Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation
Corresponding Author: Yan Lu
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 83
Abstract
Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.
Highlights:
1 Gold@polydopamine particles with multi-compartment structure were synthesized by using block copolymer of PS-b-P2VP as soft template and characterized by 3D electron tomography technique.
2 The particles can be applied as catalytic nanoreactors for the full kinetic study of reduction reaction of 4-nitrophenol by NaBH4.
3 The nanoreactors show remarkable enhancement of the catalytic activity under NIR irradiation.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P. Manivasagan, N. Quang, S. Bharathiraja, M. Santha Moorthy, Y. Oh, K. Song, H. Seo, M. Yoo, J. Oh, Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci. Rep. 7, 43593 (2017). https://doi.org/10.1038/srep43593
- M. Gao, L.L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs forphotothermal water vaporization towards cleanwater and energy production. Energy Environ. Sci. 12, 841–886 (2019). https://doi.org/10.1039/c8ee01146j
- L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10(6), 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
- Y. Liu, R. Feng, A. Bernard, Y. Liu, Y. Zhang et al., A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015). https://doi.org/10.1002/adma.201500135
- X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li et al., Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 126, 11662–11666 (2014). https://doi.org/10.1002/anie.201404953
- M.Y. Tan, J. Wang, W.H. Song, J.H. Fang, X.T. Zhang, Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation. J. Mater. Chem. A 7, 1244–1251 (2019). https://doi.org/10.1039/c8ta10057h
- R. Long, Y. Li, L. Song, Y. Xiong, Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small 11(32), 3873–3889 (2015). https://doi.org/10.1002/smll.201403777
- C. Wang, X. Liu, V. Wulf, M. Vazquez-Gonzalez, M. Fadeev, I. Willner, DNA-based hydrogels loaded with au nanoparticles or au nanorods: thermoresponsive plasmonic matrices for shape-memory, self-healing, controlled release, and mechanical applications. ACS Nano 13(3), 3424–3433 (2019). https://doi.org/10.1021/acsnano.8b09470
- S. Hu, B.J. Liu, J.M. Feng, C. Zong, K.Q. Lin, X. Wang, D.Y. Wu, B. Ren, Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 140(42), 13680–13686 (2018). https://doi.org/10.1021/jacs.8b06083
- T. Liu, M.K. Zhang, W.L. Liu, X. Zeng, X.L. Song, X.Q. Yang, X.Z. Zhang, J. Feng, Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 12(4), 3917–3927 (2018). https://doi.org/10.1021/acsnano.8b01456
- B. Li, Q. Wang, R. Zou, X. Liu, K. Xu, W. Li, J. Hu, Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 6, 3274–3282 (2014). https://doi.org/10.1039/c3nr06242b
- Y. Yang, R.Q. Zhao, T.F. Zhang, K. Zhao, P.S. Xiao et al., Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1), 829–835 (2018). https://doi.org/10.1021/acsnano.7b08196
- Y.J. Huang, W.T. Dou, F.G. Xu, H.B. Ru, Q.Y. Gong et al., Supramolecular nanostructures of structurally defined graphene nanoribbons in the aqueous phase. Angew. Chem. Int. Ed. 57, 3366–3371 (2018). https://doi.org/10.1002/anie.201712637
- L. Zhu, M. Gao, C.K. Nuopeh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018). https://doi.org/10.1039/c7mh01064h
- C.-C. Yeh, D.-H. Chen, Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity. Appl. Catal. B 150–151, 298–304 (2014). https://doi.org/10.1016/j.apcatb.2013.12.040
- T. Trantidou, M.S. Friddin, A. Salehi-Reyhani, O. Ces, Y. Elani, Droplet microfluidics for the construction of compartmentalised model membranes. Lab Chip 18, 2488–2509 (2018). https://doi.org/10.1039/c8lc00028j
- H. Che, J.C.M. van Hest, Stimuli-responsive polymersomes and nanoreactors. J. Mater. Chem. B 4(27), 4632–4647 (2016). https://doi.org/10.1039/c6tb01163b
- J.W. Szostak, D.P. Bartel, P.L. Luisi, Synthesizing life. Nature 409, 387–390 (2001). https://doi.org/10.1038/35053176
- N.N. Deng, M.A. Vibhute, L.F. Zheng, H. Zhao, M. Yelleswarapu, W.T.S. Huck, Macromolecularly crowded protocells from reversibly shrinking monodisperse liposomes. J. Am. Chem. Soc. 140(24), 7399–7402 (2018). https://doi.org/10.1021/jacs.8b03123
- S. Subramaniam, E. Fahy, S. Gupta, M. Sud, R.W. Byrnes, D. Cotter, A.R. Dinasarapu, M.R. Maurya, Bioinformatics and systems biology of the lipidome. Chem. Rev. 111(10), 6452–6490 (2011). https://doi.org/10.1021/cr200295k
- S.S. Mansy, J.P. Schrum, M. Krishnamurthy, S. Tobe, D.A. Treco, J.W. Szostak, Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008). https://doi.org/10.1038/nature07018
- S.H. Petrosko, R. Johnson, H. White, C.A. Mirkin, Nanoreactors: small spaces, big implications in chemistry. J. Am. Chem. Soc. 138(24), 7443–7445 (2016). https://doi.org/10.1021/jacs.6b05393
- C.G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Protein-polymer nanoreactors for medical applications. Chem. Soc. Rev. 41, 2800–2823 (2012). https://doi.org/10.1039/c1cs15240h
- H.A. Lee, Y. Ma, F. Zhou, S. Hong, H. Lee, Material-independent surface chemistry beyond polydopamine coating. Acc. Chem. Res. 52(3), 704–713 (2019). https://doi.org/10.1021/acs.accounts.8b00583
- Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a
- Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Dopamine-melanin colloidal nanosphere: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013). https://doi.org/10.1002/adma.201204683
- X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
- Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013). https://doi.org/10.1039/c2cs35369e
- P. Zhang, X.W. Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. (2019). https://doi.org/10.1002/adma.201900281
- G. Yang, H.M. Ding, Z. Kochovski, R.T. Hu, Y. Lu et al., Highly ordered self-assembly of native proteins into 1d, 2d, and 3d structures modulated by the tether length of assembly-inducing ligands. Angew. Chem. Int. Ed. 56, 10691–10695 (2017). https://doi.org/10.1002/anie.201703052
- H. Sun, D.Q. Liu, J.Z. Du, Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π–π interaction. Chem. Sci. 10, 657–664 (2019). https://doi.org/10.1039/c8sc03995j
- S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 118(32), 18618–18625 (2014). https://doi.org/10.1021/jp5060606
- S. Gu, J. Kaiser, C. Marzum, A. Ott, Y. Lu, M. Balluaff, A. Zaccone, S. Barcikowski, P. Wagener, Ligand-free gold nanoparticles as a reference material for kinetic modelling of catalytic reduction of 4-nitrophenol. Catal. Lett. 145(5), 1105–1112 (2015). https://doi.org/10.1007/s10562-015-1514-7
- S. Mei, L. Wang, X. Feng, Z. Jin, Swelling of block copolymer nanoparticles: a process combining deformation and phase separation. Langmuir 29(14), 4640–4646 (2013). https://doi.org/10.1021/la400390b
- S. Mei, Z.X. Jin, Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 9(2), 322–329 (2013). https://doi.org/10.1002/smll.201201504
- D.N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). https://doi.org/10.1016/j.jsb.2005.07.007
- J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996). https://doi.org/10.1006/jsbi.1996.0013
- E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004). https://doi.org/10.1002/jcc.20084
- C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089
- S. Mei, J. Cao, Y. Lu, Controllable assembly of two types of metal nanoparticles onto block copolymer nanospheres with ordered spatial distribution. J. Mater. Chem. A 3(7), 3382–3389 (2015). https://doi.org/10.1039/c4ta05827e
- H. Lee, J. Fho, P.B. Messersmith, Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 21, 431–434 (2009). https://doi.org/10.1002/adma.200801222
- M. Müller, B. Torger, E. Bittrich, E. Kaul, L. Lonov, P. Uhlmann, M. Stamm, In-situ atr-ftir for characterization of thin biorelated polymer films. Thin Solid Films 556, 1–8 (2014). https://doi.org/10.1016/j.tsf.2013.12.025
- X. Yu, H.L. Fan, Y. Liu, Z.J. Shi, Z.X. Jin, Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir 30(19), 5497–5505 (2014). https://doi.org/10.1021/la500225v
- P.A. Midgley, R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009). https://doi.org/10.1038/nmat2406
- A.J. Chancellor, B.T. Seymour, B. Zhao, Characterizing polymer-grafted nanoparticles: from basic defining parameters to behavior in solvents and self-assembled structures. Anal. Chem. 91(10), 6391–6402 (2019). https://doi.org/10.1021/acs.analchem.9b00707
- S. Wunder, Y. Lu, M. Albrecht, M. Ballauff, Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal. 1(8), 908–916 (2011). https://doi.org/10.1021/cs200208a
- S. Gu, Y. Lu, J. Kaiser, M. Albrecht, M. Balluaff, Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Phys. Chem. Chem. Phys. 17, 28137–28143 (2015). https://doi.org/10.1039/c5cp00519a
- R. Roa, W.K. Kim, M. Kanduc, J. Dzubiella, S. Angioletti-Uberti, Catalyzed bimolecular reactions in responsive nanoreactors. ACS Catal. 7(9), 5604–5611 (2018). https://doi.org/10.1021/acscatal.7b01701
- M.J. Angilletta, Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009). https://doi.org/10.1093/acprof:oso/9780198570875.001
References
P. Manivasagan, N. Quang, S. Bharathiraja, M. Santha Moorthy, Y. Oh, K. Song, H. Seo, M. Yoo, J. Oh, Multifunctional biocompatible chitosan-polypyrrole nanocomposites as novel agents for photoacoustic imaging-guided photothermal ablation of cancer. Sci. Rep. 7, 43593 (2017). https://doi.org/10.1038/srep43593
M. Gao, L.L. Zhu, C.K. Peh, G.W. Ho, Solar absorber material and system designs forphotothermal water vaporization towards cleanwater and energy production. Energy Environ. Sci. 12, 841–886 (2019). https://doi.org/10.1039/c8ee01146j
L. Zhou, Y. Tan, J. Wang, W. Xu, Y. Yuan, W. Cai, S. Zhu, J. Zhu, 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 10(6), 393–398 (2016). https://doi.org/10.1038/nphoton.2016.75
Y. Liu, R. Feng, A. Bernard, Y. Liu, Y. Zhang et al., A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015). https://doi.org/10.1002/adma.201500135
X. Meng, T. Wang, L. Liu, S. Ouyang, P. Li et al., Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 126, 11662–11666 (2014). https://doi.org/10.1002/anie.201404953
M.Y. Tan, J. Wang, W.H. Song, J.H. Fang, X.T. Zhang, Self-floating hybrid hydrogels assembled with conducting polymer hollow spheres and silica aerogel microparticles for solar steam generation. J. Mater. Chem. A 7, 1244–1251 (2019). https://doi.org/10.1039/c8ta10057h
R. Long, Y. Li, L. Song, Y. Xiong, Coupling solar energy into reactions: materials design for surface plasmon-mediated catalysis. Small 11(32), 3873–3889 (2015). https://doi.org/10.1002/smll.201403777
C. Wang, X. Liu, V. Wulf, M. Vazquez-Gonzalez, M. Fadeev, I. Willner, DNA-based hydrogels loaded with au nanoparticles or au nanorods: thermoresponsive plasmonic matrices for shape-memory, self-healing, controlled release, and mechanical applications. ACS Nano 13(3), 3424–3433 (2019). https://doi.org/10.1021/acsnano.8b09470
S. Hu, B.J. Liu, J.M. Feng, C. Zong, K.Q. Lin, X. Wang, D.Y. Wu, B. Ren, Quantifying surface temperature of thermoplasmonic nanostructures. J. Am. Chem. Soc. 140(42), 13680–13686 (2018). https://doi.org/10.1021/jacs.8b06083
T. Liu, M.K. Zhang, W.L. Liu, X. Zeng, X.L. Song, X.Q. Yang, X.Z. Zhang, J. Feng, Metal ion/tannic acid assembly as a versatile photothermal platform in engineering multimodal nanotheranostics for advanced applications. ACS Nano 12(4), 3917–3927 (2018). https://doi.org/10.1021/acsnano.8b01456
B. Li, Q. Wang, R. Zou, X. Liu, K. Xu, W. Li, J. Hu, Cu7.2S4 nanocrystals: a novel photothermal agent with a 56.7% photothermal conversion efficiency for photothermal therapy of cancer cells. Nanoscale 6, 3274–3282 (2014). https://doi.org/10.1039/c3nr06242b
Y. Yang, R.Q. Zhao, T.F. Zhang, K. Zhao, P.S. Xiao et al., Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 12(1), 829–835 (2018). https://doi.org/10.1021/acsnano.7b08196
Y.J. Huang, W.T. Dou, F.G. Xu, H.B. Ru, Q.Y. Gong et al., Supramolecular nanostructures of structurally defined graphene nanoribbons in the aqueous phase. Angew. Chem. Int. Ed. 57, 3366–3371 (2018). https://doi.org/10.1002/anie.201712637
L. Zhu, M. Gao, C.K. Nuopeh, G.W. Ho, Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz. 5, 323–343 (2018). https://doi.org/10.1039/c7mh01064h
C.-C. Yeh, D.-H. Chen, Ni/reduced graphene oxide nanocomposite as a magnetically recoverable catalyst with near infrared photothermally enhanced activity. Appl. Catal. B 150–151, 298–304 (2014). https://doi.org/10.1016/j.apcatb.2013.12.040
T. Trantidou, M.S. Friddin, A. Salehi-Reyhani, O. Ces, Y. Elani, Droplet microfluidics for the construction of compartmentalised model membranes. Lab Chip 18, 2488–2509 (2018). https://doi.org/10.1039/c8lc00028j
H. Che, J.C.M. van Hest, Stimuli-responsive polymersomes and nanoreactors. J. Mater. Chem. B 4(27), 4632–4647 (2016). https://doi.org/10.1039/c6tb01163b
J.W. Szostak, D.P. Bartel, P.L. Luisi, Synthesizing life. Nature 409, 387–390 (2001). https://doi.org/10.1038/35053176
N.N. Deng, M.A. Vibhute, L.F. Zheng, H. Zhao, M. Yelleswarapu, W.T.S. Huck, Macromolecularly crowded protocells from reversibly shrinking monodisperse liposomes. J. Am. Chem. Soc. 140(24), 7399–7402 (2018). https://doi.org/10.1021/jacs.8b03123
S. Subramaniam, E. Fahy, S. Gupta, M. Sud, R.W. Byrnes, D. Cotter, A.R. Dinasarapu, M.R. Maurya, Bioinformatics and systems biology of the lipidome. Chem. Rev. 111(10), 6452–6490 (2011). https://doi.org/10.1021/cr200295k
S.S. Mansy, J.P. Schrum, M. Krishnamurthy, S. Tobe, D.A. Treco, J.W. Szostak, Template-directed synthesis of a genetic polymer in a model protocell. Nature 454, 122–125 (2008). https://doi.org/10.1038/nature07018
S.H. Petrosko, R. Johnson, H. White, C.A. Mirkin, Nanoreactors: small spaces, big implications in chemistry. J. Am. Chem. Soc. 138(24), 7443–7445 (2016). https://doi.org/10.1021/jacs.6b05393
C.G. Palivan, O. Fischer-Onaca, M. Delcea, F. Itel, W. Meier, Protein-polymer nanoreactors for medical applications. Chem. Soc. Rev. 41, 2800–2823 (2012). https://doi.org/10.1039/c1cs15240h
H.A. Lee, Y. Ma, F. Zhou, S. Hong, H. Lee, Material-independent surface chemistry beyond polydopamine coating. Acc. Chem. Res. 52(3), 704–713 (2019). https://doi.org/10.1021/acs.accounts.8b00583
Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114(9), 5057–5115 (2014). https://doi.org/10.1021/cr400407a
Y. Liu, K. Ai, J. Liu, M. Deng, Y. He, L. Lu, Dopamine-melanin colloidal nanosphere: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013). https://doi.org/10.1002/adma.201204683
X. Wang, J. Feng, Y. Bai, Q. Zhang, Y. Yin, Synthesis, properties, and applications of hollow micro-/nanostructures. Chem. Rev. 116(18), 10983–11060 (2016). https://doi.org/10.1021/acs.chemrev.5b00731
Y. Liu, J. Goebl, Y. Yin, Templated synthesis of nanostructured materials. Chem. Soc. Rev. 42, 2610–2653 (2013). https://doi.org/10.1039/c2cs35369e
P. Zhang, X.W. Lou, Design of heterostructured hollow photocatalysts for solar-to-chemical energy conversion. Adv. Mater. (2019). https://doi.org/10.1002/adma.201900281
G. Yang, H.M. Ding, Z. Kochovski, R.T. Hu, Y. Lu et al., Highly ordered self-assembly of native proteins into 1d, 2d, and 3d structures modulated by the tether length of assembly-inducing ligands. Angew. Chem. Int. Ed. 56, 10691–10695 (2017). https://doi.org/10.1002/anie.201703052
H. Sun, D.Q. Liu, J.Z. Du, Nanobowls with controlled openings and interior holes driven by the synergy of hydrogen bonding and π–π interaction. Chem. Sci. 10, 657–664 (2019). https://doi.org/10.1039/c8sc03995j
S. Gu, S. Wunder, Y. Lu, M. Ballauff, R. Fenger, K. Rademann, B. Jaquet, A. Zaccone, Kinetic analysis of the catalytic reduction of 4-nitrophenol by metallic nanoparticles. J. Phys. Chem. C 118(32), 18618–18625 (2014). https://doi.org/10.1021/jp5060606
S. Gu, J. Kaiser, C. Marzum, A. Ott, Y. Lu, M. Balluaff, A. Zaccone, S. Barcikowski, P. Wagener, Ligand-free gold nanoparticles as a reference material for kinetic modelling of catalytic reduction of 4-nitrophenol. Catal. Lett. 145(5), 1105–1112 (2015). https://doi.org/10.1007/s10562-015-1514-7
S. Mei, L. Wang, X. Feng, Z. Jin, Swelling of block copolymer nanoparticles: a process combining deformation and phase separation. Langmuir 29(14), 4640–4646 (2013). https://doi.org/10.1021/la400390b
S. Mei, Z.X. Jin, Mesoporous block-copolymer nanospheres prepared by selective swelling. Small 9(2), 322–329 (2013). https://doi.org/10.1002/smll.201201504
D.N. Mastronarde, Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005). https://doi.org/10.1016/j.jsb.2005.07.007
J.R. Kremer, D.N. Mastronarde, J.R. McIntosh, Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996). https://doi.org/10.1006/jsbi.1996.0013
E.F. Pettersen, T.D. Goddard, C.C. Huang, G.S. Couch, D.M. Greenblatt, E.C. Meng, T.E. Ferrin, UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25(13), 1605–1612 (2004). https://doi.org/10.1002/jcc.20084
C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012). https://doi.org/10.1038/nmeth.2089
S. Mei, J. Cao, Y. Lu, Controllable assembly of two types of metal nanoparticles onto block copolymer nanospheres with ordered spatial distribution. J. Mater. Chem. A 3(7), 3382–3389 (2015). https://doi.org/10.1039/c4ta05827e
H. Lee, J. Fho, P.B. Messersmith, Facile conjugation of biomolecules onto surfaces via mussel adhesive protein inspired coatings. Adv. Mater. 21, 431–434 (2009). https://doi.org/10.1002/adma.200801222
M. Müller, B. Torger, E. Bittrich, E. Kaul, L. Lonov, P. Uhlmann, M. Stamm, In-situ atr-ftir for characterization of thin biorelated polymer films. Thin Solid Films 556, 1–8 (2014). https://doi.org/10.1016/j.tsf.2013.12.025
X. Yu, H.L. Fan, Y. Liu, Z.J. Shi, Z.X. Jin, Characterization of carbonized polydopamine nanoparticles suggests ordered supramolecular structure of polydopamine. Langmuir 30(19), 5497–5505 (2014). https://doi.org/10.1021/la500225v
P.A. Midgley, R.E. Dunin-Borkowski, Electron tomography and holography in materials science. Nat. Mater. 8, 271–280 (2009). https://doi.org/10.1038/nmat2406
A.J. Chancellor, B.T. Seymour, B. Zhao, Characterizing polymer-grafted nanoparticles: from basic defining parameters to behavior in solvents and self-assembled structures. Anal. Chem. 91(10), 6391–6402 (2019). https://doi.org/10.1021/acs.analchem.9b00707
S. Wunder, Y. Lu, M. Albrecht, M. Ballauff, Catalytic activity of faceted gold nanoparticles studied by a model reaction: evidence for substrate-induced surface restructuring. ACS Catal. 1(8), 908–916 (2011). https://doi.org/10.1021/cs200208a
S. Gu, Y. Lu, J. Kaiser, M. Albrecht, M. Balluaff, Kinetic analysis of the reduction of 4-nitrophenol catalyzed by Au/Pd nanoalloys immobilized in spherical polyelectrolyte brushes. Phys. Chem. Chem. Phys. 17, 28137–28143 (2015). https://doi.org/10.1039/c5cp00519a
R. Roa, W.K. Kim, M. Kanduc, J. Dzubiella, S. Angioletti-Uberti, Catalyzed bimolecular reactions in responsive nanoreactors. ACS Catal. 7(9), 5604–5611 (2018). https://doi.org/10.1021/acscatal.7b01701
M.J. Angilletta, Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford University Press, Oxford, 2009). https://doi.org/10.1093/acprof:oso/9780198570875.001