High-Performance Perovskite Quantum Dot Solar Cells Enabled by Incorporation with Dimensionally Engineered Organic Semiconductor
Corresponding Author: Taiho Park
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 204
Abstract
Perovskite quantum dots (PQDs) have been considered promising and effective photovoltaic absorber due to their superior optoelectronic properties and inherent material merits combining perovskites and QDs. However, they exhibit low moisture stability at room humidity (20–30%) owing to many surface defect sites generated by inefficient ligand exchange process. These surface traps must be re-passivated to improve both charge transport ability and moisture stability. To address this issue, PQD-organic semiconductor hybrid solar cells with suitable electrical properties and functional groups might dramatically improve the charge extraction and defect passivation. Conventional organic semiconductors are typically low-dimensional (1D and 2D) and prone to excessive self-aggregation, which limits chemical interaction with PQDs. In this work, we designed a new 3D star-shaped semiconducting material (Star-TrCN) to enhance the compatibility with PQDs. The robust bonding with Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation. The Star-TrCN-PQD hybrid films show improved cubic-phase stability of CsPbI3-PQDs via reduced surface trap states and suppressed moisture penetration. As a result, the resultant devices not only achieve remarkable device stability over 1000 h at 20–30% relative humidity, but also boost power conversion efficiency up to 16.0% via forming a cascade energy band structure.
Highlights:
1 We designed and developed a 3D star-shaped conjugated molecule (Star-TrCN) to incorporate organic semiconductor with CsPbI3 perovskite quantum dots (PQDs).
2 The robust chemical bonding of Star-TrCN and PQDs is demonstrated by theoretical modeling and experimental validation, which significantly improved the cubic-phase stability of CsPbI3-PQDs by passivating vacant sites and preventing moisture penetration.
3 The Star-PQD hybrid solar cells not only achieved remarkable device stability over 1000 h at 20–30% relative humidity, but also boosted power conversion efficiency up to 16.0% via cascade energy band structure.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015). https://doi.org/10.1038/nature14133
- M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
- X. Liu, J. Min, Q. Chen, T. Liu, G. Pu et al., Synergy effect of a π-conjugated ionic compound: dual interfacial energy level regulation and passivation to promote Voc and stability of planar perovskite solar cells. Angew. Chem. Int. Ed. 134(11), 202117303 (2022). https://doi.org/10.1002/ange.202117303
- H. Choi, X. Liu, H.I. Kim, D. Kim, T. Park et al., A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive. Adv. Energy Mater. 11(16), 2003829 (2021). https://doi.org/10.1002/aenm.202003829
- Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
- NREL, Best research-cell efficiency chart. (2022). https://www.nrel.gov/pv/cell-efficiency.html
- G.W. Kim, G. Kang, J. Kim, G.Y. Lee, H.I. Kim et al., Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 9, 2326–2333 (2016). https://doi.org/10.1039/C6EE00709K
- K. Choi, J. Lee, H. Choi, G.W. Kim, H.I. Kim et al., Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13, 5059–5067 (2022). https://doi.org/10.1039/D0EE02859B
- T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016). https://doi.org/10.1039/C5EE02733K
- Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
- Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao et al., Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31(49), 1905143 (2019). https://doi.org/10.1002/adma.201905143
- K. Choi, D.H. Lee, W. Jung, S. Kim, D. Lee et al., 3D Interaction of zwitterions for highly stable and efficient inorganic CsPbI3 solar cells. Adv. Funct. Mater. 32(16), 2112027 (2021). https://doi.org/10.1002/adfm.202112027
- M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang et al., Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
- A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.M. Jancu et al., Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12(4), 3477–3486 (2018). https://doi.org/10.1021/acsnano.8b00267
- A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700
- Q. Zhao, A. Hazarika, L.T. Schelhas, J. Liu, E.A. Gaulding et al., Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5(1), 238–247 (2020). https://doi.org/10.1021/acsenergylett.9b02395
- M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14, 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
- S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6(6), 2229–2237 (2021). https://doi.org/10.1021/acsenergylett.1c00462
- X. Zhang, H. Huang, X. Ling, J. Sun, X. Jiang et al., Homojunction perovskite quantum dot solar cells with over 1 µm-thick photoactive layer. Adv. Mater. 34(2), 2105977 (2022). https://doi.org/10.1002/adma.202105977
- J. Yuan, X. Zhang, J. Sun, R. Patterson, H. Yao et al., Hybrid perovskite quantum dot/non-fullerene molecule solar cells with efficiency over 15%. Adv. Funct. Mater. 31(27), 2101272 (2021). https://doi.org/10.1002/adfm.202101272
- A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016). https://doi.org/10.1021/acsnano.6b03863
- Y. Wang, J. Yuan, X. Zhang, X. Ling, B.W. Larson et al., Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32(32), 2000449 (2020). https://doi.org/10.1002/adma.202000449
- L. Duan, L. Hu, X. Guan, C.H. Lin, D. Chu et al., Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11(20), 2100354 (2021). https://doi.org/10.1002/aenm.202100354
- J. Khan, X. Zhang, J. Yuan, Y. Wang, G. Shi et al., Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett. 5(10), 3322–3329 (2020). https://doi.org/10.1021/acsenergylett.0c01849
- S. Lim, J. Kim, J.Y. Park, J. Min, S. Yun et al., Suppressed degradation and enhanced performance of CsPbI3 perovskite quantum dot solar cells via engineering of electron transport layers. ACS Appl. Mater. Interfaces 13(5), 6119–6129 (2021). https://doi.org/10.1021/acsami.0c15484
- J. Duan, Y. Wang, X. Yang, Q. Tang, Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells. Angew. Chem. Int. Ed. 59(11), 4391–4395 (2020). https://doi.org/10.1002/anie.202000199
- K. Hills-Kimball, H. Yang, T. Cai, J. Wang, O. Chen, Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 8(12), 2100214 (2021). https://doi.org/10.1002/advs.202100214
- A. Shrestha, M. Batmunkh, A. Tricoli, S.Z. Qiao, S. Dai, Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis ligand exchange, and applications in solar cells. Angew. Chem. Int. Ed. 58(16), 5202–5224 (2019). https://doi.org/10.1002/anie.201804053
- Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian et al., µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv. Energy Mater. 8(22), 1800007 (2018). https://doi.org/10.1002/aenm.201800007
- Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T.M. Brown et al., Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017). https://doi.org/10.1016/j.nanoen.2017.02.025
- L. Zhang, C. Liu, J. Zhang, X. Li, C. Cheng et al., Intensive exposure of functional rings of a polymeric hole-transporting material enables efficient perovskite solar cells. Adv. Mater. 30(39), 1804028 (2018). https://doi.org/10.1002/adma.201804028
- J. Yuan, X. Ling, D. Yang, F. Li, S. Zhou et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2, 2450–2463 (2018). https://doi.org/10.1016/j.joule.2018.08.011
- K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling et al., High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020). https://doi.org/10.1039/D0TA02743J
- S. Lim, S. Han, D. Kim, J. Min, J. Choi et al., Key factors affecting the stability of CsPbI3 perovskite quantum dot solar cells: a comprehensive review. Adv. Mater. (2022). https://doi.org/10.1002/adma.202203430
- B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). https://doi.org/10.1039/C8CS00853A
- L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
- J. Yuan, A. Gallagher, Z. Liu, Y. Sun, W. Ma, High-efficiency polymer–PbS hybrid solar cells via molecular engineering. J. Mater. Chem. A 3, 2572–2579 (2015). https://doi.org/10.1039/C4TA03995E
- S. Holliday, R.S. Ashraf, C.B. Nielsen, M. Kirkus, J.A. Rohr et al., A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137(2), 898–904 (2015). https://doi.org/10.1021/ja5110602
- W. Wu, G. Zhang, X. Xu, S. Wang, Y. Li et al., Wide bandgap molecular acceptors with a truxene core for efficient nonfullerene polymer solar cells: linkage position on molecular configuration and photovoltaic properties. Adv. Funct. Mater. 28(18), 1707493 (2018). https://doi.org/10.1002/adfm.201707493
- D.H. Lee, D.H. Kim, T. Kim, D.C. Lee, S. Cho et al., Solid-solvent hybrid additive for the simultaneous control of the macro- and micro-morphology in non-fullerene-based organic solar cells. Nano Energy 93, 106878 (2022). https://doi.org/10.1016/j.nanoen.2021.106878
- Y. Wang, G. Chen, D. Ouyang, X. He, C. Li et al., High phase stability in CsPbI3 enabled by Pb–I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv. Mater. 32(24), 2000186 (2020). https://doi.org/10.1002/adma.202000186
- J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 177 (2020). https://doi.org/10.1038/s41467-019-13909-5
- Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han et al., Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021). https://doi.org/10.1126/sciadv.abg0633
- L. Mester, A.A. Govyadinov, S. Chen, M. Goikoetxea, R. Hillenbrand, Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020). https://doi.org/10.1038/s41467-020-17034-6
- S. Han, L. Guan, T. Yin, J. Zhang, J. Guo et al., Unveiling the roles of halogen ions in the surface passivation of CsPbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 24, 10184–10192 (2020). https://doi.org/10.1039/D2CP00109H
- L. Long, D. Cao, J. Fei, J. Wang, Y. Zhou et al., Effect of surface intrinsic defects on the structural stability and electronic properties of the all-inorganic halide perovskite CsPbI3 (001) film. Chem. Phys. Lett. 734, 136719 (2019). https://doi.org/10.1016/j.cplett.2019.136719
- F. Li, J. Yuan, X. Ling, Y. Zhang, Y. Yang et al., A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced efficiency and longevity. Adv. Funct. Mater. 28(15), 1706377 (2018). https://doi.org/10.1002/adfm.201706377
- Y. Liu, L. Zhang, S. Chen, C. Liu, Y. Li et al., Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes. Small 17(37), 2101477 (2021). https://doi.org/10.1002/smll.202101477
- J. Xue, R. Wang, L. Chen, S. Nuryyeva, T.H. Han et al., A small-molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31(37), 1900111 (2019). https://doi.org/10.1002/adma.201900111
- Q. Cao, J. Yang, T. Wang, Y. Li, X. Pu et al., Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency. Energy Environ. Sci. 14, 5406–5415 (2021). https://doi.org/10.1039/D1EE01800K
- X. Liao, Q. Xie, Y. Guo, Q. He, Z. Chen et al., Inhibiting excessive molecular aggregation to achieve highly efficient and stabilized organic solar cells by introducing a star-shaped nitrogen heterocyclic-ring acceptor. Energy Environ. Sci. 15, 384–394 (2022). https://doi.org/10.1039/D1EE02858H
- W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
- G.G. Malliaras, J.R. Salem, P.J. Brock, C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 58, R13411 (1998). https://doi.org/10.1103/PhysRevB.58.R13411
- E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters et al., Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 26(47), 8757–8763 (2016). https://doi.org/10.1002/adfm.201604580
References
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476 (2015). https://doi.org/10.1038/nature14133
M. Saliba, T. Matsui, J.Y. Seo, K. Domanski, J.P. Correa-Baena et al., Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency. Energy Environ. Sci. 9, 1989–1997 (2016). https://doi.org/10.1039/C5EE03874J
X. Liu, J. Min, Q. Chen, T. Liu, G. Pu et al., Synergy effect of a π-conjugated ionic compound: dual interfacial energy level regulation and passivation to promote Voc and stability of planar perovskite solar cells. Angew. Chem. Int. Ed. 134(11), 202117303 (2022). https://doi.org/10.1002/ange.202117303
H. Choi, X. Liu, H.I. Kim, D. Kim, T. Park et al., A facile surface passivation enables thermally stable and efficient planar perovskite solar cells using a novel IDTT-based small molecule additive. Adv. Energy Mater. 11(16), 2003829 (2021). https://doi.org/10.1002/aenm.202003829
Z. Li, B. Li, X. Wu, S.A. Sheppard, S. Zhang et al., Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells. Science 376(6591), 416–420 (2022). https://doi.org/10.1126/science.abm8566
NREL, Best research-cell efficiency chart. (2022). https://www.nrel.gov/pv/cell-efficiency.html
G.W. Kim, G. Kang, J. Kim, G.Y. Lee, H.I. Kim et al., Dopant-free polymeric hole transport materials for highly efficient and stable perovskite solar cells. Energy Environ. Sci. 9, 2326–2333 (2016). https://doi.org/10.1039/C6EE00709K
K. Choi, J. Lee, H. Choi, G.W. Kim, H.I. Kim et al., Heat dissipation effects on the stability of planar perovskite solar cells. Energy Environ. Sci. 13, 5059–5067 (2022). https://doi.org/10.1039/D0EE02859B
T.A. Berhe, W.N. Su, C.H. Chen, C.J. Pan, J.H. Cheng et al., Organometal halide perovskite solar cells: degradation and stability. Energy Environ. Sci. 9, 323–356 (2016). https://doi.org/10.1039/C5EE02733K
Y. Wang, M.I. Dar, L.K. Ono, T. Zhang, M. Kan et al., Thermodynamically stabilized β-CsPbI3-based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019). https://doi.org/10.1126/science.aav8680
Q. Ye, Y. Zhao, S. Mu, F. Ma, F. Gao et al., Cesium lead inorganic solar cell with efficiency beyond 18% via reduced charge recombination. Adv. Mater. 31(49), 1905143 (2019). https://doi.org/10.1002/adma.201905143
K. Choi, D.H. Lee, W. Jung, S. Kim, D. Lee et al., 3D Interaction of zwitterions for highly stable and efficient inorganic CsPbI3 solar cells. Adv. Funct. Mater. 32(16), 2112027 (2021). https://doi.org/10.1002/adfm.202112027
M. Yue, J. Su, P. Zhao, Z. Lin, J. Zhang et al., Optimizing the performance of CsPbI3-based perovskite solar cells via doping a ZnO electron transport layer coupled with interface engineering. Nano-Micro Lett. 11, 91 (2019). https://doi.org/10.1007/s40820-019-0320-y
A. Marronnier, G. Roma, S. Boyer-Richard, L. Pedesseau, J.M. Jancu et al., Anharmonicity and disorder in the black phases of cesium lead iodide used for stable inorganic perovskite solar cells. ACS Nano 12(4), 3477–3486 (2018). https://doi.org/10.1021/acsnano.8b00267
A. Swarnkar, A.R. Marshall, E.M. Sanehira, B.D. Chernomordik, D.T. Moore et al., Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016). https://doi.org/10.1126/science.aag2700
Q. Zhao, A. Hazarika, L.T. Schelhas, J. Liu, E.A. Gaulding et al., Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5(1), 238–247 (2020). https://doi.org/10.1021/acsenergylett.9b02395
M.T. Hoang, A.S. Pannu, Y. Yang, S. Madani, P. Shaw et al., Surface treatment of inorganic CsPbI3 nanocrystals with guanidinium iodide for efficient perovskite light-emitting diodes with high brightness. Nano-Micro Lett. 14, 69 (2022). https://doi.org/10.1007/s40820-022-00813-9
S. Lim, G. Lee, S. Han, J. Kim, S. Yun et al., Monodisperse perovskite colloidal quantum dots enable high-efficiency photovoltaics. ACS Energy Lett. 6(6), 2229–2237 (2021). https://doi.org/10.1021/acsenergylett.1c00462
X. Zhang, H. Huang, X. Ling, J. Sun, X. Jiang et al., Homojunction perovskite quantum dot solar cells with over 1 µm-thick photoactive layer. Adv. Mater. 34(2), 2105977 (2022). https://doi.org/10.1002/adma.202105977
J. Yuan, X. Zhang, J. Sun, R. Patterson, H. Yao et al., Hybrid perovskite quantum dot/non-fullerene molecule solar cells with efficiency over 15%. Adv. Funct. Mater. 31(27), 2101272 (2021). https://doi.org/10.1002/adfm.202101272
A. Pan, B. He, X. Fan, Z. Liu, J.J. Urban et al., Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors. ACS Nano 10(8), 7943–7954 (2016). https://doi.org/10.1021/acsnano.6b03863
Y. Wang, J. Yuan, X. Zhang, X. Ling, B.W. Larson et al., Surface ligand management aided by a secondary amine enables increased synthesis yield of CsPbI3 perovskite quantum dots and high photovoltaic performance. Adv. Mater. 32(32), 2000449 (2020). https://doi.org/10.1002/adma.202000449
L. Duan, L. Hu, X. Guan, C.H. Lin, D. Chu et al., Quantum dots for photovoltaics: a tale of two materials. Adv. Energy Mater. 11(20), 2100354 (2021). https://doi.org/10.1002/aenm.202100354
J. Khan, X. Zhang, J. Yuan, Y. Wang, G. Shi et al., Tuning the surface-passivating ligand anchoring position enables phase robustness in CsPbI3 perovskite quantum dot solar cells. ACS Energy Lett. 5(10), 3322–3329 (2020). https://doi.org/10.1021/acsenergylett.0c01849
S. Lim, J. Kim, J.Y. Park, J. Min, S. Yun et al., Suppressed degradation and enhanced performance of CsPbI3 perovskite quantum dot solar cells via engineering of electron transport layers. ACS Appl. Mater. Interfaces 13(5), 6119–6129 (2021). https://doi.org/10.1021/acsami.0c15484
J. Duan, Y. Wang, X. Yang, Q. Tang, Alkyl-chain-regulated charge transfer in fluorescent inorganic CsPbBr3 perovskite solar cells. Angew. Chem. Int. Ed. 59(11), 4391–4395 (2020). https://doi.org/10.1002/anie.202000199
K. Hills-Kimball, H. Yang, T. Cai, J. Wang, O. Chen, Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 8(12), 2100214 (2021). https://doi.org/10.1002/advs.202100214
A. Shrestha, M. Batmunkh, A. Tricoli, S.Z. Qiao, S. Dai, Near-infrared active lead chalcogenide quantum dots: preparation, post-synthesis ligand exchange, and applications in solar cells. Angew. Chem. Int. Ed. 58(16), 5202–5224 (2019). https://doi.org/10.1002/anie.201804053
Q. Wang, Z. Jin, D. Chen, D. Bai, H. Bian et al., µ-Graphene crosslinked CsPbI3 quantum dots for high efficiency solar cells with much improved stability. Adv. Energy Mater. 8(22), 1800007 (2018). https://doi.org/10.1002/aenm.201800007
Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T.M. Brown et al., Advances in hole transport materials engineering for stable and efficient perovskite solar cells. Nano Energy 34, 271–305 (2017). https://doi.org/10.1016/j.nanoen.2017.02.025
L. Zhang, C. Liu, J. Zhang, X. Li, C. Cheng et al., Intensive exposure of functional rings of a polymeric hole-transporting material enables efficient perovskite solar cells. Adv. Mater. 30(39), 1804028 (2018). https://doi.org/10.1002/adma.201804028
J. Yuan, X. Ling, D. Yang, F. Li, S. Zhou et al., Band-aligned polymeric hole transport materials for extremely low energy loss α-CsPbI3 perovskite nanocrystal solar cells. Joule 2, 2450–2463 (2018). https://doi.org/10.1016/j.joule.2018.08.011
K. Ji, J. Yuan, F. Li, Y. Shi, X. Ling et al., High-efficiency perovskite quantum dot solar cells benefiting from a conjugated polymer-quantum dot bulk heterojunction connecting layer. J. Mater. Chem. A 8, 8104–8112 (2020). https://doi.org/10.1039/D0TA02743J
S. Lim, S. Han, D. Kim, J. Min, J. Choi et al., Key factors affecting the stability of CsPbI3 perovskite quantum dot solar cells: a comprehensive review. Adv. Mater. (2022). https://doi.org/10.1002/adma.202203430
B. Chen, P.N. Rudd, S. Yang, Y. Yuan, J. Huang, Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019). https://doi.org/10.1039/C8CS00853A
L. Hu, Q. Zhao, S. Huang, J. Zheng, X. Guan et al., Flexible and efficient perovskite quantum dot solar cells via hybrid interfacial architecture. Nat. Commun. 12, 466 (2021). https://doi.org/10.1038/s41467-020-20749-1
J. Yuan, A. Gallagher, Z. Liu, Y. Sun, W. Ma, High-efficiency polymer–PbS hybrid solar cells via molecular engineering. J. Mater. Chem. A 3, 2572–2579 (2015). https://doi.org/10.1039/C4TA03995E
S. Holliday, R.S. Ashraf, C.B. Nielsen, M. Kirkus, J.A. Rohr et al., A rhodanine flanked nonfullerene acceptor for solution-processed organic photovoltaics. J. Am. Chem. Soc. 137(2), 898–904 (2015). https://doi.org/10.1021/ja5110602
W. Wu, G. Zhang, X. Xu, S. Wang, Y. Li et al., Wide bandgap molecular acceptors with a truxene core for efficient nonfullerene polymer solar cells: linkage position on molecular configuration and photovoltaic properties. Adv. Funct. Mater. 28(18), 1707493 (2018). https://doi.org/10.1002/adfm.201707493
D.H. Lee, D.H. Kim, T. Kim, D.C. Lee, S. Cho et al., Solid-solvent hybrid additive for the simultaneous control of the macro- and micro-morphology in non-fullerene-based organic solar cells. Nano Energy 93, 106878 (2022). https://doi.org/10.1016/j.nanoen.2021.106878
Y. Wang, G. Chen, D. Ouyang, X. He, C. Li et al., High phase stability in CsPbI3 enabled by Pb–I octahedra anchors for efficient inorganic perovskite photovoltaics. Adv. Mater. 32(24), 2000186 (2020). https://doi.org/10.1002/adma.202000186
J. Wang, J. Zhang, Y. Zhou, H. Liu, Q. Xue et al., Highly efficient all-inorganic perovskite solar cells with suppressed non-radiative recombination by a Lewis base. Nat. Commun. 11, 177 (2020). https://doi.org/10.1038/s41467-019-13909-5
Q. Cao, Y. Li, H. Zhang, J. Yang, J. Han et al., Efficient and stable inverted perovskite solar cells with very high fill factors via incorporation of star-shaped polymer. Sci. Adv. 7, eabg0633 (2021). https://doi.org/10.1126/sciadv.abg0633
L. Mester, A.A. Govyadinov, S. Chen, M. Goikoetxea, R. Hillenbrand, Subsurface chemical nanoidentification by nano-FTIR spectroscopy. Nat. Commun. 11, 3359 (2020). https://doi.org/10.1038/s41467-020-17034-6
S. Han, L. Guan, T. Yin, J. Zhang, J. Guo et al., Unveiling the roles of halogen ions in the surface passivation of CsPbI3 perovskite solar cells. Phys. Chem. Chem. Phys. 24, 10184–10192 (2020). https://doi.org/10.1039/D2CP00109H
L. Long, D. Cao, J. Fei, J. Wang, Y. Zhou et al., Effect of surface intrinsic defects on the structural stability and electronic properties of the all-inorganic halide perovskite CsPbI3 (001) film. Chem. Phys. Lett. 734, 136719 (2019). https://doi.org/10.1016/j.cplett.2019.136719
F. Li, J. Yuan, X. Ling, Y. Zhang, Y. Yang et al., A universal strategy to utilize polymeric semiconductors for perovskite solar cells with enhanced efficiency and longevity. Adv. Funct. Mater. 28(15), 1706377 (2018). https://doi.org/10.1002/adfm.201706377
Y. Liu, L. Zhang, S. Chen, C. Liu, Y. Li et al., Water-soluble conjugated polyelectrolyte hole transporting layer for efficient sky-blue perovskite light-emitting diodes. Small 17(37), 2101477 (2021). https://doi.org/10.1002/smll.202101477
J. Xue, R. Wang, L. Chen, S. Nuryyeva, T.H. Han et al., A small-molecule “charge driver” enables perovskite quantum dot solar cells with efficiency approaching 13%. Adv. Mater. 31(37), 1900111 (2019). https://doi.org/10.1002/adma.201900111
Q. Cao, J. Yang, T. Wang, Y. Li, X. Pu et al., Star-polymer multidentate-cross-linking strategy for superior operational stability of inverted perovskite solar cells at high efficiency. Energy Environ. Sci. 14, 5406–5415 (2021). https://doi.org/10.1039/D1EE01800K
X. Liao, Q. Xie, Y. Guo, Q. He, Z. Chen et al., Inhibiting excessive molecular aggregation to achieve highly efficient and stabilized organic solar cells by introducing a star-shaped nitrogen heterocyclic-ring acceptor. Energy Environ. Sci. 15, 384–394 (2022). https://doi.org/10.1039/D1EE02858H
W. Dong, W. Qiao, S. Xiong, J. Yang, X. Wang et al., Surface passivation and energetic modification suppress nonradiative recombination in perovskite solar cells. Nano-Micro Lett. 14, 108 (2022). https://doi.org/10.1007/s40820-022-00854-0
G.G. Malliaras, J.R. Salem, P.J. Brock, C. Scott, Electrical characteristics and efficiency of single-layer organic light-emitting diodes. Phys. Rev. B 58, R13411 (1998). https://doi.org/10.1103/PhysRevB.58.R13411
E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters et al., Amine-free synthesis of cesium lead halide perovskite quantum dots for efficient light-emitting diodes. Adv. Funct. Mater. 26(47), 8757–8763 (2016). https://doi.org/10.1002/adfm.201604580