Unveiling Organic Electrode Materials in Aqueous Zinc-Ion Batteries: From Structural Design to Electrochemical Performance
Corresponding Author: Chang‑Jiang Yao
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 194
Abstract
Aqueous zinc-ion batteries (AZIBs) are one of the most compelling alternatives of lithium-ion batteries due to their inherent safety and economics viability. In response to the growing demand for green and sustainable energy storage solutions, organic electrodes with the scalability from inexpensive starting materials and potential for biodegradation after use have become a prominent choice for AZIBs. Despite gratifying progresses of organic molecules with electrochemical performance in AZIBs, the research is still in infancy and hampered by certain issues due to the underlying complex electrochemistry. Strategies for designing organic electrode materials for AZIBs with high specific capacity and long cycling life are discussed in detail in this review. Specifically, we put emphasis on the unique electrochemistry of different redox-active structures to provide in-depth understanding of their working mechanisms. In addition, we highlight the importance of molecular size/dimension regarding their profound impact on electrochemical performances. Finally, challenges and perspectives are discussed from the developing point of view for future AZIBs. We hope to provide a valuable evaluation on organic electrode materials for AZIBs in our context and give inspiration for the rational design of high-performance AZIBs.
Highlights:
1 A comprehensive introduction into organic cathode materials for aqueous zinc-ion batteries with specific focus on their structural–property relationship based on the variations in composition, geometry, and molecular size.
2 For each representative organic cathode, the unique electrochemistry has been discussed to provide insight into the underlying working mechanism.
3 Summarized pros and cons of different organic cathodes and outlined challenges plus future research directions.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- R. Bird, Z.J. Baum, X. Yu, J. Ma et al., The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 7, 736–740 (2022). https://doi.org/10.1021/acsenergylett.1c02724
- I. Huang, Y. Zhang, H.M. Arafa, S. Li, A. Vazquez-Guardado et al., High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022). https://doi.org/10.1039/D2EE01966C
- Y. Wang, B. Wang, J. Zhang, D. Chao, J. Ni et al., Conversion electrochemistry of copper selenides for robust and energetic aqueous batteries. Carbon Energy 5, e261 (2023). https://doi.org/10.1002/cey2.261
- H. Zhang, G. Guo, H. Adenusi, B. Qin, H. Li et al., Advances and issues in developing intercalation graphite cathodes for aqueous batteries. Mater. Today 53, 162–172 (2022). https://doi.org/10.1016/j.mattod.2022.01.020
- Z. Yang, B. Wang, Y. Chen, W. Zhou, H. Li et al., Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. 10, nwac268 (2023). https://doi.org/10.1093/nsr/nwac268
- Z. Chen, F. Mo, T. Wang, Q. Yang, Z. Huang et al., Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 14, 2441–2450 (2021). https://doi.org/10.1039/D0EE02999H
- C. Zhu, J. Zhou, Z. Wang, Y. Zhou, X. He et al., Phase diagrams guided design of low-temperature aqueous electrolyte for Zn metal batteries. Chem. Eng. J. 454, 140413 (2023). https://doi.org/10.1016/j.cej.2022.140413
- Z. Li, Y. Liao, Y. Wang, J. Cong, H. Ji et al., A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy Storage Mater. 56, 174–182 (2023). https://doi.org/10.1016/j.ensm.2023.01.020
- R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
- K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, 2107662 (2022). https://doi.org/10.1002/smll.202107662
- M. Shi, R. Wang, J. He, L. Zhao, K. Dai et al., Multiple redox-active cyano-substituted organic compound integrated with MXene for high-performance flexible aqueous K-ion battery. Chem. Eng. J. 450, 138238 (2022). https://doi.org/10.1016/j.cej.2022.138238
- X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15, 3750–3774 (2022). https://doi.org/10.1039/D2EE01573K
- J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu et al., Dilute aqueous hybrid electrolyte with regulated core-shell-solvation structure endows safe and low-cost potassium-ion energy storage devices. Adv. Funct. Mater. 33, 2215027 (2023). https://doi.org/10.1002/adfm.202215027
- K.W. Leong, W. Pan, Y. Wang, S. Luo, X. Zhao et al., Reversibility of a high-voltage, Cl– regulated, aqueous Mg metal battery enabled by a water-in-salt electrolyte. ACS Energy Lett. 7, 2657–2666 (2022). https://doi.org/10.1021/acsenergylett.2c01255
- M. Deng, L. Wang, B. Vaghefinazari, W. Xu, C. Feiler et al., High-energy and durable aqueous magnesium batteries: recent advances and perspectives. Energy Storage Mater. 43, 238–247 (2021). https://doi.org/10.1016/j.ensm.2021.09.008
- C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible Al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144, 11444–11455 (2022). https://doi.org/10.1021/jacs.2c04820
- G.R. Pastel, Y. Chen, T.P. Pollard, M.A. Schroeder, M.E. Bowden et al., A sobering examination of the feasibility of aqueous aluminum batteries. Energy Environ. Sci. 15, 2460–2469 (2022). https://doi.org/10.1039/d2ee00134a
- H.-G. Wang, Q. Wu, L. Cheng, G. Zhu, The emerging aqueous zinc-organic battery. Coord. Chem. Rev. 472, 214772 (2022). https://doi.org/10.1016/j.ccr.2022.214772
- Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, 2206970 (2022). https://doi.org/10.1002/adma.202206970
- Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022). https://doi.org/10.1002/adma.202200662
- X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nano-Micro Lett. 16, 51 (2023). https://doi.org/10.1007/s40820-023-01256-6
- C. Wei, L. Tan, Y. Zhang, B. Xi, S. Xiong et al., Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Mater. 48, 447–457 (2022). https://doi.org/10.1016/j.ensm.2022.03.046
- C. Wei, L. Tan, Y. Zhang, Z. Wang, J. Feng et al., Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022). https://doi.org/10.1016/j.ensm.2022.08.014
- Q. He, H. Wang, J. Bai, Y. Liao, S. Wang et al., Bilayered nanostructured V2O5 nH2O xerogel constructed 2D nano-papers for efficient aqueous zinc/magnesium ion storage. J. Colloid Interface Sci. 662, 490–504 (2024). https://doi.org/10.1016/j.jcis.2024.02.059
- Y. Man, P. Jaumaux, Y. Xu, Y. Fei, X. Mo et al., Research development on electrolytes for magnesium-ion batteries. Sci. Bull. 68, 1819–1842 (2023). https://doi.org/10.1016/j.scib.2023.07.027
- J. Li, K.S. Hui, S. Ji, C. Zha, C. Yuan et al., Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery. Carbon Energy 4, 155–169 (2022). https://doi.org/10.1002/cey2.155
- X. Li, Y. Tang, C. Li, H. Lv, H. Fan et al., Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. J. Mater. Chem. A 10, 4739–4748 (2022). https://doi.org/10.1039/D1TA10125K
- E. Hu, B.E. Jia, Q. Zhu, J. Xu, X.J. Loh et al., Engineering high voltage aqueous aluminum-ion batteries. Small (2024). https://doi.org/10.1002/smll.202309252
- H. Gu, X. Yang, S. Chen, W. Zhang, H.Y. Yang et al., Oxygen vacancies boosted proton intercalation kinetics for aqueous aluminum–manganese batteries. Nano Lett. 23, 11842–11849 (2023). https://doi.org/10.1021/acs.nanolett.3c03654
- X. Chen, H. Zhang, J.-H. Liu, Y. Gao, X. Cao et al., Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 50, 21–46 (2022). https://doi.org/10.1016/j.ensm.2022.04.040
- B. Luo, Y. Wang, L. Sun, S. Zheng, G. Duan et al., Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes. J. Energy Chem. 77, 632–641 (2023). https://doi.org/10.1016/j.jechem.2022.11.005
- Y. Gao, J. Yin, X. Xu, Y. Cheng, Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A 10, 9773–9787 (2022). https://doi.org/10.1039/D2TA01014C
- X. Chen, X. Hu, Y. Chen, X. Cao, Y. Huang et al., Ultrastable hydrated vanadium dioxide cathodes for high-performance aqueous zinc ion batteries with H+/Zn2+ Co-insertion mechanism. J. Mater. Chem. A 10, 22194–22204 (2022). https://doi.org/10.1039/D2TA07101K
- M. Li, Y. Zhang, J. Hu, X. Wang, J. Zhu et al., Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy 100, 107539 (2022). https://doi.org/10.1016/j.nanoen.2022.107539
- Y. Xiang, L. Zhou, P. Tan, S. Dai, Y. Wang et al., Continuous amorphous metal–organic frameworks layer boosts the performance of metal anodes. ACS Nano 17, 19275–19287 (2023). https://doi.org/10.1021/acsnano.3c06367
- H. Lv, J. Wang, X. Gao, Y. Wang, Y. Shen et al., Electrochemical performance and mechanism of bimetallic organic framework for advanced aqueous Zn ion batteries. ACS Appl. Mater. Interfaces 15, 47094–47102 (2023). https://doi.org/10.1021/acsami.3c10552
- S. Qiao, J. Zhou, D. Zhao, G. Sun, W. Zhang et al., Constructing amphipathic molecular layer to assists de-solvation process for dendrite-free Zn anode. J. Colloid Interface Sci. 653, 1085–1093 (2024). https://doi.org/10.1016/j.jcis.2023.09.151
- L. Tao, K. Guan, R. Yang, Z. Guo, L. Wang et al., Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants. Energy Storage Mater. 63, 102981 (2023). https://doi.org/10.1016/j.ensm.2023.102981
- Z. Zheng, S. Guo, M. Yan, Y. Luo, F. Cao, A functional Janus Ag nanowires/bacterial cellulose separator for high-performance dendrite-free zinc anode under harsh conditions. Adv. Mater. 35, e2304667 (2023). https://doi.org/10.1002/adma.202304667
- J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15, 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
- Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
- F. Niu, Z. Bai, J. Chen, Q. Gu, X. Wang et al., In situ molecular engineering strategy to construct hierarchical MoS2 double-layer nanotubes for ultralong lifespan “rocking-chair” aqueous zinc-ion batteries. ACS Nano 18, 6487–6499 (2024). https://doi.org/10.1021/acsnano.3c12034
- M. Fang, T. Yang, O. Sheng, T. Shen, Z. Huang et al., A trinity strategy enabled by iodine-loaded nitrogen-boron-doped carbon protective layer for dendrite-free zinc-ion batteries. J. Colloid Interface Sci. 661, 987–999 (2024). https://doi.org/10.1016/j.jcis.2024.02.053
- J. Wu, B. Song, Z. Ge, X. Xiao, W. Deng et al., Bifunctional electrolyte additive for stable Zn anode: reconstructing solvated structure and guiding oriented growth of Zn. Energy Storage Mater. 63, 103000 (2023). https://doi.org/10.1016/j.ensm.2023.103000
- R. Wang, Q. Ma, L. Zhang, Z. Liu, J. Wan et al., An aqueous electrolyte regulator for highly stable zinc anode under –35 to 65 °C. Adv. Energy Mater. 13, 2302543 (2023). https://doi.org/10.1002/aenm.202302543
- C. You, R. Wu, X. Yuan, L. Liu, J. Ye et al., An inexpensive electrolyte with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy Environ. Sci. 16, 5096–5107 (2023). https://doi.org/10.1039/D3EE01741A
- Z. Liu, R. Wang, Y. Gao, S. Zhang, J. Wan et al., Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 33, 2308463 (2023). https://doi.org/10.1002/adfm.202308463
- X. Zhang, J. Chen, H. Cao, X. Huang, Y. Liu et al., Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries. Small 19, 2303906 (2023). https://doi.org/10.1002/smll.202303906
- Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
- J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15, 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
- Z. Li, J. Tan, X. Zhu, S. Xie, H. Fang et al., High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 51, 294–305 (2022). https://doi.org/10.1016/j.ensm.2022.06.049
- T. Sun, Z. Yi, W. Zhang, Q. Nian, H.J. Fan et al., Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv. Funct. Mater. 33, 2306675 (2023). https://doi.org/10.1002/adfm.202306675
- M. Yang, Y. Hao, B. Wang, Y. Wang, L. Zheng et al., Steric hindrance modulation of hexaazatribenzanthraquinone isomers for high capacity and wide-temperature-range aqueous proton battery. Natl. Sci. Rev. (2024). https://doi.org/10.1093/nsr/nwae045
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023). https://doi.org/10.1016/j.cej.2022.139324
- W. Ma, P. Zhang, L. Tang, M. Ge, Y. Qi et al., Towards durable and high-rate rechargeable aluminum dual-ion batteries via a crosslinked diphenylphenazine-based conjugated polymer cathode. Chemsuschem (2024). https://doi.org/10.1002/cssc.202301725
- S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, 2117511 (2022). https://doi.org/10.1002/anie.202117511
- S. Bian, Y. Yang, S. Liu, F. Ye, H. Tang et al., Recent progress of the cathode material design for aqueous Zn-organic batteries. Chem. Eur. J. 30, e2303917 (2024). https://doi.org/10.1002/chem.202303917
- Y. Tong, Y. Wei, A. Song, Y. Ma, J. Yang, Organic electrode materials for dual-ion batteries. Chemsuschem (2023). https://doi.org/10.1002/cssc.202301468
- G. Son, V. Ri, D. Shin, Y. Jung, C.B. Park et al., Self-reinforced inductive effect of symmetric bipolar organic molecule for high-performance rechargeable batteries. Adv. Sci. 10, 2301993 (2023). https://doi.org/10.1002/advs.202301993
- H. Park, H. Kye, J.-S. Lee, Y.-C. Joo, D.J. Min et al., Indolocarbazole-based small molecule cathode-active material exhibiting double redox for high-voltage Li-organic batteries. Energy Environ. Mater. (2024). https://doi.org/10.1002/eem2.12694
- C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo et al., Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chem. Eng. J. 474, 145114 (2023). https://doi.org/10.1016/j.cej.2023.145114
- D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12, 2102707 (2022). https://doi.org/10.1002/aenm.202102707
- L. Yan, C. Zhao, Y. Sha, Z. Li, T. Liu et al., Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy 73, 104766 (2020). https://doi.org/10.1016/j.nanoen.2020.104766
- Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
- Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737–11741 (2018). https://doi.org/10.1002/anie.201807121
- Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
- K.W. Nam, H. Kim, Y. Beldjoudi, T.W. Kwon, D.J. Kim et al., Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548 (2020). https://doi.org/10.1021/jacs.9b12436
- Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, 2000338 (2020). https://doi.org/10.1002/adma.202000338
- J. Kumankuma-Sarpong, S. Tang, W. Guo, Y. Fu, Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 4084–4092 (2021). https://doi.org/10.1021/acsami.0c21339
- T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
- K. Huang, Z. Yao, K. Sun, K. Chen, J. Hu et al., Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. J. Power Sources 482, 228904 (2021). https://doi.org/10.1016/j.jpowsour.2020.228904
- H. Zhang, Y. Fang, F. Yang, X. Liu, X. Lu, Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ. Sci. 13, 2515–2523 (2020). https://doi.org/10.1039/d0ee01723j
- L. Cheng, Y. Liang, Q. Zhu, D. Yu, M. Chen et al., Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem. Asian J. 15, 1290–1295 (2020). https://doi.org/10.1002/asia.202000283
- J. Wei, P. Zhang, T. Shen, Y. Liu, T. Dai et al., Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries. ACS Energy Lett. 8, 762–771 (2023). https://doi.org/10.1021/acsenergylett.2c02646
- Q. Wang, Y. Liu, P. Chen, Phenazine-based organic cathode for aqueous zinc secondary batteries. J. Power Sources 468, 228401 (2020). https://doi.org/10.1016/j.jpowsour.2020.228401
- H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C═N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655–661 (2021). https://doi.org/10.1021/acsaem.0c02526
- Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc–organic battery. Angew. Chem. Int. Ed. 59(12), 4920–4924 (2020). https://doi.org/10.1002/anie.201916529
- Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
- S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 35, e2207115 (2023). https://doi.org/10.1002/adma.202207115
- X. Wang, Y. Liu, Z. Wei, J. Hong, H. Liang et al., MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv. Mater. 34, 2206812 (2022). https://doi.org/10.1002/adma.202206812
- Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61(37), 202116289 (2022). https://doi.org/10.1002/anie.202116289
- J. Chu, Z. Liu, J. Yu, L. Cheng, H.-G. Wang et al., Boosting H+ storage in aqueous zinc ion batteries via integrating redox-active sites into hydrogen-bonded organic frameworks with strong π-π stacking. Angew. Chem. Int. Ed. 63, 2314411 (2024). https://doi.org/10.1002/anie.202314411
- S. Niu, Y. Wang, J. Zhang, Y. Wang, Y. Tian et al., Engineering low-cost organic cathode for aqueous rechargeable battery and demonstrating the proton intercalation mechanism for pyrazine energy storage unit. Small, e2309022 (2023). https://doi.org/10.1002/smll.202309022
- Y. Gao, G. Li, F. Wang, J. Chu, P. Yu et al., A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 40, 31–40 (2021). https://doi.org/10.1016/j.ensm.2021.05.002
- S. Menart, K. Pirnat, D. Pahovnik, R. Dominko, Triquinoxalinediol as organic cathode material for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 11, 10874–10882 (2023). https://doi.org/10.1039/D3TA01400B
- J. Li, L. Huang, H. Lv, J. Wang, G. Wang et al., Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 14, 38844–38853 (2022). https://doi.org/10.1021/acsami.2c10539
- H. Peng, J. Xiao, Z. Wu, L. Zhang, Y. Geng et al., N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem. 5, 1789–1801 (2023). https://doi.org/10.31635/ccschem.022.202202276
- W. Li, H. Xu, H. Zhang, F. Wei, L. Huang et al., Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 14, 5235 (2023). https://doi.org/10.1038/s41467-023-40969-5
- X. Geng, H. Ma, F. Lv, K. Yang, J. Ma et al., Ultrastable organic cathode derived by pigment/rGO for aqueous zinc-ion batteries. Chem. Eng. J. 446, 137289 (2022). https://doi.org/10.1016/j.cej.2022.137289
- L. Lin, Z. Lin, J. Zhu, K. Wang, W. Wu et al., A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89–96 (2023). https://doi.org/10.1039/D2EE02961H
- N. Merukan Chola, R.K. Nagarale, TCNQ confined in porous organic structure as cathode for aqueous zinc battery. J. Electrochem. Soc. 167, 100552 (2020). https://doi.org/10.1149/1945-7111/ab9cc9
- Q. Wang, X. Xu, G. Yang, Y. Liu, X. Yao, An organic cathode with tailored working potential for aqueous Zn-ion batteries. Chem. Commun. 56, 11859–11862 (2020). https://doi.org/10.1039/d0cc05344a
- Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv et al., Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, 2208821 (2022). https://doi.org/10.1002/anie.202208821
- W. Wang, Y. Tang, J. Liu, H. Li, R. Wang et al., Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chem. Sci. 14, 9033–9040 (2023). https://doi.org/10.1039/D3SC03435F
- M. Tang, Q. Zhu, P. Hu, L. Jiang, R. Liu et al., Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv. Funct. Mater. 31, 2102011 (2021). https://doi.org/10.1002/adfm.202102011
- H. Glatz, E. Lizundia, F. Pacifico, D. Kundu, An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane. ACS Appl. Energy Mater. 2, 1288–1294 (2019). https://doi.org/10.1021/acsaem.8b01851
- M.H. Lee, G. Kwon, H. Lim, J. Kim, S.J. Kim et al., High-energy and long-lasting organic electrode for a rechargeable aqueous battery. ACS Energy Lett. 7, 3637–3645 (2022). https://doi.org/10.1021/acsenergylett.2c01535
- U. Mittal, F. Colasuonno, A. Rawal, M. Lessio, D. Kundu, A highly stable 1.3V organic cathode for aqueous zinc batteries designed in situ by solid-state electrooxidation. Energy Storage Mater. 46, 129–137 (2022). https://doi.org/10.1016/j.ensm.2022.01.004
- Y. Wang, S. Qiu, D. He, J. Guo, M. Zhao et al., A high-potential bipolar phenothiazine derivative cathode for aqueous zinc batteries. ChemSusChem 16, 2300658 (2023). https://doi.org/10.1002/cssc.202300658
- H. Dai, Y. Chen, Y. Cao, M. Fu, L. Guan et al., Structural isomers: small change with big difference in anion storage. Nano-Micro Lett. 16, 13 (2023). https://doi.org/10.1007/s40820-023-01239-7
- H. Alt, H. Binder, A. Köhling, G. Sandstede, Investigation into the use of quinone compounds-for battery cathodes. Electrochim. Acta 17, 873–887 (1972). https://doi.org/10.1016/0013-4686(72)90010-2
- Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919
- D. Ma, H. Zhao, F. Cao, H. Zhao, J. Li et al., A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem. Sci. 13, 2385–2390 (2022). https://doi.org/10.1039/D1SC06412F
- Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35, 2301088 (2023). https://doi.org/10.1002/adma.202301088
- K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144, 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
- Y. Chen, H. Dai, K. Fan, G. Zhang, M. Tang et al., A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 62, 2302539 (2023). https://doi.org/10.1002/anie.202302539
- Y. Zhong, Y. Li, J. Meng, X. Lin, Z. Huang et al., Boosting the cyclability of tetracyanoquinodimethane (TCNQ) as cathode material in aqueous battery with high valent cation. Energy Storage Mater. 43, 492–498 (2021). https://doi.org/10.1016/j.ensm.2021.09.029
- S. Perticarari, E. Grange, T. Doizy, Y. Pellegrin, E. Quarez et al., Full organic aqueous battery based on TEMPO small molecule with millimeter-thick electrodes. Chem. Mater. 31, 1869–1880 (2019). https://doi.org/10.1021/acs.chemmater.8b03282
- N. Patil, J. Palma, R. Marcilla, Macromolecular engineering of poly(catechol) cathodes towards high-performance aqueous zinc-polymer batteries. Polymers 13, 1673 (2021). https://doi.org/10.3390/polym13111673
- T. Sun, Z.-J. Li, Y.-F. Zhi, Y.-J. Huang, H.J. Fan et al., Poly(2, 5-dihydroxy-1, 4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. Adv. Funct. Mater. 31, 2010049 (2021). https://doi.org/10.1002/adfm.202010049
- G. Dawut, Y. Lu, L. Miao, J. Chen, High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorg. Chem. Front. 5, 1391–1396 (2018). https://doi.org/10.1039/C8QI00197A
- D. Fei Ye, Q. Liu, D. Hongliang Dong, K. Guan, Z. Chen et al., Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem. Int. Ed. 61, e202214244 (2022). https://doi.org/10.1002/anie.202214244
- H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021). https://doi.org/10.1002/smll.202100902
- X. Wang, J. Xiao, W. Tang, Hydroquinone versus pyrocatechol pendants twisted conjugated polymer cathodes for high-performance and robust aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2108225 (2022). https://doi.org/10.1002/adfm.202108225
- Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61, 2115180 (2022). https://doi.org/10.1002/anie.202115180
- X. Yue, H. Liu, P. Liu, Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem. Commun. 55, 1647–1650 (2019). https://doi.org/10.1039/C8CC10060H
- P. Liu, R. Lv, Y. He, B. Na, B. Wang et al., An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources 410–411, 137–142 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.017
- H. Yi, Y. Ma, S. Zhang, B. Na, R. Zeng et al., Robust aqueous Zn-ion fiber battery based on high-strength cellulose yarns. ACS Sustainable Chem. Eng. 7, 18894–18900 (2019). https://doi.org/10.1021/acssuschemeng.9b04188
- W. Wu, H.-Y. Shi, Z. Lin, X. Yang, C. Li et al., The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chem. Eng. J. 419, 129659 (2021). https://doi.org/10.1016/j.cej.2021.129659
- F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018). https://doi.org/10.1002/adfm.201804975
- H.-Y. Shi, Y.-J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
- S. Li, G. Zhang, G. Jing, J. Kan, Aqueous zinc–polyaniline secondary battery. Synth. Met. 158, 242–245 (2008). https://doi.org/10.1016/j.synthmet.2008.01.008
- L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022). https://doi.org/10.1002/anie.202211107
- Y. Zhao, Y. Huang, R. Chen, F. Wu, L. Li, Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn-organic batteries. Mater. Horiz. 8, 3124–3132 (2021). https://doi.org/10.1039/d1mh01226f
- K. Koshika, N. Sano, K. Oyaizu, H. Nishide, An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol. Chem. Phys. 210, 1989–1995 (2009). https://doi.org/10.1002/macp.200900257
- J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn// PPy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6, 11113–11118 (2018). https://doi.org/10.1039/c8ta03143f
- N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs et al., Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017). https://doi.org/10.1002/adma.201703373
- N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, J. Palma et al., Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono-, di-, and trivalent) batteries. ACS Appl. Energy Mater. 2, 3035–3041 (2019). https://doi.org/10.1021/acsaem.9b00443
- W. Qiu, Lithium-ion rechargeable battery with petroleum coke anode and polyaniline cathode. Solid State Ion. 86–88, 903–906 (1996). https://doi.org/10.1016/0167-2738(96)00211-1
- M.S. Rahmanifar, M.F. Mousavi, M. Shamsipur, H. Heli, A study on open circuit voltage reduction as a main drawback of Zn–polyaniline rechargeable batteries. Synth. Met. 155, 480–484 (2005). https://doi.org/10.1016/j.synthmet.2005.06.009
- A. Wu, E.C. Venancio, A.G. MacDiarmid, Polyaniline and polypyrrole oxygen reversible electrodes. Synth. Met. 157, 303–310 (2007). https://doi.org/10.1016/j.synthmet.2007.03.008
- B.N. Grgur, V. Ristić, M.M. Gvozdenović, M.D. Maksimović, B.Z. Jugović, Polyaniline as possible anode materials for the lead acid batteries. J. Power Sources 180, 635–640 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.022
- A. Mirmohseni, R. Solhjo, Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode. Eur. Polym. J. 39, 219–223 (2003). https://doi.org/10.1016/s0014-3057(02)00202-1
- M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489–11503 (2020). https://doi.org/10.1021/acsami.9b20129
- S.F. Kuchena, Y. Wang, Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 3, 11690–11698 (2020). https://doi.org/10.1021/acsaem.0c01791
- L. Liu, F. Tian, M. Zhou, H. Guo, X. Wang, Aqueous rechargeable lithium battery based on polyaniline and LiMn2O4 with good cycling performance. Electrochim. Acta 70, 360–364 (2012). https://doi.org/10.1016/j.electacta.2012.03.092
- R. Han, Y. Pan, C. Yin, C. Du, Y. Xiang et al., Proton-self-doped PANI@CC as the cathode for high-performance aqueous zinc-ion battery. J. Colloid Interface Sci. 650, 322–329 (2023). https://doi.org/10.1016/j.jcis.2023.06.208
- C. Yin, C. Pan, Y. Pan, J. Hu, G. Fang, Proton self-doped polyaniline with high electrochemical activity for aqueous zinc-ion batteries. Small Methods 7, e2300574 (2023). https://doi.org/10.1002/smtd.202300574
- N. Chikushi, H. Yamada, K. Oyaizu, H. Nishide, TEMPO-substituted polyacrylamide for an aqueous electrolyte-typed and organic-based rechargeable device. Sci. China Chem. 55, 822–829 (2012). https://doi.org/10.1007/s11426-012-4556-3
- C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021). https://doi.org/10.1039/d0ee03356a
- H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33, e2101857 (2021). https://doi.org/10.1002/adma.202101857
- X. Wang, J. Tang, W. Tang, Manipulating polymer configuration to accelerate cation intercalation kinetics for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2200517 (2022). https://doi.org/10.1002/adfm.202200517
- M. Abdul Khayum, M. Ghosh, V. Vijayakumar, A. Halder, M. Nurhuda et al., Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 10, 8889–8894 (2019). https://doi.org/10.1039/C9SC03052B
- W. Wang, V.S. Kale, Z. Cao, S. Kandambeth, W. Zhang et al., Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 5, 2256–2264 (2020). https://doi.org/10.1021/acsenergylett.0c00903
- H. Peng, S. Huang, V. Montes-García, D. Pakulski, H. Guo et al., Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 62, 2216136 (2023). https://doi.org/10.1002/anie.202216136
- M. Yu, N. Chandrasekhar, R.K.M. Raghupathy, K.H. Ly, H. Zhang et al., A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J. Am. Chem. Soc. 142, 19570–19578 (2020). https://doi.org/10.1021/jacs.0c07992
- W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth et al., Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, 2103617 (2021). https://doi.org/10.1002/adma.202103617
- Z. Sang, J. Liu, X. Zhang, L. Yin, F. Hou et al., One-dimensional π-d conjugated conductive metal-organic framework with dual redox-active sites for high-capacity and durable cathodes for aqueous zinc batteries. ACS Nano 17, 3077–3087 (2023). https://doi.org/10.1021/acsnano.2c11974
- F. Zhang, G. Wang, J. Wu, X. Chi, Y. Liu, An organic coordination manganese complex as cathode for high-voltage aqueous zinc-metal battery. Angew. Chem. Int. Ed. 62, 2309430 (2023). https://doi.org/10.1002/anie.202309430
- Y. Wang, X. Wang, J. Tang, W. Tang, A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 10, 13868–13875 (2022). https://doi.org/10.1039/d2ta03655j
- K.W. Nam, S.S. Park, R. dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019). https://doi.org/10.1038/s41467-019-12857-4
References
R. Bird, Z.J. Baum, X. Yu, J. Ma et al., The regulatory environment for lithium-ion battery recycling. ACS Energy Lett. 7, 736–740 (2022). https://doi.org/10.1021/acsenergylett.1c02724
I. Huang, Y. Zhang, H.M. Arafa, S. Li, A. Vazquez-Guardado et al., High performance dual-electrolyte magnesium–iodine batteries that can harmlessly resorb in the environment or in the body. Energy Environ. Sci. 15, 4095–4108 (2022). https://doi.org/10.1039/D2EE01966C
Y. Wang, B. Wang, J. Zhang, D. Chao, J. Ni et al., Conversion electrochemistry of copper selenides for robust and energetic aqueous batteries. Carbon Energy 5, e261 (2023). https://doi.org/10.1002/cey2.261
H. Zhang, G. Guo, H. Adenusi, B. Qin, H. Li et al., Advances and issues in developing intercalation graphite cathodes for aqueous batteries. Mater. Today 53, 162–172 (2022). https://doi.org/10.1016/j.mattod.2022.01.020
Z. Yang, B. Wang, Y. Chen, W. Zhou, H. Li et al., Activating sulfur oxidation reaction via six-electron redox mesocrystal NiS2 for sulfur-based aqueous batteries. Natl. Sci. Rev. 10, nwac268 (2023). https://doi.org/10.1093/nsr/nwac268
Z. Chen, F. Mo, T. Wang, Q. Yang, Z. Huang et al., Zinc/selenium conversion battery: a system highly compatible with both organic and aqueous electrolytes. Energy Environ. Sci. 14, 2441–2450 (2021). https://doi.org/10.1039/D0EE02999H
C. Zhu, J. Zhou, Z. Wang, Y. Zhou, X. He et al., Phase diagrams guided design of low-temperature aqueous electrolyte for Zn metal batteries. Chem. Eng. J. 454, 140413 (2023). https://doi.org/10.1016/j.cej.2022.140413
Z. Li, Y. Liao, Y. Wang, J. Cong, H. Ji et al., A co-solvent in aqueous electrolyte towards ultralong-life rechargeable zinc-ion batteries. Energy Storage Mater. 56, 174–182 (2023). https://doi.org/10.1016/j.ensm.2023.01.020
R. Wang, M. Shi, L. Li, Y. Zhao, L. Zhao et al., In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries. Chem. Eng. J. 451, 138652 (2023). https://doi.org/10.1016/j.cej.2022.138652
K. Zhu, Z. Li, Z. Sun, P. Liu, T. Jin et al., Inorganic electrolyte for low-temperature aqueous sodium ion batteries. Small 18, 2107662 (2022). https://doi.org/10.1002/smll.202107662
M. Shi, R. Wang, J. He, L. Zhao, K. Dai et al., Multiple redox-active cyano-substituted organic compound integrated with MXene for high-performance flexible aqueous K-ion battery. Chem. Eng. J. 450, 138238 (2022). https://doi.org/10.1016/j.cej.2022.138238
X. Zhang, T. Xiong, B. He, S. Feng, X. Wang et al., Recent advances and perspectives in aqueous potassium-ion batteries. Energy Environ. Sci. 15, 3750–3774 (2022). https://doi.org/10.1039/D2EE01573K
J. Chen, S. Lei, S. Zhang, C. Zhu, Q. Liu et al., Dilute aqueous hybrid electrolyte with regulated core-shell-solvation structure endows safe and low-cost potassium-ion energy storage devices. Adv. Funct. Mater. 33, 2215027 (2023). https://doi.org/10.1002/adfm.202215027
K.W. Leong, W. Pan, Y. Wang, S. Luo, X. Zhao et al., Reversibility of a high-voltage, Cl– regulated, aqueous Mg metal battery enabled by a water-in-salt electrolyte. ACS Energy Lett. 7, 2657–2666 (2022). https://doi.org/10.1021/acsenergylett.2c01255
M. Deng, L. Wang, B. Vaghefinazari, W. Xu, C. Feiler et al., High-energy and durable aqueous magnesium batteries: recent advances and perspectives. Energy Storage Mater. 43, 238–247 (2021). https://doi.org/10.1016/j.ensm.2021.09.008
C. Yan, C. Lv, B.-E. Jia, L. Zhong, X. Cao et al., Reversible Al metal anodes enabled by amorphization for aqueous aluminum batteries. J. Am. Chem. Soc. 144, 11444–11455 (2022). https://doi.org/10.1021/jacs.2c04820
G.R. Pastel, Y. Chen, T.P. Pollard, M.A. Schroeder, M.E. Bowden et al., A sobering examination of the feasibility of aqueous aluminum batteries. Energy Environ. Sci. 15, 2460–2469 (2022). https://doi.org/10.1039/d2ee00134a
H.-G. Wang, Q. Wu, L. Cheng, G. Zhu, The emerging aqueous zinc-organic battery. Coord. Chem. Rev. 472, 214772 (2022). https://doi.org/10.1016/j.ccr.2022.214772
Z. Zhang, X. Yang, P. Li, Y. Wang, X. Zhao et al., Biomimetic dendrite-free multivalent metal batteries. Adv. Mater. 34, 2206970 (2022). https://doi.org/10.1002/adma.202206970
Y. Chen, K. Fan, Y. Gao, C. Wang, Challenges and perspectives of organic multivalent metal-ion batteries. Adv. Mater. 34, 2200662 (2022). https://doi.org/10.1002/adma.202200662
X. Yang, X. Wang, Y. Xiang, L. Ma, W. Huang, Asymmetric electrolytes design for aqueous multivalent metal ion batteries. Nano-Micro Lett. 16, 51 (2023). https://doi.org/10.1007/s40820-023-01256-6
C. Wei, L. Tan, Y. Zhang, B. Xi, S. Xiong et al., Highly reversible Mg metal anodes enabled by interfacial liquid metal engineering for high-energy Mg-S batteries. Energy Storage Mater. 48, 447–457 (2022). https://doi.org/10.1016/j.ensm.2022.03.046
C. Wei, L. Tan, Y. Zhang, Z. Wang, J. Feng et al., Towards better Mg metal anodes in rechargeable Mg batteries: challenges, strategies, and perspectives. Energy Storage Mater. 52, 299–319 (2022). https://doi.org/10.1016/j.ensm.2022.08.014
Q. He, H. Wang, J. Bai, Y. Liao, S. Wang et al., Bilayered nanostructured V2O5 nH2O xerogel constructed 2D nano-papers for efficient aqueous zinc/magnesium ion storage. J. Colloid Interface Sci. 662, 490–504 (2024). https://doi.org/10.1016/j.jcis.2024.02.059
Y. Man, P. Jaumaux, Y. Xu, Y. Fei, X. Mo et al., Research development on electrolytes for magnesium-ion batteries. Sci. Bull. 68, 1819–1842 (2023). https://doi.org/10.1016/j.scib.2023.07.027
J. Li, K.S. Hui, S. Ji, C. Zha, C. Yuan et al., Electrodeposition of a dendrite-free 3D Al anode for improving cycling of an aluminum–graphite battery. Carbon Energy 4, 155–169 (2022). https://doi.org/10.1002/cey2.155
X. Li, Y. Tang, C. Li, H. Lv, H. Fan et al., Relieving hydrogen evolution and anodic corrosion of aqueous aluminum batteries with hybrid electrolytes. J. Mater. Chem. A 10, 4739–4748 (2022). https://doi.org/10.1039/D1TA10125K
E. Hu, B.E. Jia, Q. Zhu, J. Xu, X.J. Loh et al., Engineering high voltage aqueous aluminum-ion batteries. Small (2024). https://doi.org/10.1002/smll.202309252
H. Gu, X. Yang, S. Chen, W. Zhang, H.Y. Yang et al., Oxygen vacancies boosted proton intercalation kinetics for aqueous aluminum–manganese batteries. Nano Lett. 23, 11842–11849 (2023). https://doi.org/10.1021/acs.nanolett.3c03654
X. Chen, H. Zhang, J.-H. Liu, Y. Gao, X. Cao et al., Vanadium-based cathodes for aqueous zinc-ion batteries: mechanism, design strategies and challenges. Energy Storage Mater. 50, 21–46 (2022). https://doi.org/10.1016/j.ensm.2022.04.040
B. Luo, Y. Wang, L. Sun, S. Zheng, G. Duan et al., Boosting Zn2+ kinetics via the multifunctional pre-desolvation interface for dendrite-free Zn anodes. J. Energy Chem. 77, 632–641 (2023). https://doi.org/10.1016/j.jechem.2022.11.005
Y. Gao, J. Yin, X. Xu, Y. Cheng, Pseudocapacitive storage in cathode materials of aqueous zinc ion batteries toward high power and energy density. J. Mater. Chem. A 10, 9773–9787 (2022). https://doi.org/10.1039/D2TA01014C
X. Chen, X. Hu, Y. Chen, X. Cao, Y. Huang et al., Ultrastable hydrated vanadium dioxide cathodes for high-performance aqueous zinc ion batteries with H+/Zn2+ Co-insertion mechanism. J. Mater. Chem. A 10, 22194–22204 (2022). https://doi.org/10.1039/D2TA07101K
M. Li, Y. Zhang, J. Hu, X. Wang, J. Zhu et al., Universal multifunctional hydrogen bond network construction strategy for enhanced aqueous Zn2+/proton hybrid batteries. Nano Energy 100, 107539 (2022). https://doi.org/10.1016/j.nanoen.2022.107539
Y. Xiang, L. Zhou, P. Tan, S. Dai, Y. Wang et al., Continuous amorphous metal–organic frameworks layer boosts the performance of metal anodes. ACS Nano 17, 19275–19287 (2023). https://doi.org/10.1021/acsnano.3c06367
H. Lv, J. Wang, X. Gao, Y. Wang, Y. Shen et al., Electrochemical performance and mechanism of bimetallic organic framework for advanced aqueous Zn ion batteries. ACS Appl. Mater. Interfaces 15, 47094–47102 (2023). https://doi.org/10.1021/acsami.3c10552
S. Qiao, J. Zhou, D. Zhao, G. Sun, W. Zhang et al., Constructing amphipathic molecular layer to assists de-solvation process for dendrite-free Zn anode. J. Colloid Interface Sci. 653, 1085–1093 (2024). https://doi.org/10.1016/j.jcis.2023.09.151
L. Tao, K. Guan, R. Yang, Z. Guo, L. Wang et al., Dual-protected zinc anodes for long-life aqueous zinc ion battery with bifunctional interface constructed by zwitterionic surfactants. Energy Storage Mater. 63, 102981 (2023). https://doi.org/10.1016/j.ensm.2023.102981
Z. Zheng, S. Guo, M. Yan, Y. Luo, F. Cao, A functional Janus Ag nanowires/bacterial cellulose separator for high-performance dendrite-free zinc anode under harsh conditions. Adv. Mater. 35, e2304667 (2023). https://doi.org/10.1002/adma.202304667
J. Li, Z. Liu, S. Han, P. Zhou, B. Lu et al., Hetero nucleus growth stabilizing zinc anode for high-biosecurity zinc-ion batteries. Nano-Micro Lett. 15, 237 (2023). https://doi.org/10.1007/s40820-023-01206-2
Z. Luo, Y. Xia, S. Chen, X. Wu, R. Zeng et al., Synergistic “anchor-capture” enabled by amino and carboxyl for constructing robust interface of Zn anode. Nano-Micro Lett. 15, 205 (2023). https://doi.org/10.1007/s40820-023-01171-w
F. Niu, Z. Bai, J. Chen, Q. Gu, X. Wang et al., In situ molecular engineering strategy to construct hierarchical MoS2 double-layer nanotubes for ultralong lifespan “rocking-chair” aqueous zinc-ion batteries. ACS Nano 18, 6487–6499 (2024). https://doi.org/10.1021/acsnano.3c12034
M. Fang, T. Yang, O. Sheng, T. Shen, Z. Huang et al., A trinity strategy enabled by iodine-loaded nitrogen-boron-doped carbon protective layer for dendrite-free zinc-ion batteries. J. Colloid Interface Sci. 661, 987–999 (2024). https://doi.org/10.1016/j.jcis.2024.02.053
J. Wu, B. Song, Z. Ge, X. Xiao, W. Deng et al., Bifunctional electrolyte additive for stable Zn anode: reconstructing solvated structure and guiding oriented growth of Zn. Energy Storage Mater. 63, 103000 (2023). https://doi.org/10.1016/j.ensm.2023.103000
R. Wang, Q. Ma, L. Zhang, Z. Liu, J. Wan et al., An aqueous electrolyte regulator for highly stable zinc anode under –35 to 65 °C. Adv. Energy Mater. 13, 2302543 (2023). https://doi.org/10.1002/aenm.202302543
C. You, R. Wu, X. Yuan, L. Liu, J. Ye et al., An inexpensive electrolyte with double-site hydrogen bonding and a regulated Zn2+ solvation structure for aqueous Zn-ion batteries capable of high-rate and ultra-long low-temperature operation. Energy Environ. Sci. 16, 5096–5107 (2023). https://doi.org/10.1039/D3EE01741A
Z. Liu, R. Wang, Y. Gao, S. Zhang, J. Wan et al., Low-cost multi-function electrolyte additive enabling highly stable interfacial chemical environment for highly reversible aqueous zinc ion batteries. Adv. Funct. Mater. 33, 2308463 (2023). https://doi.org/10.1002/adfm.202308463
X. Zhang, J. Chen, H. Cao, X. Huang, Y. Liu et al., Efficient suppression of dendrites and side reactions by strong electrostatic shielding effect via the additive of Rb2SO4 for anodes in aqueous zinc-ion batteries. Small 19, 2303906 (2023). https://doi.org/10.1002/smll.202303906
Y. Chen, D. Ma, K. Ouyang, M. Yang, S. Shen et al., A multifunctional anti-proton electrolyte for high-rate and super-stable aqueous Zn-vanadium oxide battery. Nano-Micro Lett. 14, 154 (2022). https://doi.org/10.1007/s40820-022-00907-4
J. Lee, H. Lee, C. Bak, Y. Hong, D. Joung et al., Enhancing hydrophilicity of thick electrodes for high energy density aqueous batteries. Nano-Micro Lett. 15, 97 (2023). https://doi.org/10.1007/s40820-023-01072-y
Z. Li, J. Tan, X. Zhu, S. Xie, H. Fang et al., High capacity and long-life aqueous zinc-ion battery enabled by improving active sites utilization and protons insertion in polymer cathode. Energy Storage Mater. 51, 294–305 (2022). https://doi.org/10.1016/j.ensm.2022.06.049
T. Sun, Z. Yi, W. Zhang, Q. Nian, H.J. Fan et al., Dynamic balance of partial charge for small organic compound in aqueous zinc-organic battery. Adv. Funct. Mater. 33, 2306675 (2023). https://doi.org/10.1002/adfm.202306675
M. Yang, Y. Hao, B. Wang, Y. Wang, L. Zheng et al., Steric hindrance modulation of hexaazatribenzanthraquinone isomers for high capacity and wide-temperature-range aqueous proton battery. Natl. Sci. Rev. (2024). https://doi.org/10.1093/nsr/nwae045
T. Sun, W. Zhang, Q. Nian, Z. Tao, Proton-insertion dominated polymer cathode for high-performance aqueous zinc-ion battery. Chem. Eng. J. 452, 139324 (2023). https://doi.org/10.1016/j.cej.2022.139324
W. Ma, P. Zhang, L. Tang, M. Ge, Y. Qi et al., Towards durable and high-rate rechargeable aluminum dual-ion batteries via a crosslinked diphenylphenazine-based conjugated polymer cathode. Chemsuschem (2024). https://doi.org/10.1002/cssc.202301725
S. Zheng, D. Shi, D. Yan, Q. Wang, T. Sun et al., Orthoquinone–based covalent organic frameworks with ordered channel structures for ultrahigh performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, 2117511 (2022). https://doi.org/10.1002/anie.202117511
S. Bian, Y. Yang, S. Liu, F. Ye, H. Tang et al., Recent progress of the cathode material design for aqueous Zn-organic batteries. Chem. Eur. J. 30, e2303917 (2024). https://doi.org/10.1002/chem.202303917
Y. Tong, Y. Wei, A. Song, Y. Ma, J. Yang, Organic electrode materials for dual-ion batteries. Chemsuschem (2023). https://doi.org/10.1002/cssc.202301468
G. Son, V. Ri, D. Shin, Y. Jung, C.B. Park et al., Self-reinforced inductive effect of symmetric bipolar organic molecule for high-performance rechargeable batteries. Adv. Sci. 10, 2301993 (2023). https://doi.org/10.1002/advs.202301993
H. Park, H. Kye, J.-S. Lee, Y.-C. Joo, D.J. Min et al., Indolocarbazole-based small molecule cathode-active material exhibiting double redox for high-voltage Li-organic batteries. Energy Environ. Mater. (2024). https://doi.org/10.1002/eem2.12694
C. Tang, B. Wei, W. Tang, Y. Hong, M. Guo et al., Carbon-coating small-molecule organic bipolar electrodes for symmetric Li-dual-ion batteries. Chem. Eng. J. 474, 145114 (2023). https://doi.org/10.1016/j.cej.2023.145114
D. Wang, Q. Li, Y. Zhao, H. Hong, H. Li et al., Insight on organic molecules in aqueous Zn-ion batteries with an emphasis on the Zn anode regulation. Adv. Energy Mater. 12, 2102707 (2022). https://doi.org/10.1002/aenm.202102707
L. Yan, C. Zhao, Y. Sha, Z. Li, T. Liu et al., Electrochemical redox behavior of organic quinone compounds in aqueous metal ion electrolytes. Nano Energy 73, 104766 (2020). https://doi.org/10.1016/j.nanoen.2020.104766
Q. Zhao, W. Huang, Z. Luo, L. Liu, Y. Lu et al., High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 4, eaao1761 (2018). https://doi.org/10.1126/sciadv.aao1761
Z. Guo, Y. Ma, X. Dong, J. Huang, Y. Wang et al., An environmentally friendly and flexible aqueous zinc battery using an organic cathode. Angew. Chem. Int. Ed. 57, 11737–11741 (2018). https://doi.org/10.1002/anie.201807121
Z. Lin, H.-Y. Shi, L. Lin, X. Yang, W. Wu et al., A high capacity small molecule quinone cathode for rechargeable aqueous zinc-organic batteries. Nat. Commun. 12, 4424 (2021). https://doi.org/10.1038/s41467-021-24701-9
K.W. Nam, H. Kim, Y. Beldjoudi, T.W. Kwon, D.J. Kim et al., Redox-active phenanthrenequinone triangles in aqueous rechargeable zinc batteries. J. Am. Chem. Soc. 142, 2541–2548 (2020). https://doi.org/10.1021/jacs.9b12436
Y. Wang, C. Wang, Z. Ni, Y. Gu, B. Wang et al., Binding zinc ions by carboxyl groups from adjacent molecules toward long-life aqueous zinc–organic batteries. Adv. Mater. 32, 2000338 (2020). https://doi.org/10.1002/adma.202000338
J. Kumankuma-Sarpong, S. Tang, W. Guo, Y. Fu, Naphthoquinone-based composite cathodes for aqueous rechargeable zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 4084–4092 (2021). https://doi.org/10.1021/acsami.0c21339
T. Sun, W. Zhang, Q. Nian, Z. Tao, Molecular engineering design for high-performance aqueous zinc-organic battery. Nano-Micro Lett. 15, 36 (2023). https://doi.org/10.1007/s40820-022-01009-x
K. Huang, Z. Yao, K. Sun, K. Chen, J. Hu et al., Electrolyte formulation to enable ultra-stable aqueous Zn-organic batteries. J. Power Sources 482, 228904 (2021). https://doi.org/10.1016/j.jpowsour.2020.228904
H. Zhang, Y. Fang, F. Yang, X. Liu, X. Lu, Aromatic organic molecular crystal with enhanced π–π stacking interaction for ultrafast Zn-ion storage. Energy Environ. Sci. 13, 2515–2523 (2020). https://doi.org/10.1039/d0ee01723j
L. Cheng, Y. Liang, Q. Zhu, D. Yu, M. Chen et al., Bio-inspired isoalloxazine redox moieties for rechargeable aqueous zinc-ion batteries. Chem. Asian J. 15, 1290–1295 (2020). https://doi.org/10.1002/asia.202000283
J. Wei, P. Zhang, T. Shen, Y. Liu, T. Dai et al., Supramolecule-based excluded-volume electrolytes and conjugated sulfonamide cathodes for high-voltage and long-cycling aqueous zinc-ion batteries. ACS Energy Lett. 8, 762–771 (2023). https://doi.org/10.1021/acsenergylett.2c02646
Q. Wang, Y. Liu, P. Chen, Phenazine-based organic cathode for aqueous zinc secondary batteries. J. Power Sources 468, 228401 (2020). https://doi.org/10.1016/j.jpowsour.2020.228401
H. Zhang, S. Xie, Z. Cao, D. Xu, L. Wang et al., Extended π-conjugated system in organic cathode with active C═N bonds for driving aqueous zinc-ion batteries. ACS Appl. Energy Mater. 4, 655–661 (2021). https://doi.org/10.1021/acsaem.0c02526
Z. Tie, L. Liu, S. Deng, D. Zhao, Z. Niu, Proton insertion chemistry of a zinc–organic battery. Angew. Chem. Int. Ed. 59(12), 4920–4924 (2020). https://doi.org/10.1002/anie.201916529
Z. Ye, S. Xie, Z. Cao, L. Wang, D. Xu et al., High-rate aqueous zinc-organic battery achieved by lowering HOMO/LUMO of organic cathode. Energy Storage Mater. 37, 378–386 (2021). https://doi.org/10.1016/j.ensm.2021.02.022
S. Li, J. Shang, M. Li, M. Xu, F. Zeng et al., Design and synthesis of a π-conjugated N-heteroaromatic material for aqueous zinc-organic batteries with ultrahigh rate and extremely long life. Adv. Mater. 35, e2207115 (2023). https://doi.org/10.1002/adma.202207115
X. Wang, Y. Liu, Z. Wei, J. Hong, H. Liang et al., MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv. Mater. 34, 2206812 (2022). https://doi.org/10.1002/adma.202206812
Y. Chen, J. Li, Q. Zhu, K. Fan, Y. Cao et al., Two-dimensional organic supramolecule via hydrogen bonding and π–π stacking for ultrahigh capacity and long-life aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61(37), 202116289 (2022). https://doi.org/10.1002/anie.202116289
J. Chu, Z. Liu, J. Yu, L. Cheng, H.-G. Wang et al., Boosting H+ storage in aqueous zinc ion batteries via integrating redox-active sites into hydrogen-bonded organic frameworks with strong π-π stacking. Angew. Chem. Int. Ed. 63, 2314411 (2024). https://doi.org/10.1002/anie.202314411
S. Niu, Y. Wang, J. Zhang, Y. Wang, Y. Tian et al., Engineering low-cost organic cathode for aqueous rechargeable battery and demonstrating the proton intercalation mechanism for pyrazine energy storage unit. Small, e2309022 (2023). https://doi.org/10.1002/smll.202309022
Y. Gao, G. Li, F. Wang, J. Chu, P. Yu et al., A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 40, 31–40 (2021). https://doi.org/10.1016/j.ensm.2021.05.002
S. Menart, K. Pirnat, D. Pahovnik, R. Dominko, Triquinoxalinediol as organic cathode material for rechargeable aqueous zinc-ion batteries. J. Mater. Chem. A 11, 10874–10882 (2023). https://doi.org/10.1039/D3TA01400B
J. Li, L. Huang, H. Lv, J. Wang, G. Wang et al., Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 14, 38844–38853 (2022). https://doi.org/10.1021/acsami.2c10539
H. Peng, J. Xiao, Z. Wu, L. Zhang, Y. Geng et al., N-heterocycles extended π-conjugation enables ultrahigh capacity, long-lived, and fast-charging organic cathodes for aqueous zinc batteries. CCS Chem. 5, 1789–1801 (2023). https://doi.org/10.31635/ccschem.022.202202276
W. Li, H. Xu, H. Zhang, F. Wei, L. Huang et al., Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 14, 5235 (2023). https://doi.org/10.1038/s41467-023-40969-5
X. Geng, H. Ma, F. Lv, K. Yang, J. Ma et al., Ultrastable organic cathode derived by pigment/rGO for aqueous zinc-ion batteries. Chem. Eng. J. 446, 137289 (2022). https://doi.org/10.1016/j.cej.2022.137289
L. Lin, Z. Lin, J. Zhu, K. Wang, W. Wu et al., A semi-conductive organic cathode material enabled by extended conjugation for rechargeable aqueous zinc batteries. Energy Environ. Sci. 16, 89–96 (2023). https://doi.org/10.1039/D2EE02961H
N. Merukan Chola, R.K. Nagarale, TCNQ confined in porous organic structure as cathode for aqueous zinc battery. J. Electrochem. Soc. 167, 100552 (2020). https://doi.org/10.1149/1945-7111/ab9cc9
Q. Wang, X. Xu, G. Yang, Y. Liu, X. Yao, An organic cathode with tailored working potential for aqueous Zn-ion batteries. Chem. Commun. 56, 11859–11862 (2020). https://doi.org/10.1039/d0cc05344a
Z. Song, L. Miao, H. Duan, L. Ruhlmann, Y. Lv et al., Anionic co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc–organic batteries. Angew. Chem. Int. Ed. 61, 2208821 (2022). https://doi.org/10.1002/anie.202208821
W. Wang, Y. Tang, J. Liu, H. Li, R. Wang et al., Boosting the zinc storage of a small-molecule organic cathode by a desalinization strategy. Chem. Sci. 14, 9033–9040 (2023). https://doi.org/10.1039/D3SC03435F
M. Tang, Q. Zhu, P. Hu, L. Jiang, R. Liu et al., Ultrafast rechargeable aqueous zinc-ion batteries based on stable radical chemistry. Adv. Funct. Mater. 31, 2102011 (2021). https://doi.org/10.1002/adfm.202102011
H. Glatz, E. Lizundia, F. Pacifico, D. Kundu, An organic cathode based dual-ion aqueous zinc battery enabled by a cellulose membrane. ACS Appl. Energy Mater. 2, 1288–1294 (2019). https://doi.org/10.1021/acsaem.8b01851
M.H. Lee, G. Kwon, H. Lim, J. Kim, S.J. Kim et al., High-energy and long-lasting organic electrode for a rechargeable aqueous battery. ACS Energy Lett. 7, 3637–3645 (2022). https://doi.org/10.1021/acsenergylett.2c01535
U. Mittal, F. Colasuonno, A. Rawal, M. Lessio, D. Kundu, A highly stable 1.3V organic cathode for aqueous zinc batteries designed in situ by solid-state electrooxidation. Energy Storage Mater. 46, 129–137 (2022). https://doi.org/10.1016/j.ensm.2022.01.004
Y. Wang, S. Qiu, D. He, J. Guo, M. Zhao et al., A high-potential bipolar phenothiazine derivative cathode for aqueous zinc batteries. ChemSusChem 16, 2300658 (2023). https://doi.org/10.1002/cssc.202300658
H. Dai, Y. Chen, Y. Cao, M. Fu, L. Guan et al., Structural isomers: small change with big difference in anion storage. Nano-Micro Lett. 16, 13 (2023). https://doi.org/10.1007/s40820-023-01239-7
H. Alt, H. Binder, A. Köhling, G. Sandstede, Investigation into the use of quinone compounds-for battery cathodes. Electrochim. Acta 17, 873–887 (1972). https://doi.org/10.1016/0013-4686(72)90010-2
Y. Liang, Y. Jing, S. Gheytani, K.-Y. Lee, P. Liu et al., Universal quinone electrodes for long cycle life aqueous rechargeable batteries. Nat. Mater. 16, 841–848 (2017). https://doi.org/10.1038/nmat4919
D. Ma, H. Zhao, F. Cao, H. Zhao, J. Li et al., A carbonyl-rich covalent organic framework as a high-performance cathode material for aqueous rechargeable zinc-ion batteries. Chem. Sci. 13, 2385–2390 (2022). https://doi.org/10.1039/D1SC06412F
Q.-Q. Sun, T. Sun, J.-Y. Du, K. Li, H.-M. Xie et al., A sulfur heterocyclic quinone cathode towards high-rate and long-cycle aqueous Zn-organic batteries. Adv. Mater. 35, 2301088 (2023). https://doi.org/10.1002/adma.202301088
K. Zhao, G. Fan, J. Liu, F. Liu, J. Li et al., Boosting the kinetics and stability of Zn anodes in aqueous electrolytes with supramolecular cyclodextrin additives. J. Am. Chem. Soc. 144, 11129–11137 (2022). https://doi.org/10.1021/jacs.2c00551
Y. Chen, H. Dai, K. Fan, G. Zhang, M. Tang et al., A recyclable and scalable high-capacity organic battery. Angew. Chem. Int. Ed. 62, 2302539 (2023). https://doi.org/10.1002/anie.202302539
Y. Zhong, Y. Li, J. Meng, X. Lin, Z. Huang et al., Boosting the cyclability of tetracyanoquinodimethane (TCNQ) as cathode material in aqueous battery with high valent cation. Energy Storage Mater. 43, 492–498 (2021). https://doi.org/10.1016/j.ensm.2021.09.029
S. Perticarari, E. Grange, T. Doizy, Y. Pellegrin, E. Quarez et al., Full organic aqueous battery based on TEMPO small molecule with millimeter-thick electrodes. Chem. Mater. 31, 1869–1880 (2019). https://doi.org/10.1021/acs.chemmater.8b03282
N. Patil, J. Palma, R. Marcilla, Macromolecular engineering of poly(catechol) cathodes towards high-performance aqueous zinc-polymer batteries. Polymers 13, 1673 (2021). https://doi.org/10.3390/polym13111673
T. Sun, Z.-J. Li, Y.-F. Zhi, Y.-J. Huang, H.J. Fan et al., Poly(2, 5-dihydroxy-1, 4-benzoquinonyl sulfide) as an efficient cathode for high-performance aqueous zinc–organic batteries. Adv. Funct. Mater. 31, 2010049 (2021). https://doi.org/10.1002/adfm.202010049
G. Dawut, Y. Lu, L. Miao, J. Chen, High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode. Inorg. Chem. Front. 5, 1391–1396 (2018). https://doi.org/10.1039/C8QI00197A
D. Fei Ye, Q. Liu, D. Hongliang Dong, K. Guan, Z. Chen et al., Organic zinc-ion battery: planar, π-conjugated quinone-based polymer endows ultrafast ion diffusion kinetics. Angew. Chem. Int. Ed. 61, e202214244 (2022). https://doi.org/10.1002/anie.202214244
H. Zhang, D. Xu, L. Wang, Z. Ye, B. Chen et al., A polymer/graphene composite cathode with active carbonyls and secondary amine moieties for high-performance aqueous Zn-organic batteries involving dual-ion mechanism. Small 17, e2100902 (2021). https://doi.org/10.1002/smll.202100902
X. Wang, J. Xiao, W. Tang, Hydroquinone versus pyrocatechol pendants twisted conjugated polymer cathodes for high-performance and robust aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2108225 (2022). https://doi.org/10.1002/adfm.202108225
Z. Tie, S. Deng, H. Cao, M. Yao, Z. Niu et al., A symmetric all-organic proton battery in mild electrolyte. Angew. Chem. Int. Ed. 61, 2115180 (2022). https://doi.org/10.1002/anie.202115180
X. Yue, H. Liu, P. Liu, Polymer grafted on carbon nanotubes as a flexible cathode for aqueous zinc ion batteries. Chem. Commun. 55, 1647–1650 (2019). https://doi.org/10.1039/C8CC10060H
P. Liu, R. Lv, Y. He, B. Na, B. Wang et al., An integrated, flexible aqueous Zn-ion battery with high energy and power densities. J. Power Sources 410–411, 137–142 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.017
H. Yi, Y. Ma, S. Zhang, B. Na, R. Zeng et al., Robust aqueous Zn-ion fiber battery based on high-strength cellulose yarns. ACS Sustainable Chem. Eng. 7, 18894–18900 (2019). https://doi.org/10.1021/acssuschemeng.9b04188
W. Wu, H.-Y. Shi, Z. Lin, X. Yang, C. Li et al., The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chem. Eng. J. 419, 129659 (2021). https://doi.org/10.1016/j.cej.2021.129659
F. Wan, L. Zhang, X. Wang, S. Bi, Z. Niu et al., An aqueous rechargeable zinc-organic battery with hybrid mechanism. Adv. Funct. Mater. 28, 1804975 (2018). https://doi.org/10.1002/adfm.201804975
H.-Y. Shi, Y.-J. Ye, K. Liu, Y. Song, X. Sun, A long-cycle-life self-doped polyaniline cathode for rechargeable aqueous zinc batteries. Angew. Chem. Int. Ed. 57, 16359–16363 (2018). https://doi.org/10.1002/anie.201808886
S. Li, G. Zhang, G. Jing, J. Kan, Aqueous zinc–polyaniline secondary battery. Synth. Met. 158, 242–245 (2008). https://doi.org/10.1016/j.synthmet.2008.01.008
L. Yan, Q. Zhu, Y. Qi, J. Xu, Y. Peng et al., Towards high-performance aqueous zinc batteries via a semi-conductive bipolar-type polymer cathode. Angew. Chem. Int. Ed. 61, e202211107 (2022). https://doi.org/10.1002/anie.202211107
Y. Zhao, Y. Huang, R. Chen, F. Wu, L. Li, Tailoring double-layer aromatic polymers with multi-active sites towards high performance aqueous Zn-organic batteries. Mater. Horiz. 8, 3124–3132 (2021). https://doi.org/10.1039/d1mh01226f
K. Koshika, N. Sano, K. Oyaizu, H. Nishide, An aqueous, electrolyte-type, rechargeable device utilizing a hydrophilic radical polymer-cathode. Macromol. Chem. Phys. 210, 1989–1995 (2009). https://doi.org/10.1002/macp.200900257
J. Wang, J. Liu, M. Hu, J. Zeng, Y. Mu et al., A flexible, electrochromic, rechargeable Zn// PPy battery with a short circuit chromatic warning function. J. Mater. Chem. A 6, 11113–11118 (2018). https://doi.org/10.1039/c8ta03143f
N. Patil, A. Aqil, F. Ouhib, S. Admassie, O. Inganäs et al., Bioinspired redox-active catechol-bearing polymers as ultrarobust organic cathodes for lithium storage. Adv. Mater. 29, 1703373 (2017). https://doi.org/10.1002/adma.201703373
N. Patil, A. Mavrandonakis, C. Jérôme, C. Detrembleur, J. Palma et al., Polymers bearing catechol pendants as universal hosts for aqueous rechargeable H+, Li-ion, and post-Li-ion (mono-, di-, and trivalent) batteries. ACS Appl. Energy Mater. 2, 3035–3041 (2019). https://doi.org/10.1021/acsaem.9b00443
W. Qiu, Lithium-ion rechargeable battery with petroleum coke anode and polyaniline cathode. Solid State Ion. 86–88, 903–906 (1996). https://doi.org/10.1016/0167-2738(96)00211-1
M.S. Rahmanifar, M.F. Mousavi, M. Shamsipur, H. Heli, A study on open circuit voltage reduction as a main drawback of Zn–polyaniline rechargeable batteries. Synth. Met. 155, 480–484 (2005). https://doi.org/10.1016/j.synthmet.2005.06.009
A. Wu, E.C. Venancio, A.G. MacDiarmid, Polyaniline and polypyrrole oxygen reversible electrodes. Synth. Met. 157, 303–310 (2007). https://doi.org/10.1016/j.synthmet.2007.03.008
B.N. Grgur, V. Ristić, M.M. Gvozdenović, M.D. Maksimović, B.Z. Jugović, Polyaniline as possible anode materials for the lead acid batteries. J. Power Sources 180, 635–640 (2008). https://doi.org/10.1016/j.jpowsour.2008.02.022
A. Mirmohseni, R. Solhjo, Preparation and characterization of aqueous polyaniline battery using a modified polyaniline electrode. Eur. Polym. J. 39, 219–223 (2003). https://doi.org/10.1016/s0014-3057(02)00202-1
M. Adil, A. Sarkar, A. Roy, M.R. Panda, A. Nagendra et al., Practical aqueous calcium-ion battery full-cells for future stationary storage. ACS Appl. Mater. Interfaces 12, 11489–11503 (2020). https://doi.org/10.1021/acsami.9b20129
S.F. Kuchena, Y. Wang, Superior polyaniline cathode material with enhanced capacity for ammonium ion storage. ACS Appl. Energy Mater. 3, 11690–11698 (2020). https://doi.org/10.1021/acsaem.0c01791
L. Liu, F. Tian, M. Zhou, H. Guo, X. Wang, Aqueous rechargeable lithium battery based on polyaniline and LiMn2O4 with good cycling performance. Electrochim. Acta 70, 360–364 (2012). https://doi.org/10.1016/j.electacta.2012.03.092
R. Han, Y. Pan, C. Yin, C. Du, Y. Xiang et al., Proton-self-doped PANI@CC as the cathode for high-performance aqueous zinc-ion battery. J. Colloid Interface Sci. 650, 322–329 (2023). https://doi.org/10.1016/j.jcis.2023.06.208
C. Yin, C. Pan, Y. Pan, J. Hu, G. Fang, Proton self-doped polyaniline with high electrochemical activity for aqueous zinc-ion batteries. Small Methods 7, e2300574 (2023). https://doi.org/10.1002/smtd.202300574
N. Chikushi, H. Yamada, K. Oyaizu, H. Nishide, TEMPO-substituted polyacrylamide for an aqueous electrolyte-typed and organic-based rechargeable device. Sci. China Chem. 55, 822–829 (2012). https://doi.org/10.1007/s11426-012-4556-3
C. Zhang, W. Ma, C. Han, L.-W. Luo, A. Daniyar et al., Tailoring the linking patterns of polypyrene cathodes for high-performance aqueous Zn dual-ion batteries. Energy Environ. Sci. 14, 462–472 (2021). https://doi.org/10.1039/d0ee03356a
H. Zhang, L. Zhong, J. Xie, F. Yang, X. Liu et al., A COF-like N-rich conjugated microporous polytriphenylamine cathode with pseudocapacitive anion storage behavior for high-energy aqueous zinc dual-ion batteries. Adv. Mater. 33, e2101857 (2021). https://doi.org/10.1002/adma.202101857
X. Wang, J. Tang, W. Tang, Manipulating polymer configuration to accelerate cation intercalation kinetics for high-performance aqueous zinc-ion batteries. Adv. Funct. Mater. 32, 2200517 (2022). https://doi.org/10.1002/adfm.202200517
M. Abdul Khayum, M. Ghosh, V. Vijayakumar, A. Halder, M. Nurhuda et al., Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 10, 8889–8894 (2019). https://doi.org/10.1039/C9SC03052B
W. Wang, V.S. Kale, Z. Cao, S. Kandambeth, W. Zhang et al., Phenanthroline covalent organic framework electrodes for high-performance zinc-ion supercapattery. ACS Energy Lett. 5, 2256–2264 (2020). https://doi.org/10.1021/acsenergylett.0c00903
H. Peng, S. Huang, V. Montes-García, D. Pakulski, H. Guo et al., Supramolecular engineering of cathode materials for aqueous zinc-ion energy storage devices: novel benzothiadiazole functionalized two-dimensional olefin-linked COFs. Angew. Chem. Int. Ed. 62, 2216136 (2023). https://doi.org/10.1002/anie.202216136
M. Yu, N. Chandrasekhar, R.K.M. Raghupathy, K.H. Ly, H. Zhang et al., A high-rate two-dimensional polyarylimide covalent organic framework anode for aqueous Zn-ion energy storage devices. J. Am. Chem. Soc. 142, 19570–19578 (2020). https://doi.org/10.1021/jacs.0c07992
W. Wang, V.S. Kale, Z. Cao, Y. Lei, S. Kandambeth et al., Molecular engineering of covalent organic framework cathodes for enhanced zinc-ion batteries. Adv. Mater. 33, 2103617 (2021). https://doi.org/10.1002/adma.202103617
Z. Sang, J. Liu, X. Zhang, L. Yin, F. Hou et al., One-dimensional π-d conjugated conductive metal-organic framework with dual redox-active sites for high-capacity and durable cathodes for aqueous zinc batteries. ACS Nano 17, 3077–3087 (2023). https://doi.org/10.1021/acsnano.2c11974
F. Zhang, G. Wang, J. Wu, X. Chi, Y. Liu, An organic coordination manganese complex as cathode for high-voltage aqueous zinc-metal battery. Angew. Chem. Int. Ed. 62, 2309430 (2023). https://doi.org/10.1002/anie.202309430
Y. Wang, X. Wang, J. Tang, W. Tang, A quinoxalinophenazinedione covalent triazine framework for boosted high-performance aqueous zinc-ion batteries. J. Mater. Chem. A 10, 13868–13875 (2022). https://doi.org/10.1039/d2ta03655j
K.W. Nam, S.S. Park, R. dos Reis, V.P. Dravid, H. Kim et al., Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 10, 4948 (2019). https://doi.org/10.1038/s41467-019-12857-4