Multifunctional SnO2 QDs/MXene Heterostructures as Laminar Interlayers for Improved Polysulfide Conversion and Lithium Plating Behavior
Corresponding Author: Chuanfang Zhang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 229
Abstract
Poor cycling stability in lithium–sulfur (Li–S) batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures. Heterogeneous catalysis has emerged as a promising approach, leveraging the adsorption and catalytic performance on lithium polysulfides (LiPSs) to inhibit LiPSs shuttling and improve redox kinetics. In this study, we report an ultrathin and laminar SnO2@MXene heterostructure interlayer (SnO2@MX), where SnO2 quantum dots (QDs) are uniformly distributed across the MXene layer. The combined structure of SnO2 QDs and MXene, along with the creation of numerous active boundary sites with coordination electron environments, plays a critical role in manipulating the catalytic kinetics of sulfur species. The Li–S cell with the SnO2@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling. As a result, an areal capacity of 7.6 mAh cm−2 under a sulfur loading of 7.5 mg cm−2 and a high stability over 500 cycles are achieved. Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics.
Highlights:
1 The interfacing between SnO2 and MXene alters electronic structures, shifting the d-band center in transition metals, enhancing catalytic efficiency by reducing electron filling in antibonding orbitals.
2 A binder-free, ultrathin, laminar heterostructured interlayer on polypropylene separator is demonstrated. The ionic sieving mechanism and efficient adsorption–catalysis process enable deeper charge/discharge cycle and improved stability.
3 The improved catalytic conversion and suppressed lithium dendrites formation enable a high loading of 7.5 mg cm−2 and an initial area capacity of 7.6 mAh cm−2.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
- A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v
- X. Zhang, X. Li, Y. Zhang, X. Li, Q. Guan et al., Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 33, 2302624 (2023). https://doi.org/10.1002/adfm.202302624
- H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260
- Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
- T. Tao, S. Lu, Y. Fan, W. Lei, S. Huang et al., Anode improvement in rechargeable lithium–sulfur batteries. Adv. Mater. 29, 1700542 (2017). https://doi.org/10.1002/adma.201700542
- H. Zhao, N. Deng, J. Yan, W. Kang, J. Ju et al., A review on anode for lithium-sulfur batteries: progress and prospects. Chem. Eng. J. 347, 343–365 (2018). https://doi.org/10.1016/j.cej.2018.04.112
- J. Lei, T. Liu, J. Chen, M. Zheng, Q. Zhang et al., Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 6, 2533–2557 (2020). https://doi.org/10.1016/j.chempr.2020.06.032
- Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9, e2106004 (2022). https://doi.org/10.1002/advs.202106004
- S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong et al., A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv. Mater. 30, e1804581 (2018). https://doi.org/10.1002/adma.201804581
- A. Kim, S.H. Oh, A. Adhikari, B.R. Sathe, S. Kumar et al., Recent advances in modified commercial separators for lithium–sulfur batteries. J. Mater. Chem. A 11, 7833–7866 (2023). https://doi.org/10.1039/d2ta09266b
- X. Li, Q. Guan, Z. Zhuang, Y. Zhang, Y. Lin et al., Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 17, 1653–1662 (2023). https://doi.org/10.1021/acsnano.2c11663
- Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 48, 8817–8819 (2012). https://doi.org/10.1039/C2CC33945E
- X. Yu, J. Joseph, A. Manthiram, Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. J. Mater. Chem. A 3, 15683–15691 (2015). https://doi.org/10.1039/C5TA04289E
- Y. Li, Y. Deng, J.-L. Yang, W. Tang, B. Ge et al., Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium–sulfur battery. Adv. Funct. Mater. 33, 2302267 (2023). https://doi.org/10.1002/adfm.202302267
- X. Li, Y. Zuo, Y. Zhang, J. Wang, Y. Wang et al., Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy Mater. 14, 2303389 (2024). https://doi.org/10.1002/aenm.202303389
- Y. Liu, S. Xiong, J. Wang, X. Jiao, S. Li et al., Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater. 19, 24–30 (2019). https://doi.org/10.1016/j.ensm.2018.10.015
- Q. Zhang, X. Wei, Y.-S. Liu, X. Liu, W.-L. Bai et al., Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. J. Energy Chem. 66, 366–373 (2022). https://doi.org/10.1016/j.jechem.2021.08.013
- M. Chen, M. Shao, J. Jin, L. Cui, H. Tu et al., Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: a review. Energy Storage Mater. 47, 629–648 (2022). https://doi.org/10.1016/j.ensm.2022.02.051
- W. Yao, J. Xu, L. Ma, X. Lu, D. Luo et al., Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Adv. Mater. 35, e2212116 (2023). https://doi.org/10.1002/adma.202212116
- N. Shi, B. Xi, J. Liu, Z. Zhang, N. Song et al., Dual-functional NbN ultrafine nanocrystals enabling kinetically boosted lithium–sulfur batteries. Adv. Funct. Mater. 32, 2111586 (2022). https://doi.org/10.1002/adfm.202111586
- L. Chen, Y. Sun, X. Wei, L. Song, G. Tao et al., Dual-functional V2C MXene assembly in facilitating sulfur evolution kinetics and Li-ion sieving toward practical lithium-sulfur batteries. Adv. Mater. 35, e2300771 (2023). https://doi.org/10.1002/adma.202300771
- W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 15, 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
- F. Ma, K. Srinivas, X. Zhang, Z. Zhang, Y. Wu et al., Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 32, 2206113 (2022). https://doi.org/10.1002/adfm.202206113
- C. Zhou, M. Li, N. Hu, J. Yang, H. Li et al., Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li–S batteries. Adv. Funct. Mater. 32, 2204635 (2022). https://doi.org/10.1002/adfm.202204635
- B. Liu, J.F. Torres, M. Taheri, P. Xiong, T. Lu et al., Dual-ion flux management for stable high areal capacity lithium–sulfur batteries. Adv. Energy Mater. 12, 2103444 (2022). https://doi.org/10.1002/aenm.202103444
- W.J. Xue, Z. Shi, L.M. Suo, C. Wang, Z.A. Wang et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
- A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4, 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
- Y. Kang, Y. Xia, H. Wang, X. Zhang, 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019). https://doi.org/10.1002/adfm.201902014
- N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014
- B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
- C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2, 613–638 (2020). https://doi.org/10.1002/inf2.12080
- A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
- X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
- E.S. Sim, G.S. Yi, M. Je, Y. Lee, Y.-C. Chung, Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: a density functional theory study. J. Power. Sources 342, 64–69 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.042
- T. Wang, D. Luo, Y. Zhang, Z. Zhang, J. Wang et al., Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium-sulfur batteries. ACS Nano 15, 19457–19467 (2021). https://doi.org/10.1021/acsnano.1c06213
- S. Deng, T. Guo, J. Heier, C.J. Zhang, Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries. Adv. Sci. 10, e2204930 (2023). https://doi.org/10.1002/advs.202204930
- L. Chen, J.-T. Ren, Z.-Y. Yuan, Enabling internal electric fields to enhance energy and environmental catalysis. Adv. Energy Mater. 13, 2370043 (2023). https://doi.org/10.1002/aenm.202370043
- C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11, 2100432 (2021). https://doi.org/10.1002/aenm.202100432
- K. Guo, G. Qu, J. Li, H. Xia, W. Yan et al., Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Storage Mater. 36, 496–503 (2021). https://doi.org/10.1016/j.ensm.2021.01.021
- Y. Li, Y. Pan, Y. Cong, Y. Zhu, H. Liu et al., Decoration of defective graphene with MoS2 enabling enhanced anchoring and catalytic conversion of polysulfides for lithium–sulfur batteries: a first-principles study. Phys. Chem. Chem. Phys. 24, 29214–29222 (2022). https://doi.org/10.1039/D2CP03582K
- Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 21, 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
- Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene–silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3, 1700165 (2017). https://doi.org/10.1002/aelm.201700165
- Z.J. Xu, Y. Jiang, Z.X. Li, C. Chen, X.Y. Kong et al., Rapid microwave-assisted synthesis of SnO2 quantum dots for efficient planar perovskite solar cells. ACS Appl. Energy Mater. 4, 1887–1893 (2021). https://doi.org/10.1021/acsaem.0c02992
- J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen et al., Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
- F.Y. Fan, W.C. Carter, Y.-M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 27, 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
- S. Deng, X. Shi, Y. Zhao, C. Wang, J. Wu et al., Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. Chem. Eng. J. 433, 133683 (2022). https://doi.org/10.1016/j.cej.2021.133683
- N. Lucero, D. Vilcarino, D. Datta, M.-Q. Zhao, The roles of MXenes in developing advanced lithium metal anodes. J. Energy Chem. 69, 132–149 (2022). https://doi.org/10.1016/j.jechem.2022.01.011
- J. Zheng, D. Lv, M. Gu, C. Wang, J.-G. Zhang et al., How to obtain reproducible results for lithium sulfur batteries? J. Electrochem. Soc. 160, A2288–A2292 (2013). https://doi.org/10.1149/2.106311jes
References
Y.-X. Yin, S. Xin, Y.-G. Guo, L.-J. Wan, Lithium-sulfur batteries: electrochemistry, materials, and prospects. Angew. Chem. Int. Ed. 52, 13186–13200 (2013). https://doi.org/10.1002/anie.201304762
A. Manthiram, Y. Fu, S.-H. Chung, C. Zu, Y.-S. Su, Rechargeable lithium–sulfur batteries. Chem. Rev. 114, 11751–11787 (2014). https://doi.org/10.1021/cr500062v
X. Zhang, X. Li, Y. Zhang, X. Li, Q. Guan et al., Accelerated Li+ desolvation for diffusion booster enabling low-temperature sulfur redox kinetics via electrocatalytic carbon-grazfted-CoP porous nanosheets. Adv. Funct. Mater. 33, 2302624 (2023). https://doi.org/10.1002/adfm.202302624
H.-J. Peng, J.-Q. Huang, X.-B. Cheng, Q. Zhang, Review on high-loading and high-energy lithium–sulfur batteries. Adv. Energy Mater. 7, 1700260 (2017). https://doi.org/10.1002/aenm.201700260
Q. Pang, X. Liang, C.Y. Kwok, L.F. Nazar, Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016). https://doi.org/10.1038/nenergy.2016.132
T. Tao, S. Lu, Y. Fan, W. Lei, S. Huang et al., Anode improvement in rechargeable lithium–sulfur batteries. Adv. Mater. 29, 1700542 (2017). https://doi.org/10.1002/adma.201700542
H. Zhao, N. Deng, J. Yan, W. Kang, J. Ju et al., A review on anode for lithium-sulfur batteries: progress and prospects. Chem. Eng. J. 347, 343–365 (2018). https://doi.org/10.1016/j.cej.2018.04.112
J. Lei, T. Liu, J. Chen, M. Zheng, Q. Zhang et al., Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 6, 2533–2557 (2020). https://doi.org/10.1016/j.chempr.2020.06.032
Y. Huang, L. Lin, C. Zhang, L. Liu, Y. Li et al., Recent advances and strategies toward polysulfides shuttle inhibition for high-performance Li-S batteries. Adv. Sci. 9, e2106004 (2022). https://doi.org/10.1002/advs.202106004
S. Tu, X. Chen, X. Zhao, M. Cheng, P. Xiong et al., A polysulfide-immobilizing polymer retards the shuttling of polysulfide intermediates in lithium-sulfur batteries. Adv. Mater. 30, e1804581 (2018). https://doi.org/10.1002/adma.201804581
A. Kim, S.H. Oh, A. Adhikari, B.R. Sathe, S. Kumar et al., Recent advances in modified commercial separators for lithium–sulfur batteries. J. Mater. Chem. A 11, 7833–7866 (2023). https://doi.org/10.1039/d2ta09266b
X. Li, Q. Guan, Z. Zhuang, Y. Zhang, Y. Lin et al., Ordered mesoporous carbon grafted MXene catalytic heterostructure as Li-ion kinetic pump toward high-efficient sulfur/sulfide conversions for Li-S battery. ACS Nano 17, 1653–1662 (2023). https://doi.org/10.1021/acsnano.2c11663
Y.-S. Su, A. Manthiram, A new approach to improve cycle performance of rechargeable lithium–sulfur batteries by inserting a free-standing MWCNT interlayer. Chem. Commun. 48, 8817–8819 (2012). https://doi.org/10.1039/C2CC33945E
X. Yu, J. Joseph, A. Manthiram, Polymer lithium–sulfur batteries with a Nafion membrane and an advanced sulfur electrode. J. Mater. Chem. A 3, 15683–15691 (2015). https://doi.org/10.1039/C5TA04289E
Y. Li, Y. Deng, J.-L. Yang, W. Tang, B. Ge et al., Bidirectional catalyst with robust lithiophilicity and sulfiphilicity for advanced lithium–sulfur battery. Adv. Funct. Mater. 33, 2302267 (2023). https://doi.org/10.1002/adfm.202302267
X. Li, Y. Zuo, Y. Zhang, J. Wang, Y. Wang et al., Controllable sulfurization of MXenes to in-plane multi-heterostructures for efficient sulfur redox kinetics. Adv. Energy Mater. 14, 2303389 (2024). https://doi.org/10.1002/aenm.202303389
Y. Liu, S. Xiong, J. Wang, X. Jiao, S. Li et al., Dendrite-free lithium metal anode enabled by separator engineering via uniform loading of lithiophilic nucleation sites. Energy Storage Mater. 19, 24–30 (2019). https://doi.org/10.1016/j.ensm.2018.10.015
Q. Zhang, X. Wei, Y.-S. Liu, X. Liu, W.-L. Bai et al., Dendrite-free lithium anode achieved under lean-electrolyte condition through the modification of separators with F-functionalized Ti3C2 nanosheets. J. Energy Chem. 66, 366–373 (2022). https://doi.org/10.1016/j.jechem.2021.08.013
M. Chen, M. Shao, J. Jin, L. Cui, H. Tu et al., Configurational and structural design of separators toward shuttling-free and dendrite-free lithium-sulfur batteries: a review. Energy Storage Mater. 47, 629–648 (2022). https://doi.org/10.1016/j.ensm.2022.02.051
W. Yao, J. Xu, L. Ma, X. Lu, D. Luo et al., Recent progress for concurrent realization of shuttle-inhibition and dendrite-free lithium-sulfur batteries. Adv. Mater. 35, e2212116 (2023). https://doi.org/10.1002/adma.202212116
N. Shi, B. Xi, J. Liu, Z. Zhang, N. Song et al., Dual-functional NbN ultrafine nanocrystals enabling kinetically boosted lithium–sulfur batteries. Adv. Funct. Mater. 32, 2111586 (2022). https://doi.org/10.1002/adfm.202111586
L. Chen, Y. Sun, X. Wei, L. Song, G. Tao et al., Dual-functional V2C MXene assembly in facilitating sulfur evolution kinetics and Li-ion sieving toward practical lithium-sulfur batteries. Adv. Mater. 35, e2300771 (2023). https://doi.org/10.1002/adma.202300771
W. Yao, W. Zheng, J. Xu, C. Tian, K. Han et al., ZnS-SnS@NC heterostructure as robust lithiophilicity and sulfiphilicity mediator toward high-rate and long-life lithium-sulfur batteries. ACS Nano 15, 7114–7130 (2021). https://doi.org/10.1021/acsnano.1c00270
F. Ma, K. Srinivas, X. Zhang, Z. Zhang, Y. Wu et al., Mo2N quantum dots decorated N-doped graphene nanosheets as dual-functional interlayer for dendrite-free and shuttle-free lithium-sulfur batteries. Adv. Funct. Mater. 32, 2206113 (2022). https://doi.org/10.1002/adfm.202206113
C. Zhou, M. Li, N. Hu, J. Yang, H. Li et al., Single-atom-regulated heterostructure of binary nanosheets to enable dendrite-free and kinetics-enhanced Li–S batteries. Adv. Funct. Mater. 32, 2204635 (2022). https://doi.org/10.1002/adfm.202204635
B. Liu, J.F. Torres, M. Taheri, P. Xiong, T. Lu et al., Dual-ion flux management for stable high areal capacity lithium–sulfur batteries. Adv. Energy Mater. 12, 2103444 (2022). https://doi.org/10.1002/aenm.202103444
W.J. Xue, Z. Shi, L.M. Suo, C. Wang, Z.A. Wang et al., Intercalation-conversion hybrid cathodes enabling Li–S full-cell architectures with jointly superior gravimetric and volumetric energy densities. Nat. Energy 4, 374–382 (2019). https://doi.org/10.1038/s41560-019-0351-0
A. Bhargav, J. He, A. Gupta, A. Manthiram, Lithium-sulfur batteries: attaining the critical metrics. Joule 4, 285–291 (2020). https://doi.org/10.1016/j.joule.2020.01.001
Y. Kang, Y. Xia, H. Wang, X. Zhang, 2D laminar membranes for selective water and ion transport. Adv. Funct. Mater. 29, 1902014 (2019). https://doi.org/10.1002/adfm.201902014
N. Li, Y. Xie, S. Peng, X. Xiong, K. Han, Ultra-lightweight Ti3C2Tx MXene modified separator for Li–S batteries: thickness regulation enabled polysulfide inhibition and lithium ion transportation. J. Energy Chem. 42, 116–125 (2020). https://doi.org/10.1016/j.jechem.2019.06.014
B. Anasori, M.R. Lukatskaya, Y. Gogotsi, 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017). https://doi.org/10.1038/natrevmats.2016.98
C. Zhang, L. Cui, S. Abdolhosseinzadeh, J. Heier, Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2, 613–638 (2020). https://doi.org/10.1002/inf2.12080
A. VahidMohammadi, J. Rosen, Y. Gogotsi, The world of two-dimensional carbides and nitrides (MXenes). Science 372, eabf1581 (2021). https://doi.org/10.1126/science.abf1581
X. Liang, A. Garsuch, L.F. Nazar, Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem. Int. Ed. 54, 3907–3911 (2015). https://doi.org/10.1002/anie.201410174
E.S. Sim, G.S. Yi, M. Je, Y. Lee, Y.-C. Chung, Understanding the anchoring behavior of titanium carbide-based MXenes depending on the functional group in LiS batteries: a density functional theory study. J. Power. Sources 342, 64–69 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.042
T. Wang, D. Luo, Y. Zhang, Z. Zhang, J. Wang et al., Hierarchically porous Ti3C2 MXene with tunable active edges and unsaturated coordination bonds for superior lithium-sulfur batteries. ACS Nano 15, 19457–19467 (2021). https://doi.org/10.1021/acsnano.1c06213
S. Deng, T. Guo, J. Heier, C.J. Zhang, Unraveling polysulfide’s adsorption and electrocatalytic conversion on metal oxides for Li-S batteries. Adv. Sci. 10, e2204930 (2023). https://doi.org/10.1002/advs.202204930
L. Chen, J.-T. Ren, Z.-Y. Yuan, Enabling internal electric fields to enhance energy and environmental catalysis. Adv. Energy Mater. 13, 2370043 (2023). https://doi.org/10.1002/aenm.202370043
C. Zhang, R. Du, J.J. Biendicho, M. Yi, K. Xiao et al., Tubular CoFeP@CN as a Mott-Schottky catalyst with multiple adsorption sites for robust lithium–sulfur batteries. Adv. Energy Mater. 11, 2100432 (2021). https://doi.org/10.1002/aenm.202100432
K. Guo, G. Qu, J. Li, H. Xia, W. Yan et al., Polysulfides shuttling remedies by interface-catalytic effect of Mn3O4-MnPx heterostructure. Energy Storage Mater. 36, 496–503 (2021). https://doi.org/10.1016/j.ensm.2021.01.021
Y. Li, Y. Pan, Y. Cong, Y. Zhu, H. Liu et al., Decoration of defective graphene with MoS2 enabling enhanced anchoring and catalytic conversion of polysulfides for lithium–sulfur batteries: a first-principles study. Phys. Chem. Chem. Phys. 24, 29214–29222 (2022). https://doi.org/10.1039/D2CP03582K
Y. Li, W. Wang, B. Zhang, L. Fu, M. Wan et al., Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 21, 6656–6663 (2021). https://doi.org/10.1021/acs.nanolett.1c02161
Z. Kang, Y. Ma, X. Tan, M. Zhu, Z. Zheng et al., MXene–silicon van der Waals heterostructures for high-speed self-driven photodetectors. Adv. Electron. Mater. 3, 1700165 (2017). https://doi.org/10.1002/aelm.201700165
Z.J. Xu, Y. Jiang, Z.X. Li, C. Chen, X.Y. Kong et al., Rapid microwave-assisted synthesis of SnO2 quantum dots for efficient planar perovskite solar cells. ACS Appl. Energy Mater. 4, 1887–1893 (2021). https://doi.org/10.1021/acsaem.0c02992
J. Xiong, L. Pan, H. Wang, F. Du, Y. Chen et al., Synergistically enhanced lithium storage performance based on titanium carbide nanosheets (MXene) backbone and SnO2 quantum dots. Electrochim. Acta 268, 503–511 (2018). https://doi.org/10.1016/j.electacta.2018.02.090
F.Y. Fan, W.C. Carter, Y.-M. Chiang, Mechanism and kinetics of Li2S precipitation in lithium–sulfur batteries. Adv. Mater. 27, 5203–5209 (2015). https://doi.org/10.1002/adma.201501559
S. Deng, X. Shi, Y. Zhao, C. Wang, J. Wu et al., Catalytic Mo2C decorated N-doped honeycomb-like carbon network for high stable lithium-sulfur batteries. Chem. Eng. J. 433, 133683 (2022). https://doi.org/10.1016/j.cej.2021.133683
N. Lucero, D. Vilcarino, D. Datta, M.-Q. Zhao, The roles of MXenes in developing advanced lithium metal anodes. J. Energy Chem. 69, 132–149 (2022). https://doi.org/10.1016/j.jechem.2022.01.011
J. Zheng, D. Lv, M. Gu, C. Wang, J.-G. Zhang et al., How to obtain reproducible results for lithium sulfur batteries? J. Electrochem. Soc. 160, A2288–A2292 (2013). https://doi.org/10.1149/2.106311jes