementation of in situ Al-doped CoS2 nanowires on dealloying-derived nanoporous intermetallic substrate as an efficient electrocatalyst for boosting hydrogen production. ACS Catal. 9, 1489–1502 (2019). https://doi.org/10.1021/acscatal.8b04502
Y.-L. Zhu, Y. Katayama, T. Miura, Effects of acetonitrile on electrodeposition of Ni from a hydrophobic ionic liquid. Electrochim. Acta 55, 9019–9023 (2010). https://doi.org/10.1016/j.electacta.2010.07.097
H. Yu, Y. Li, X. Li, L. Fan, S. Yang, Electrochemical preparation of N-doped cobalt oxide nanoparticles with high electrocatalytic activity for the oxygen-reduction reaction. Chem. Eur. J. 20, 3457–3462 (2014). https://doi.org/10.1002/chem.201303814
H. Yu, Y. Li, X. Li, L. Fan, S. Yang, Highly dispersible and charge-tunable magnetic Fe3O4 nanoparticles: facile fabrication and reversible binding to GO for efficient removal of dye pollutants. J. Mater. Chem. A 2, 15763–15767 (2014). https://doi.org/10.1039/C4TA03476G
M. Yu, W. Wang, C. Li, T. Zhai, X. Lu, Y. Tong, Scalable self-growth of Ni@NiO core-shell electrode with ultrahigh capacitance and super-long cyclic stability for supercapacitors. NPG Asia Mater. 6, e129 (2014). https://doi.org/10.1038/am.2014.78
Y. Li, X. Li, Z. Wang, H. Guo, T. Li, One-step synthesis of Li-doped NiO as high-performance anode material for lithium ion batteries. Ceram. Int. 42, 14565–14572 (2016). https://doi.org/10.1016/j.ceramint.2016.06.071
T. Hou, L. Yuan, T. Ye, L. Gong, J. Tu, M. Yamamoto, Y. Torimoto, Q. Li, Hydrogen production by low-temperature reforming of organic compounds in bio-oil over a CNT-promoting Ni catalyst. Int. J. Hydrogen Energy 34, 9095–9107 (2009). https://doi.org/10.1016/j.ijhydene.2009.09.012
Q. Lu, M.W. Lattanzi, Y. Chen, X. Kou, W. Li et al., Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem. Int. Ed. 123, 6850–6979 (2011). https://doi.org/10.1002/ange.201101083
J.W. Weidner, P. Timmerman, Effect of proton diffusion, electron conductivity, and charge-transfer resistance on nickel hydroxide discharge curves. J. Electrochem. Soc. 141, 346–351 (1994). https://doi.org/10.1149/1.2054729
N. Liu, J. Li, W. Ma, W. Liu, Y. Shi et al., Ultrathin and lightweight 3D free-standing Ni@ NiO nanowire membrane electrode for a supercapacitor with excellent capacitance retention at high rates. ACS Appl. Energy Mater. 6, 13627–13634 (2014). https://doi.org/10.1021/am503108x
Y.-G. Wang, Y.-Y. Xia, Electrochemical capacitance characterization of NiO with ordered mesoporous structure synthesized by template SBA-15. Electrochim. Acta 51, 3223–3227 (2006). https://doi.org/10.1016/j.electacta.2005.09.013
Y.-J. Huang, C.-H. Lai, P.-W. Wu, L.-Y. Chen, Ni inverse opals for water electrolysis in an alkaline electrolyte. J. Electrochem. Soc. 157, 18–22 (2010). https://doi.org/10.1149/1.3281332
E.J. Popczun, J.R. McKone, C.G. Read, A.J. Biacchi, A.M. Wiltrout, N.S. Lewis, R.E. Schaak, Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 135, 9267–9270 (2013). https://doi.org/10.1021/ja403440e
T.-W. Lin, C.-J. Liu, C.-S. Dai, Ni3S2/carbon nanotube nanocomposite as electrode material for hydrogen evolution reaction in alkaline electrolyte and enzyme-free glucose detection. Appl. Catal. B: Environ. 154, 213–220 (2014). https://doi.org/10.1016/j.apcatb.2014.02.017
S. Baranton, C. Coutanceau, Nickel cobalt hydroxide nanoflakes as catalysts for the hydrogen evolution reaction. Appl. Catal. B: Environ. 136, 1–8 (2013). https://doi.org/10.1016/j.apcatb.2013.01.051
T. Sun, C. Zhang, J. Chen, Y. Yan, A.A. Zakhidov, R.H. Baughman, L. Xu, Three-dimensionally ordered macro-/mesoporous Ni as a highly efficient electrocatalyst for the hydrogen evolution reaction. J. Mater. Chem. A 3, 11367–11375 (2015). https://doi.org/10.1039/C5TA01383F
L.-A. Stern, L. Feng, F. Song, X. Hu, Ni2P as a Janus catalyst for water splitting: the oxygen evolution activity of Ni2P nanoparticles. Energy Environ. Sci. 8, 2347–2351 (2015). https://doi.org/10.1039/C5EE01155H
D. Liu, Q. Lu, Y. Luo, X. Sun, A.M. Asiri, NiCo2S4 nanowires array as an efficient bifunctional electrocatalyst for full water splitting with superior activity. Nanoscale 7, 15122–15126 (2015). https://doi.org/10.1039/C5NR04064G
M. Ledendecker, S. Krick Calderón, C. Papp, H.P. Steinrück, M. Antonietti, M. Shalom, The synthesis of nanostructured Ni5P4 films and their use as a non-noble bifunctional electrocatalyst for full water splitting. Angew. Chem. Int. Ed. 127, 12365–12538 (2015). https://doi.org/10.1002/ange.201502438
Q. Liu, S. Gu, C.M. Li, Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. J. Power Sources 299, 342–346 (2015). https://doi.org/10.1016/j.jpowsour.2015.09.027
J. Shi, J. Hu, Y. Luo, X. Sun, A.M. Asiri, Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting. Catal. Sci. Technol. 5, 4954–4958 (2015). https://doi.org/10.1039/C5CY01121C
T. Liu, Q. Liu, A.M. Asiri, Y. Luo, X. Sun, An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions. Chem. Commun. 51, 16683–16686 (2015). https://doi.org/10.1039/C5CC06892D
L.-L. Feng, G. Yu, Y. Wu, G.-D. Li, H. Li, Y. Sun, T. Asefa, W. Chen, X. Zou, High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting. J. Am. Chem. Soc. 137, 14023–14026 (2015). https://doi.org/10.1021/jacs.5b08186
J. Luo, J.-H. Im, M.T. Mayer, M. Schreier, M.K. Nazeeruddin, N.-G. Park, S.D. Tilley, H.J. Fan, M. Grätzel, Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 345, 1593–1596 (2014). https://doi.org/10.1126/science.1258307
W. Zhu, X. Yue, W. Zhang, S. Yu, Y. Zhang, J. Wang, J. Wang, Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting. Chem. Commun. 52, 1486–1489 (2016). https://doi.org/10.1039/C5CC08064A