In Situ Partial-Cyclized Polymerized Acrylonitrile-Coated NCM811 Cathode for High-Temperature ≥ 100 °C Stable Solid-State Lithium Metal Batteries
Corresponding Author: Qingpeng Guo
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 195
Abstract
High-nickel ternary cathodes hold a great application prospect in solid-state lithium metal batteries to achieve high-energy density, but they still suffer from structural instability and detrimental side reactions with the solid-state electrolytes. To circumvent these issues, a continuous uniform layer polyacrylonitrile (PAN) was introduced on the surface of LiNi0.8Mn0.1Co0.1O2 via in situ polymerization of acrylonitrile (AN). Furthermore, the partial-cyclized treatment of PAN (cPAN) coating layer presents high ionic and electron conductivity, which can accelerate interfacial Li+ and electron diffusion simultaneously. And the thermodynamically stabilized cPAN coating layer cannot only effectively inhibit detrimental side reactions between cathode and solid-state electrolytes but also provide a homogeneous stress to simultaneously address the problems of bulk structural degradation, which contributes to the exceptional mechanical and electrochemical stabilities of the modified electrode. Besides, the coordination bond interaction between the cPAN and NCM811 can suppress the migration of Ni to elevate the stability of the crystal structure. Benefited from these, the In-cPAN-260@NCM811 shows excellent cycling performance with a retention of 86.8% after 300 cycles and superior rate capability. And endow the solid-state battery with thermal safety stability even at high-temperature extreme environment. This facile and scalable surface engineering represents significant progress in developing high-performance solid-state lithium metal batteries.
Highlights:
1 Uniform and stable interfacial layer with both ionic and electronic conduction on the surface of solid-state composite cathode by in situ polymerization cyclization treatment.
2 Theoretical calculations demonstrate that cPAN can effectively inhibit transition metal dissolution and uneven cyclic stress distribution and improve the stability of the crystal structure.
3 In-cPAN-260@NCM811 has excellent cycling performance with 86.8% retention after 300 cycles and thermally safe stability at high-temperature extremes.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Fan, C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/d1cs00450f
- S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 15, 1956–1969 (2014). https://doi.org/10.1002/cphc.201402175
- S. Chen, K. Wen, J. Fan, Y. Bando, D. Golberg, Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. J. Mater. Chem. A 6, 11631–11663 (2018). https://doi.org/10.1039/C8TA03358G
- S. Chen, F. Dai, M. Cai, Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 5, 3140–3151 (2020). https://doi.org/10.1021/acsenergylett.0c01545
- J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
- Y. Ren, T. Danner, A. Moy, M. Finsterbusch, T. Hamann et al., Oxide-based solid-state batteries: a perspective on composite cathode architecture. Adv. Energy Mater. 13, 2201939 (2023). https://doi.org/10.1002/aenm.202201939
- F. He, W. Tang, X. Zhang, L. Deng, J. Luo, High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 33, 2105329 (2021). https://doi.org/10.1002/adma.202105329
- L. Liu, D. Zhang, X. Xu, Z. Liu, J. Liu, Challenges and development of composite solid electrolytes for all-solid-state lithium batteries. Chem. Res. Chin. Univ. 37, 210–231 (2021). https://doi.org/10.1007/s40242-021-0007-z
- S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3, 866–894 (2021). https://doi.org/10.1002/cey2.129
- Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen et al., Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 64, 62–84 (2022). https://doi.org/10.1016/j.jechem.2021.04.007
- X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
- J. Liang, Y. Zhu, X. Li, J. Luo, S. Deng et al., A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nat. Commun. 14, 146 (2023). https://doi.org/10.1038/s41467-022-35667-7
- H. Zhang, J. Zhang, An overview of modification strategies to improve LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performance for automotive lithium-ion batteries. eTransportation 7, 100105 (2021). https://doi.org/10.1016/j.etran.2021.100105
- X. Cheng, J. Zheng, J. Lu, Y. Li, P. Yan et al., Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy 62, 30–37 (2019). https://doi.org/10.1016/j.nanoen.2019.05.021
- R. Liang, Z.-Y. Wu, W.-M. Yang, Z.-Q. Tang, G.-G. Xiong et al., A simple one-step molten salt method for synthesis of micron-sized single primary p LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Ionics 26, 1635–1643 (2020). https://doi.org/10.1007/s11581-020-03500-0
- S. Yin, W. Deng, J. Chen, X. Gao, G. Zou et al., Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 83, 105854 (2021). https://doi.org/10.1016/j.nanoen.2021.105854
- J.D. Steiner, L. Mu, J. Walsh, M.M. Rahman, B. Zydlewski et al., Accelerated evolution of surface chemistry determined by temperature and cycling history in nickel-rich layered cathode materials. ACS Appl. Mater. Interfaces 10, 23842–23850 (2018). https://doi.org/10.1021/acsami.8b06399
- L. Azhari, Z. Meng, Z. Yang, G. Gao, Y. Han et al., Underlying limitations behind impedance rise and capacity fade of single crystalline Ni-rich cathodes synthesized via a molten-salt route. J. Power Sources 545, 231963 (2022). https://doi.org/10.1016/j.jpowsour.2022.231963
- L. Ma, M. Nie, J. Xia, J.R. Dahn, A systematic study on the reactivity of different grades of charged Li [NixMnyCoz] O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Sources 327, 145–150 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.039
- H. Zhang, Z. Zeng, S. Cheng, J. Xie, Recent progress and perspective on lithium metal battery with nickel-rich layered oxide cathode. eScience 4, 100265 (2024). https://doi.org/10.1016/j.esci.2024.100265
- M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha et al., Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021). https://doi.org/10.1038/s41560-021-00782-0
- S. Gui, Q. Zhang, H. Zhuo, J. Liu, Enhancing the electrochemical performance of LiNi0.8Co0.15Al0.05O2 by a facile doping method: spray-drying doping with liquid polyacrylonitrile. J. Power. Sources 409, 102–111 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.001
- F. Wu, J. Dong, L. Chen, L. Bao, N. Li et al., High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy Storage Mater. 41, 495–504 (2021). https://doi.org/10.1016/j.ensm.2021.06.018
- H.-H. Ryu, S.-B. Lee, C.S. Yoon, Y.-K. Sun, Morphology-dependent battery performance of Ni-rich layered cathodes: single-crystal versus refined polycrystal. ACS Energy Lett. 7, 3072–3079 (2022). https://doi.org/10.1021/acsenergylett.2c01670
- X. Liu, G.-L. Xu, V.S.C. Kolluru, C. Zhao, Q. Li et al., Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 7, 808–817 (2022). https://doi.org/10.1038/s41560-022-01036-3
- G.-L. Xu, Q. Liu, K.K.S. Lau, Y. Liu, X. Liu et al., Building ultraconformal protective layers on both secondary and primary ps of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019). https://doi.org/10.1038/s41560-019-0387-1
- Q. Luo, X. Yang, X. Zhao, D. Wang, R. Yin et al., Facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 204, 304–315 (2017). https://doi.org/10.1016/j.apcatb.2016.11.037
- J.-H. Kuo, C.-C. Li, Water-based process to the preparation of nickel-rich Li(Ni0.8Co0.1Mn0.1)O2 cathode. J. Electrochem. Soc. 167, 100504 (2020). https://doi.org/10.1149/1945-7111/ab95c5
- V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne et al., Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int. J. Quant. Chem. 77, 895–910 (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)77:5%3c895::AID-QUA10%3e3.0.CO;2-C
- J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
- J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
- M. Kurumatani, Y. Soma, K. Terada, Simulations of cohesive fracture behavior of reinforced concrete by a fracture-mechanics-based damage model. Eng. Fract. Mech. 206, 392–407 (2019). https://doi.org/10.1016/j.engfracmech.2018.12.006
- S. Xiong, X. Xu, X. Jiao, Y. Wang, O.O. Kapitanova et al., Mechanical failure of solid-state electrolyte rooted in synergy of interfacial and internal defects. Adv. Energy Mater. 13, 2203614 (2023). https://doi.org/10.1002/aenm.202203614
- A.L. King, Law of elasticity for an ideal elastomer. Am. J. Phys. 14, 28–30 (1946). https://doi.org/10.1119/1.1990765
- Z. Shabir, E. Van der Giessen, C.A. Duarte, A. Simone, The role of cohesive properties on intergranular crack propagation in brittle polycrystals. Modelling Simul. Mater. Sci. Eng. 19, 035006 (2011). https://doi.org/10.1088/0965-0393/19/3/035006
- K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70, 209–232 (2003). https://doi.org/10.1016/S0013-7944(02)00034-6
- W. Zhang, M. Sun, J. Yin, E. Abou-Hamad, U. Schwingenschlögl et al., A cyclized polyacrylonitrile anode for alkali metal ion batteries. Angew. Chem. Int. Ed. 60, 1355–1363 (2021). https://doi.org/10.1002/anie.202011484
- L. Liu, Y. Duan, Y. Liang, A. Kan, L. Wang et al., Cyclized polyacrylonitrile as a promising support for single atom metal catalyst with synergistic active site. Small 18, e2104142 (2022). https://doi.org/10.1002/smll.202104142
- L. Li, S. Zhou, H. Han, H. Li, J. Nie et al., Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J. Electrochem. Soc. 158, A74 (2011). https://doi.org/10.1149/1.3514705
- J. Wang, Q. Yuan, Z. Ren, C. Sun, J. Zhang et al., Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries. Nano Lett. 22, 5221–5229 (2022). https://doi.org/10.1021/acs.nanolett.2c01002
- F. Wu, N. Liu, L. Chen, Y. Su, G. Tan et al., Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59, 50–57 (2019). https://doi.org/10.1016/j.nanoen.2019.02.027
- K. Du, R. Tao, C. Guo, H. Li, X. Liu et al., In-situ synthesis of porous metal fluoride@carbon composite via simultaneous etching/fluorination enabled superior Li storage performance. Nano Energy 103, 107862 (2022). https://doi.org/10.1016/j.nanoen.2022.107862
- W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho et al., Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015). https://doi.org/10.1002/anie.201409262
- Z. Xu, X. Guo, J. Wang, Y. Yuan, Q. Sun et al., Restraining the octahedron collapse in lithium and manganese rich NCM cathode toward suppressing structure transformation. Adv. Energy Mater. 12, 2201323 (2022). https://doi.org/10.1002/aenm.202201323
- S. Kim, M. Kim, M. Ku, J. Park, J. Lee et al., Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries. ACS Nano 18, 25096–25106 (2024). https://doi.org/10.1021/acsnano.4c06720
- C. Hong, R. Tao, S. Tan, L.A. Pressley, C.A. Bridges et al., In situ cyclized polyacrylonitrile coating: key to stabilizing porous high-entropy oxide anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 35, 2412177 (2025). https://doi.org/10.1002/adfm.202412177
- Y. Liang, H. Liu, G. Wang, C. Wang, D. Li et al., Heuristic design of cathode hybrid coating for power-limited sulfide-based all-solid-state lithium batteries. Adv. Energy Mater. 12, 2201555 (2022). https://doi.org/10.1002/aenm.202201555
- Q. Sun, G. Hu, Z. Peng, Y. Cao, F. Zhu et al., Achieving a bifunctional conformal coating on nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 with half-cyclized polyacrylonitrile. Electrochim. Acta 386, 138440 (2021). https://doi.org/10.1016/j.electacta.2021.138440
- X. Zhang, Z. Cui, A. Manthiram, Long-life lithium-metal batteries with an ultra-high-nickel cathode and electrolytes with bi-anion activity. Adv. Funct. Mater. 34, 2309591 (2024). https://doi.org/10.1002/adfm.202309591
- B. Jin, Z. Cui, A. Manthiram, In situ interweaved binder framework mitigating the structural and interphasial degradations of high-nickel cathodes in lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202301241 (2023). https://doi.org/10.1002/anie.202301241
- D. Lu, Y. Chen, W. Sun, W. Xie, S. Yi et al., Cathode electrolyte interface engineering by gradient fluorination for high-performance lithium rich cathode. Adv. Energy Mater. 13, 2301765 (2023). https://doi.org/10.1002/aenm.202301765
- H. Sun, G. Zhu, Y. Zhu, M.C. Lin, H. Chen et al., High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 32, e2001741 (2020). https://doi.org/10.1002/adma.202001741
- H. Li, F. Zhang, W. Wei, X. Zhao, H. Dong et al., Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv. Energy Mater. 13, 2301023 (2023). https://doi.org/10.1002/aenm.202301023
References
X. Fan, C. Wang, High-voltage liquid electrolytes for Li batteries: progress and perspectives. Chem. Soc. Rev. 50, 10486–10566 (2021). https://doi.org/10.1039/d1cs00450f
S. Tan, Y.J. Ji, Z.R. Zhang, Y. Yang, Recent progress in research on high-voltage electrolytes for lithium-ion batteries. ChemPhysChem 15, 1956–1969 (2014). https://doi.org/10.1002/cphc.201402175
S. Chen, K. Wen, J. Fan, Y. Bando, D. Golberg, Progress and future prospects of high-voltage and high-safety electrolytes in advanced lithium batteries: from liquid to solid electrolytes. J. Mater. Chem. A 6, 11631–11663 (2018). https://doi.org/10.1039/C8TA03358G
S. Chen, F. Dai, M. Cai, Opportunities and challenges of high-energy lithium metal batteries for electric vehicle applications. ACS Energy Lett. 5, 3140–3151 (2020). https://doi.org/10.1021/acsenergylett.0c01545
J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough et al., Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 4, 180–186 (2019). https://doi.org/10.1038/s41560-019-0338-x
Y. Ren, T. Danner, A. Moy, M. Finsterbusch, T. Hamann et al., Oxide-based solid-state batteries: a perspective on composite cathode architecture. Adv. Energy Mater. 13, 2201939 (2023). https://doi.org/10.1002/aenm.202201939
F. He, W. Tang, X. Zhang, L. Deng, J. Luo, High energy density solid state lithium metal batteries enabled by sub-5 µm solid polymer electrolytes. Adv. Mater. 33, 2105329 (2021). https://doi.org/10.1002/adma.202105329
L. Liu, D. Zhang, X. Xu, Z. Liu, J. Liu, Challenges and development of composite solid electrolytes for all-solid-state lithium batteries. Chem. Res. Chin. Univ. 37, 210–231 (2021). https://doi.org/10.1007/s40242-021-0007-z
S. Su, J. Ma, L. Zhao, K. Lin, Q. Li et al., Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 3, 866–894 (2021). https://doi.org/10.1002/cey2.129
Y. Wu, Y. Li, Y. Wang, Q. Liu, Q. Chen et al., Advances and prospects of PVDF based polymer electrolytes. J. Energy Chem. 64, 62–84 (2022). https://doi.org/10.1016/j.jechem.2021.04.007
X. Zhang, T. Liu, S. Zhang, X. Huang, B. Xu et al., Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017). https://doi.org/10.1021/jacs.7b06364
J. Liang, Y. Zhu, X. Li, J. Luo, S. Deng et al., A gradient oxy-thiophosphate-coated Ni-rich layered oxide cathode for stable all-solid-state Li-ion batteries. Nat. Commun. 14, 146 (2023). https://doi.org/10.1038/s41467-022-35667-7
H. Zhang, J. Zhang, An overview of modification strategies to improve LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode performance for automotive lithium-ion batteries. eTransportation 7, 100105 (2021). https://doi.org/10.1016/j.etran.2021.100105
X. Cheng, J. Zheng, J. Lu, Y. Li, P. Yan et al., Realizing superior cycling stability of Ni-Rich layered cathode by combination of grain boundary engineering and surface coating. Nano Energy 62, 30–37 (2019). https://doi.org/10.1016/j.nanoen.2019.05.021
R. Liang, Z.-Y. Wu, W.-M. Yang, Z.-Q. Tang, G.-G. Xiong et al., A simple one-step molten salt method for synthesis of micron-sized single primary p LiNi0.8Co0.1Mn0.1O2 cathode material for lithium-ion batteries. Ionics 26, 1635–1643 (2020). https://doi.org/10.1007/s11581-020-03500-0
S. Yin, W. Deng, J. Chen, X. Gao, G. Zou et al., Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries. Nano Energy 83, 105854 (2021). https://doi.org/10.1016/j.nanoen.2021.105854
J.D. Steiner, L. Mu, J. Walsh, M.M. Rahman, B. Zydlewski et al., Accelerated evolution of surface chemistry determined by temperature and cycling history in nickel-rich layered cathode materials. ACS Appl. Mater. Interfaces 10, 23842–23850 (2018). https://doi.org/10.1021/acsami.8b06399
L. Azhari, Z. Meng, Z. Yang, G. Gao, Y. Han et al., Underlying limitations behind impedance rise and capacity fade of single crystalline Ni-rich cathodes synthesized via a molten-salt route. J. Power Sources 545, 231963 (2022). https://doi.org/10.1016/j.jpowsour.2022.231963
L. Ma, M. Nie, J. Xia, J.R. Dahn, A systematic study on the reactivity of different grades of charged Li [NixMnyCoz] O2 with electrolyte at elevated temperatures using accelerating rate calorimetry. J. Power Sources 327, 145–150 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.039
H. Zhang, Z. Zeng, S. Cheng, J. Xie, Recent progress and perspective on lithium metal battery with nickel-rich layered oxide cathode. eScience 4, 100265 (2024). https://doi.org/10.1016/j.esci.2024.100265
M. Yoon, Y. Dong, J. Hwang, J. Sung, H. Cha et al., Reactive boride infusion stabilizes Ni-rich cathodes for lithium-ion batteries. Nat. Energy 6, 362–371 (2021). https://doi.org/10.1038/s41560-021-00782-0
S. Gui, Q. Zhang, H. Zhuo, J. Liu, Enhancing the electrochemical performance of LiNi0.8Co0.15Al0.05O2 by a facile doping method: spray-drying doping with liquid polyacrylonitrile. J. Power. Sources 409, 102–111 (2019). https://doi.org/10.1016/j.jpowsour.2018.11.001
F. Wu, J. Dong, L. Chen, L. Bao, N. Li et al., High-voltage and high-safety nickel-rich layered cathode enabled by a self-reconstructive cathode/electrolyte interphase layer. Energy Storage Mater. 41, 495–504 (2021). https://doi.org/10.1016/j.ensm.2021.06.018
H.-H. Ryu, S.-B. Lee, C.S. Yoon, Y.-K. Sun, Morphology-dependent battery performance of Ni-rich layered cathodes: single-crystal versus refined polycrystal. ACS Energy Lett. 7, 3072–3079 (2022). https://doi.org/10.1021/acsenergylett.2c01670
X. Liu, G.-L. Xu, V.S.C. Kolluru, C. Zhao, Q. Li et al., Origin and regulation of oxygen redox instability in high-voltage battery cathodes. Nat. Energy 7, 808–817 (2022). https://doi.org/10.1038/s41560-022-01036-3
G.-L. Xu, Q. Liu, K.K.S. Lau, Y. Liu, X. Liu et al., Building ultraconformal protective layers on both secondary and primary ps of layered lithium transition metal oxide cathodes. Nat. Energy 4, 484–494 (2019). https://doi.org/10.1038/s41560-019-0387-1
Q. Luo, X. Yang, X. Zhao, D. Wang, R. Yin et al., Facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl. Catal. B Environ. 204, 304–315 (2017). https://doi.org/10.1016/j.apcatb.2016.11.037
J.-H. Kuo, C.-C. Li, Water-based process to the preparation of nickel-rich Li(Ni0.8Co0.1Mn0.1)O2 cathode. J. Electrochem. Soc. 167, 100504 (2020). https://doi.org/10.1149/1945-7111/ab95c5
V. Milman, B. Winkler, J.A. White, C.J. Pickard, M.C. Payne et al., Electronic structure, properties, and phase stability of inorganic crystals: a pseudopotential plane-wave study. Int. J. Quant. Chem. 77, 895–910 (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)77:5%3c895::AID-QUA10%3e3.0.CO;2-C
J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria et al., Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008). https://doi.org/10.1103/PhysRevLett.100.136406
J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996). https://doi.org/10.1103/physrevlett.77.3865
M. Kurumatani, Y. Soma, K. Terada, Simulations of cohesive fracture behavior of reinforced concrete by a fracture-mechanics-based damage model. Eng. Fract. Mech. 206, 392–407 (2019). https://doi.org/10.1016/j.engfracmech.2018.12.006
S. Xiong, X. Xu, X. Jiao, Y. Wang, O.O. Kapitanova et al., Mechanical failure of solid-state electrolyte rooted in synergy of interfacial and internal defects. Adv. Energy Mater. 13, 2203614 (2023). https://doi.org/10.1002/aenm.202203614
A.L. King, Law of elasticity for an ideal elastomer. Am. J. Phys. 14, 28–30 (1946). https://doi.org/10.1119/1.1990765
Z. Shabir, E. Van der Giessen, C.A. Duarte, A. Simone, The role of cohesive properties on intergranular crack propagation in brittle polycrystals. Modelling Simul. Mater. Sci. Eng. 19, 035006 (2011). https://doi.org/10.1088/0965-0393/19/3/035006
K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech. 70, 209–232 (2003). https://doi.org/10.1016/S0013-7944(02)00034-6
W. Zhang, M. Sun, J. Yin, E. Abou-Hamad, U. Schwingenschlögl et al., A cyclized polyacrylonitrile anode for alkali metal ion batteries. Angew. Chem. Int. Ed. 60, 1355–1363 (2021). https://doi.org/10.1002/anie.202011484
L. Liu, Y. Duan, Y. Liang, A. Kan, L. Wang et al., Cyclized polyacrylonitrile as a promising support for single atom metal catalyst with synergistic active site. Small 18, e2104142 (2022). https://doi.org/10.1002/smll.202104142
L. Li, S. Zhou, H. Han, H. Li, J. Nie et al., Transport and electrochemical properties and spectral features of non-aqueous electrolytes containing LiFSI in linear carbonate solvents. J. Electrochem. Soc. 158, A74 (2011). https://doi.org/10.1149/1.3514705
J. Wang, Q. Yuan, Z. Ren, C. Sun, J. Zhang et al., Thermochemical cyclization constructs bridged dual-coating of Ni-rich layered oxide cathodes for high-energy Li-ion batteries. Nano Lett. 22, 5221–5229 (2022). https://doi.org/10.1021/acs.nanolett.2c01002
F. Wu, N. Liu, L. Chen, Y. Su, G. Tan et al., Improving the reversibility of the H2–H3 phase transitions for layered Ni-rich oxide cathode towards retarded structural transition and enhanced cycle stability. Nano Energy 59, 50–57 (2019). https://doi.org/10.1016/j.nanoen.2019.02.027
K. Du, R. Tao, C. Guo, H. Li, X. Liu et al., In-situ synthesis of porous metal fluoride@carbon composite via simultaneous etching/fluorination enabled superior Li storage performance. Nano Energy 103, 107862 (2022). https://doi.org/10.1016/j.nanoen.2022.107862
W. Liu, P. Oh, X. Liu, M.-J. Lee, W. Cho et al., Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angew. Chem. Int. Ed. 54, 4440–4457 (2015). https://doi.org/10.1002/anie.201409262
Z. Xu, X. Guo, J. Wang, Y. Yuan, Q. Sun et al., Restraining the octahedron collapse in lithium and manganese rich NCM cathode toward suppressing structure transformation. Adv. Energy Mater. 12, 2201323 (2022). https://doi.org/10.1002/aenm.202201323
S. Kim, M. Kim, M. Ku, J. Park, J. Lee et al., Coating robust layers on Ni-rich cathode active materials while suppressing cation mixing for all-solid-state lithium-ion batteries. ACS Nano 18, 25096–25106 (2024). https://doi.org/10.1021/acsnano.4c06720
C. Hong, R. Tao, S. Tan, L.A. Pressley, C.A. Bridges et al., In situ cyclized polyacrylonitrile coating: key to stabilizing porous high-entropy oxide anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 35, 2412177 (2025). https://doi.org/10.1002/adfm.202412177
Y. Liang, H. Liu, G. Wang, C. Wang, D. Li et al., Heuristic design of cathode hybrid coating for power-limited sulfide-based all-solid-state lithium batteries. Adv. Energy Mater. 12, 2201555 (2022). https://doi.org/10.1002/aenm.202201555
Q. Sun, G. Hu, Z. Peng, Y. Cao, F. Zhu et al., Achieving a bifunctional conformal coating on nickel-rich cathode LiNi0.8Co0.1Mn0.1O2 with half-cyclized polyacrylonitrile. Electrochim. Acta 386, 138440 (2021). https://doi.org/10.1016/j.electacta.2021.138440
X. Zhang, Z. Cui, A. Manthiram, Long-life lithium-metal batteries with an ultra-high-nickel cathode and electrolytes with bi-anion activity. Adv. Funct. Mater. 34, 2309591 (2024). https://doi.org/10.1002/adfm.202309591
B. Jin, Z. Cui, A. Manthiram, In situ interweaved binder framework mitigating the structural and interphasial degradations of high-nickel cathodes in lithium-ion batteries. Angew. Chem. Int. Ed. 62, e202301241 (2023). https://doi.org/10.1002/anie.202301241
D. Lu, Y. Chen, W. Sun, W. Xie, S. Yi et al., Cathode electrolyte interface engineering by gradient fluorination for high-performance lithium rich cathode. Adv. Energy Mater. 13, 2301765 (2023). https://doi.org/10.1002/aenm.202301765
H. Sun, G. Zhu, Y. Zhu, M.C. Lin, H. Chen et al., High-safety and high-energy-density lithium metal batteries in a novel ionic-liquid electrolyte. Adv. Mater. 32, e2001741 (2020). https://doi.org/10.1002/adma.202001741
H. Li, F. Zhang, W. Wei, X. Zhao, H. Dong et al., Promoting air stability of Li anode via an artificial organic/inorganic hybrid layer for dendrite-free lithium batteries. Adv. Energy Mater. 13, 2301023 (2023). https://doi.org/10.1002/aenm.202301023