Surface Passivation of Perovskite Solar Cells Toward Improved Efficiency and Stability
Corresponding Author: Wenbin Guo
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 50
Abstract
The advancement of perovskite solar cells (PVSCs) technology toward commercialized promotion needs high efficiency and optimum stability. By introducing a small molecular material such as tetratetracontane (TTC, CH3(CH2)42CH3) at the fullerene (C60)/perovskite interface of planar p-i-n PVSCs, we significantly reduced the interfacial traps, thereby suppressing electron recombination and facilitating electron extraction. Consequently, an improved efficiency of 20.05% was achieved with a high fill factor of 79.4%, which is one of the best performances for small molecular-modified PVSCs. Moreover, the hydrophobic TTC successfully protects the perovskite film from water damage. As a result, we realized a better long-term stability that maintains 87% of the initial efficiency after continuous exposure for 200 h in air.
Highlights:
1 The TTC layer was efficiently deposited at the grain boundary of the perovskite, which passivated the grain surface and grain boundary, thereby decreasing the interfacial recombination of the perovskite solar cells.
2 The hydrophobic small molecule TTC on the perovskite films forms a water-resistant layer that protects the perovskite from water damage.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- W.E. Sha, X. Ren, L. Chen, W.C. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015). https://doi.org/10.1063/1.4922150
- Y. Xiao, N. Cheng, K.K. Kondamareddy, C. Wang, P. Liu, S. Guo, X.Z. Zhao, W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J. Power Sources 342, 489 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.079
- Z. Li, C. Liu, X. Zhang, G. Ren, W. Han, W. Guo, Developing 1D Sb-embedded carbon nanorods to improve efficiency and stability of inverted planar perovskite solar Cells. Small 15, 1804692 (2019). https://doi.org/10.1002/smll.201804692
- Z. Song, C.L. McElvany, A.B. Phillips, I. Celik, P.W. Krantz et al., A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297 (2017). https://doi.org/10.1039/C7EE00757D
- Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao, Y. Li, H. Zhou, Q. Chen, Cost analysis of perovskite tandem photovoltaics. Joule 2, 1559 (2018). https://doi.org/10.1016/j.joule.2018.05.001
- Y. Xiao, C. Wang, K.K. Kondamareddy, P. Liu, F. Qi, H. Zhang, S. Guo, X.Z. Zhao, Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. J. Power Sources 422, 138 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.039
- Best Research-Cell Efficiency Chart. NREL chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 15 May 2019
- T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015). https://doi.org/10.1002/aenm.201500963
- G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the Stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014). https://doi.org/10.1039/C3TA13606J
- A.M. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
- Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips, U. Steiner, M. Graetzel, M.J. Heben, Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846
- C. Müller, T. Glaser, M. Plogmeyer, M. Sendner, S. Döring et al., Water infiltration in methylammonium lead iodide perovskite: fast and inconspicuous. Chem. Mater. 27, 7835 (2015). https://doi.org/10.1021/acs.chemmater.5b03883
- M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648 (2018). https://doi.org/10.1038/s41560-018-0192-2
- H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8, 1800051 (2018). https://doi.org/10.1002/aenm.201800051
- Z. Zhu, C.C. Chueh, F. Lin, A.K. Jen, Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer. Adv. Sci. 3, 1600027 (2016). https://doi.org/10.1002/advs.201600027
- Z. Li, C. Liu, X. Zhang, J. Guo, H. Cui, L. Shen, Y. Bi, W. Guo, Using easily prepared carbon nanodots to improve hole transport capacity of perovskite solar cells. Mater. Today Energy 12, 161–167 (2019). https://doi.org/10.1016/j.mtener.2019.01.002
- I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330–17336 (2015). https://doi.org/10.1021/acsami.5b04490
- Y. Zhao, H. Zhang, X. Ren, H.L. Zhu, Z. Huang et al., Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett. 3, 2891–2898 (2018). https://doi.org/10.1021/acsenergylett.8b01507
- Y. Zong, Y. Zhou, Y. Zhang, Z. Li, L. Zhang et al., Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability. Chem 4, 1404 (2018). https://doi.org/10.1016/j.chempr.2018.03.005
- X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703 (2015). https://doi.org/10.1038/nchem.2324
- J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim et al., Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31, 1805554 (2019). https://doi.org/10.1002/adma.201805554
- C. Wang, Z. Song, D. Zhao, R.A. Awni, C. Li et al., Improving performance and stability of planar perovskite solar cells through grain boundary passivation with block copolymer. Solar RRL (2019). https://doi.org/10.1002/solr.201900078
- H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT: PSS hole transport layer. Nano-Micro Lett. 9, 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
- C.C. Vidyasagar, B.M.M. Flores, V.M.J. Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
- Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr 3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
- M.L. Petrus, K. Schutt, M.T. Sirtl, E.M. Hutter, A.C. Closs et al., New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones. Adv. Energy Mater. 8, 1801605 (2018). https://doi.org/10.1002/aenm.201801605
- S.K. Jung, J.H. Heo, D.W. Lee, S.C. Lee, S.H. Lee et al., Nonfullerene electron transporting material based on naphthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%. Adv. Funct. Mater. 28, 1800346 (2018). https://doi.org/10.1002/adfm.201800346
- W. Deng, X. Liang, P.S. Kubiak, P.J. Cameron, Molecular interlayers in hybrid perovskite solar cells. Adv. Energy Mater. 8, 1701544 (2018). https://doi.org/10.1002/aenm.201701544
- C.M. Wolff, F. Zu, A. Paulke, L.P. Toro, N. Koch, D. Neher, Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017). https://doi.org/10.1002/adma.201700159
- A.M. Elseman, W. Sharmoukh, S. Sajid, P. Cui, J. Ji et al., Superior stability and efficiency over 20% perovskite solar cells achieved by a novel molecularly engineered rutin-AgNPs/thiophene copolymer. Adv. Sci. 5, 1800568 (2018). https://doi.org/10.1002/advs.201800568
- Y. Xiao, C. Wang, K.K. Kondamareddy, N. Cheng, P. Liu et al., Efficient electron transport scaffold made up of submicron TiO2 spheres for high-performance hole-transport material free perovskite solar cells. ACS Appl. Energy Mater. 1, 5453 (2018). https://doi.org/10.1021/acsaem.8b01038
- H. Choi, C.K. Mai, H.B. Kim, J. Jeong, S. Song et al., Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6, 7348 (2015). https://doi.org/10.1038/ncomms8348
- Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
- H.L. Hsu, H.T. Hsiao, T.Y. Juang, B.H. Jiang, S.C. Chen, R.J. Jeng, C.P. Chen, Carbon nanodot additives realize high-performance air-stable p-i-n perovskite solar cells providing efficiencies of up to 20.2%. Adv. Energy Mater. 8, 1802323 (2018). https://doi.org/10.1002/aenm.201802323
- F. Zhang, J. Song, R. Hu, Y. Xiang, J. He et al., Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells. Small 14, 1704007 (2018). https://doi.org/10.1002/smll.201704007
- X. Ren, Z. Wang, W.E. Sha, W.C. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photon. 4, 934 (2017). https://doi.org/10.1021/acsphotonics.6b01043
- H.H. Fang, F. Wang, S. Adjokatse, N. Zhao, J. Even, M.A. Loi, Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Sci. Appl. 5, e16056 (2016). https://doi.org/10.1038/lsa.2016.56
- C. Xie, P. You, Z.K. Liu, L. Li, F. Yan, Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Sci. Appl. 6, e17023 (2017). https://doi.org/10.1038/lsa.2017.23
- T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang, L. Han, Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803766
- L.L. Gu, Z.Y. Fan, Perovskite/organic-semiconductor heterojunctions for ultrasensitive photodetection. Light: Sci. Appl. 6, e17090 (2017). https://doi.org/10.1038/lsa.2017.90
- J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim et al., Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31, 1805554 (2019). https://doi.org/10.1002/adma.201805554
- Y.C. Zhao, W.K. Zhou, X. Zhou, K.H. Liu, D.P. Yu, Q. Zhao, Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Sci. Appl. 6, e16243 (2017). https://doi.org/10.1038/lsa.2016.243
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009). https://doi.org/10.1021/ja809598r
W.E. Sha, X. Ren, L. Chen, W.C. Choy, The efficiency limit of CH3NH3PbI3 perovskite solar cells. Appl. Phys. Lett. 106, 221104 (2015). https://doi.org/10.1063/1.4922150
Y. Xiao, N. Cheng, K.K. Kondamareddy, C. Wang, P. Liu, S. Guo, X.Z. Zhao, W-doped TiO2 mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes. J. Power Sources 342, 489 (2017). https://doi.org/10.1016/j.jpowsour.2016.12.079
Z. Li, C. Liu, X. Zhang, G. Ren, W. Han, W. Guo, Developing 1D Sb-embedded carbon nanorods to improve efficiency and stability of inverted planar perovskite solar Cells. Small 15, 1804692 (2019). https://doi.org/10.1002/smll.201804692
Z. Song, C.L. McElvany, A.B. Phillips, I. Celik, P.W. Krantz et al., A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ. Sci. 10, 1297 (2017). https://doi.org/10.1039/C7EE00757D
Z. Li, Y. Zhao, X. Wang, Y. Sun, Z. Zhao, Y. Li, H. Zhou, Q. Chen, Cost analysis of perovskite tandem photovoltaics. Joule 2, 1559 (2018). https://doi.org/10.1016/j.joule.2018.05.001
Y. Xiao, C. Wang, K.K. Kondamareddy, P. Liu, F. Qi, H. Zhang, S. Guo, X.Z. Zhao, Enhancing the performance of hole-conductor free carbon-based perovskite solar cells through rutile-phase passivation of anatase TiO2 scaffold. J. Power Sources 422, 138 (2019). https://doi.org/10.1016/j.jpowsour.2019.03.039
Best Research-Cell Efficiency Chart. NREL chart. https://www.nrel.gov/pv/cell-efficiency.html. Accessed 15 May 2019
T. Leijtens, G.E. Eperon, N.K. Noel, S.N. Habisreutinger, A. Petrozza, H.J. Snaith, Stability of metal halide perovskite solar cells. Adv. Energy Mater. 5, 1500963 (2015). https://doi.org/10.1002/aenm.201500963
G. Niu, W. Li, F. Meng, L. Wang, H. Dong, Y. Qiu, Study on the Stability of CH3NH3PbI3 films and the effect of post-modification by aluminum oxide in all-solid-state hybrid solar cells. J. Mater. Chem. A 2, 705 (2014). https://doi.org/10.1039/C3TA13606J
A.M. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber et al., Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27, 3397 (2015). https://doi.org/10.1021/acs.chemmater.5b00660
Z. Song, A. Abate, S.C. Watthage, G.K. Liyanage, A.B. Phillips, U. Steiner, M. Graetzel, M.J. Heben, Perovskite solar cell stability in humid air: partially reversible phase transitions in the PbI2-CH3NH3I-H2O system. Adv. Energy Mater. 6, 1600846 (2016). https://doi.org/10.1002/aenm.201600846
C. Müller, T. Glaser, M. Plogmeyer, M. Sendner, S. Döring et al., Water infiltration in methylammonium lead iodide perovskite: fast and inconspicuous. Chem. Mater. 27, 7835 (2015). https://doi.org/10.1021/acs.chemmater.5b03883
M.I. Saidaminov, J. Kim, A. Jain, R. Quintero-Bermudez, H. Tan et al., Suppression of atomic vacancies via incorporation of isovalent small ions to increase the stability of halide perovskite solar cells in ambient air. Nat. Energy 3, 648 (2018). https://doi.org/10.1038/s41560-018-0192-2
H. Zheng, G. Liu, L. Zhu, J. Ye, X. Zhang et al., The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8, 1800051 (2018). https://doi.org/10.1002/aenm.201800051
Z. Zhu, C.C. Chueh, F. Lin, A.K. Jen, Enhanced ambient stability of efficient perovskite solar cells by employing a modified fullerene cathode interlayer. Adv. Sci. 3, 1600027 (2016). https://doi.org/10.1002/advs.201600027
Z. Li, C. Liu, X. Zhang, J. Guo, H. Cui, L. Shen, Y. Bi, W. Guo, Using easily prepared carbon nanodots to improve hole transport capacity of perovskite solar cells. Mater. Today Energy 12, 161–167 (2019). https://doi.org/10.1016/j.mtener.2019.01.002
I. Hwang, I. Jeong, J. Lee, M.J. Ko, K. Yong, Enhancing stability of perovskite solar cells to moisture by the facile hydrophobic passivation. ACS Appl. Mater. Interfaces 7, 17330–17336 (2015). https://doi.org/10.1021/acsami.5b04490
Y. Zhao, H. Zhang, X. Ren, H.L. Zhu, Z. Huang et al., Thick TiO2-based top electron transport layer on perovskite for highly efficient and stable solar cells. ACS Energy Lett. 3, 2891–2898 (2018). https://doi.org/10.1021/acsenergylett.8b01507
Y. Zong, Y. Zhou, Y. Zhang, Z. Li, L. Zhang et al., Continuous grain-boundary functionalization for high-efficiency perovskite solar cells with exceptional stability. Chem 4, 1404 (2018). https://doi.org/10.1016/j.chempr.2018.03.005
X. Li, M.I. Dar, C. Yi, J. Luo, M. Tschumi, S.M. Zakeeruddin, M.K. Nazeeruddin, H. Han, M. Grätzel, Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides. Nat. Chem. 7, 703 (2015). https://doi.org/10.1038/nchem.2324
J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim et al., Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31, 1805554 (2019). https://doi.org/10.1002/adma.201805554
C. Wang, Z. Song, D. Zhao, R.A. Awni, C. Li et al., Improving performance and stability of planar perovskite solar cells through grain boundary passivation with block copolymer. Solar RRL (2019). https://doi.org/10.1002/solr.201900078
H. Luo, X. Lin, X. Hou, L. Pan, S. Huang, X. Chen, Efficient and air-stable planar perovskite solar cells formed on graphene-oxide-modified PEDOT: PSS hole transport layer. Nano-Micro Lett. 9, 39 (2017). https://doi.org/10.1007/s40820-017-0140-x
C.C. Vidyasagar, B.M.M. Flores, V.M.J. Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
Z. Liu, B. Sun, X. Liu, J. Han, H. Ye, T. Shi, Z. Tang, G. Liao, Efficient carbon-based CsPbBr 3 inorganic perovskite solar cells by using Cu-phthalocyanine as hole transport material. Nano-Micro Lett. 10, 34 (2018). https://doi.org/10.1007/s40820-018-0187-3
M.L. Petrus, K. Schutt, M.T. Sirtl, E.M. Hutter, A.C. Closs et al., New generation hole transporting materials for perovskite solar cells: amide-based small-molecules with nonconjugated backbones. Adv. Energy Mater. 8, 1801605 (2018). https://doi.org/10.1002/aenm.201801605
S.K. Jung, J.H. Heo, D.W. Lee, S.C. Lee, S.H. Lee et al., Nonfullerene electron transporting material based on naphthalene diimide small molecule for highly stable perovskite solar cells with efficiency exceeding 20%. Adv. Funct. Mater. 28, 1800346 (2018). https://doi.org/10.1002/adfm.201800346
W. Deng, X. Liang, P.S. Kubiak, P.J. Cameron, Molecular interlayers in hybrid perovskite solar cells. Adv. Energy Mater. 8, 1701544 (2018). https://doi.org/10.1002/aenm.201701544
C.M. Wolff, F. Zu, A. Paulke, L.P. Toro, N. Koch, D. Neher, Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv. Mater. 29, 1700159 (2017). https://doi.org/10.1002/adma.201700159
A.M. Elseman, W. Sharmoukh, S. Sajid, P. Cui, J. Ji et al., Superior stability and efficiency over 20% perovskite solar cells achieved by a novel molecularly engineered rutin-AgNPs/thiophene copolymer. Adv. Sci. 5, 1800568 (2018). https://doi.org/10.1002/advs.201800568
Y. Xiao, C. Wang, K.K. Kondamareddy, N. Cheng, P. Liu et al., Efficient electron transport scaffold made up of submicron TiO2 spheres for high-performance hole-transport material free perovskite solar cells. ACS Appl. Energy Mater. 1, 5453 (2018). https://doi.org/10.1021/acsaem.8b01038
H. Choi, C.K. Mai, H.B. Kim, J. Jeong, S. Song et al., Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 6, 7348 (2015). https://doi.org/10.1038/ncomms8348
Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 5, 5784 (2014). https://doi.org/10.1038/ncomms6784
H.L. Hsu, H.T. Hsiao, T.Y. Juang, B.H. Jiang, S.C. Chen, R.J. Jeng, C.P. Chen, Carbon nanodot additives realize high-performance air-stable p-i-n perovskite solar cells providing efficiencies of up to 20.2%. Adv. Energy Mater. 8, 1802323 (2018). https://doi.org/10.1002/aenm.201802323
F. Zhang, J. Song, R. Hu, Y. Xiang, J. He et al., Interfacial passivation of the p-doped hole-transporting layer using general insulating polymers for high-performance inverted perovskite solar cells. Small 14, 1704007 (2018). https://doi.org/10.1002/smll.201704007
X. Ren, Z. Wang, W.E. Sha, W.C. Choy, Exploring the way to approach the efficiency limit of perovskite solar cells by drift-diffusion model. ACS Photon. 4, 934 (2017). https://doi.org/10.1021/acsphotonics.6b01043
H.H. Fang, F. Wang, S. Adjokatse, N. Zhao, J. Even, M.A. Loi, Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light: Sci. Appl. 5, e16056 (2016). https://doi.org/10.1038/lsa.2016.56
C. Xie, P. You, Z.K. Liu, L. Li, F. Yan, Ultrasensitive broadband phototransistors based on perovskite/organic-semiconductor vertical heterojunctions. Light: Sci. Appl. 6, e17023 (2017). https://doi.org/10.1038/lsa.2017.23
T. Wu, Y. Wang, X. Li, Y. Wu, X. Meng, D. Cui, X. Yang, L. Han, Efficient defect passivation for perovskite solar cells by controlling the electron density distribution of donor-π-acceptor molecules. Adv. Energy Mater. (2019). https://doi.org/10.1002/aenm.201803766
L.L. Gu, Z.Y. Fan, Perovskite/organic-semiconductor heterojunctions for ultrasensitive photodetection. Light: Sci. Appl. 6, e17090 (2017). https://doi.org/10.1038/lsa.2017.90
J.C. Yu, S. Badgujar, E.D. Jung, V.K. Singh, D.W. Kim et al., Highly efficient and stable inverted perovskite solar cell obtained via treatment by semiconducting chemical additive. Adv. Mater. 31, 1805554 (2019). https://doi.org/10.1002/adma.201805554
Y.C. Zhao, W.K. Zhou, X. Zhou, K.H. Liu, D.P. Yu, Q. Zhao, Quantification of light-enhanced ionic transport in lead iodide perovskite thin films and its solar cell applications. Light: Sci. Appl. 6, e16243 (2017). https://doi.org/10.1038/lsa.2016.243