Overcoming Perovskite Corrosion and De-Doping Through Chemical Binding of Halogen Bonds Toward Efficient and Stable Perovskite Solar Cells
Corresponding Author: Wenbin Guo
Nano-Micro Letters,
Vol. 14 (2022), Article Number: 175
Abstract
4-tert-butylpyridine (TBP) is an indispensable additive for the hole transport layer in highly efficient perovskite solar cells (PSCs), while it can induce corrosion decomposition of perovskites and de-doping effect of spiro-OMeTAD, which present huge challenge for the stability of PSCs. Herein, halogen bonds provided by 1,4-diiodotetrafluorobenzene (1,4-DITFB) are employed to bond with TBP, simultaneously preventing perovskite decomposition and eliminating de-doping effect of oxidized spiro-OMeTAD. Various characterizations have proved strong chemical interaction forms between 1,4-DITFB and TBP. With the incorporation of halogen bonds, perovskite film can maintain initial morphology, crystal structure, and light absorbance; meanwhile, the spiro-OMeTAD film shows a relatively stable conductivity with good charge transport property. Accordingly, the device with TBP complex exhibits significantly enhanced stability in N2 atmosphere or humidity environment. Furthermore, a champion power conversion efficiency of 23.03% is obtained since perovskite is no longer damaged by TBP during device preparation. This strategy overcomes the shortcomings of TBP in n-i-p PSCs community and enhances the application potential of spiro-OMeTAD in fabricating efficient and stable PSCs.
Highlights:
1 Chemical binding of 4-tert-butylpyridine (TBP) is realized through halogen bonds.
2 TBP-induced perovskite decomposition and spiro-OMeTAD de-doping are suppressed.
3 Modified perovskite solar cells achieve greatly improved efficiency and stability.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30(7), 687–701 (2022). https://doi.org/10.1002/pip.3595
- Y. Rong, Y. Hu, A. Mei, H. Tan, I.S. Makhsud et al., Challenges for commercializing perovskite solar cells. Science 361(6408), eaat8235 (2018). https://doi.org/10.1126/science.aat8235
- R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29(47), 1808843 (2019). https://doi.org/10.1002/adfm.201808843
- B. Chen, S. Wang, Y. Song, C. Li, F. Hao, A critical review on the moisture stability of halide perovskite films and solar cells. Chem. Eng. J. 430, 132701 (2022). https://doi.org/10.1016/j.cej.2021.132701
- S.P. Dunfield, L. Bliss, F. Zhang, J.M. Luther, K. Zhu et al., From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10(26), 1904054 (2020). https://doi.org/10.1002/aenm.201904054
- C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
- L.K. Ono, Y. Qi, S. Liu, Progress toward stable lead halide perovskite solar cells. Joule 2(10), 1961–1990 (2018). https://doi.org/10.1016/j.joule.2018.07.007
- Y. Sun, X. Fang, Z. Ma, L. Xu, Y. Lu et al., Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. J. Mater. Chem. C 5(34), 8682–8687 (2017). https://doi.org/10.1039/C7TC02603J
- R. Wang, J. Xue, L. Meng, J.W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3(6), 1464–1477 (2019). https://doi.org/10.1016/j.joule.2019.04.005
- S.H. Li, Z. Xing, B.S. Wu, Z.C. Chen, Y.R. Yao et al., Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 12(18), 20733–20740 (2020). https://doi.org/10.1021/acsami.0c02119
- Y.R. Shi, K.L. Wang, Y.H. Lou, D.B. Zhang, C.H. Chen et al., Unraveling the role of active hydrogen caused by carbonyl groups in surface-defect passivation of perovskite photovoltaics. Nano Energy 97, 107200 (2022). https://doi.org/10.1016/j.nanoen.2022.107200
- C.H. Chen, Z.H. Su, Y.H. Lou, Y.J. Yu, K.L. Wang et al., Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 34(16), 2200320 (2022). https://doi.org/10.1002/adma.202200320
- G. Ren, W. Han, Y. Deng, W. Wu, Z. Li et al., Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9(8), 4589–4625 (2021). https://doi.org/10.1039/D0TA11564A
- M. Li, Z.K. Wang, Y.G. Yang, Y. Hu, S.L. Feng et al., Copper salts doped spiro-OMeTAD for high-performance perovskite solar cells. Adv. Energy Mater. 6(21), 1601156 (2016). https://doi.org/10.1002/aenm.201601156
- D. Poplavskyy, J. Nelson, Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 93(1), 341–346 (2002). https://doi.org/10.1063/1.1525866
- T.H. Schloemer, J.A. Christians, J.M. Luther, A. Sellinger, Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem. Sci. 10(7), 1904–1935 (2019). https://doi.org/10.1039/C8SC05284K
- H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
- J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
- I. Lee, J.H. Yun, H.J. Son, T.S. Kim, Accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl. Mater. Interfaces 9(8), 7029–7035 (2017). https://doi.org/10.1021/acsami.6b14089
- Z. Li, C. Xiao, Y. Yang, S.P. Harvey, D.H. Kim et al., Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10(5), 1234–1242 (2017). https://doi.org/10.1039/C7EE00358G
- L.L. Jiang, Z.K. Wang, M. Li, C.H. Li, P.F. Fang et al., Flower-like MoS2 nanocrystals: a powerful sorbent of Li+ in the spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 7(8), 3655–3663 (2019). https://doi.org/10.1039/C8TA11800K
- Y. Yue, N. Salim, Y. Wu, X. Yang, A. Islam et al., Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Adv. Mater. 28(48), 10738–10743 (2016). https://doi.org/10.1002/adma.201602822
- W. Li, H. Dong, L. Wang, N. Li, X. Guo et al., Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2(33), 13587–13592 (2014). https://doi.org/10.1039/C4TA01550A
- S. Wang, Z. Huang, X. Wang, Y. Li, M. Günther et al., Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells. J. Am. Chem. Soc. 140(48), 16720–16730 (2018). https://doi.org/10.1021/jacs.8b09809
- A. Magomedov, E. Kasparavičius, K. Rakstys, S. Paek, N. Gasilova et al., Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. J. Mater. Chem. C 6(33), 8874–8878 (2018). https://doi.org/10.1039/C8TC02242A
- E. Kasparavicius, A. Magomedov, T. Malinauskas, V. Getautis, Long-term stability of the oxidized hole-transporting materials used in perovskite solar cells. Chem. A Eur. J. 24(39), 9910–9918 (2018). https://doi.org/10.1002/chem.201801441
- F. Lamberti, T. Gatti, E. Cescon, R. Sorrentino, A. Rizzo et al., Evidence of spiro-OMeTAD de-doping by tert-butylpyridine additive in hole-transporting layers for perovskite solar cells. Chem 5(7), 1806–1817 (2019). https://doi.org/10.1016/j.chempr.2019.04.003
- E.J. Juarez-Perez, M.R. Leyden, S. Wang, L.K. Ono, Z. Hawash et al., Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer. Chem. Mater. 28(16), 5702–5709 (2016). https://doi.org/10.1021/acs.chemmater.6b01777
- S.N. Habisreutinger, N.K. Noel, H.J. Snaith, R.J. Nicholas, Investigating the role of 4-tert butylpyridine in perovskite solar cells. Adv. Energy Mater. 7(1), 1601079 (2017). https://doi.org/10.1002/aenm.201601079
- G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi et al., The halogen bond. Chem. Rev. 116(4), 2478–2601 (2016). https://doi.org/10.1021/acs.chemrev.5b00484
- P. Metrangolo, G. Resnati, Halogen versus hydrogen. Science 321(5891), 918–919 (2008). https://doi.org/10.1126/science.1162215
- I.G. Grosu, L. Pop, M. Miclǎuş, N.D. Hǎdade, A. Terec et al., Halogen bonds (N–-I) at work: supramolecular catemeric architectures of 2,7-dipyridylfluorene with ortho-, meta-, or para-diiodotetrafluorobenzene isomers. Cryst. Growth Des. 20(5), 3429–3441 (2020). https://doi.org/10.1021/acs.cgd.0c00205
- S. Yurdakul, M. Bahat, Fourier transform infrared and Raman spectroscopic studies on 4-tert.butylpyridine and its metal(II) tetracyanonickelate complexes. J. Mol. Struct. 412(1), 97–102 (1997). https://doi.org/10.1016/S0022-2860(96)09392-1
- H. Sun, M. Wang, A. Khan, Y. Shan, K. Zhao et al., Co-crystals with delayed fluorescence assembled by 1,4-diiodotetrafluorobenzene and polycyclic aromatic compounds via halogen bonds. ChemistrySelect 2(22), 6323–6330 (2017). https://doi.org/10.1002/slct.201701288
- F.Z. Qiu, M.H. Li, S. Wang, J.Y. Sun, Y. Jiang et al., Regulating the crystalline phase of intermediate films enables FA1-xMAxPbI3 perovskite solar cells with efficiency over 22%. J. Mater. Chem. A 9(42), 24064–24070 (2021). https://doi.org/10.1039/D1TA06410J
- F. Ma, J. Li, W. Li, N. Lin, L. Wang et al., Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem. Sci. 8(1), 800–805 (2017). https://doi.org/10.1039/C6SC03542F
- A.F. Silva, N. Veissid, C.Y. An, I. Pepe, N.B. Oliveira et al., Optical determination of the direct bandgap energy of lead iodide crystals. Appl. Phys. Lett. 69(13), 1930–1932 (1996). https://doi.org/10.1063/1.117625
- S. Chen, R. Pei, T. Zhao, D.J. Dyer, Gold nanop assemblies by metal ion-pyridine complexation and their rectified quantized charging in aqueous solutions. J. Phys. Chem. B 106(8), 1903–1908 (2002). https://doi.org/10.1021/jp013574e
- L.K. Ono, S. Liu, Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59(17), 6676–6698 (2020). https://doi.org/10.1002/anie.201905521
- Y. Liu, Y. Hu, X. Zhang, P. Zeng, F. Li et al., Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy 70, 104483 (2020). https://doi.org/10.1016/j.nanoen.2020.104483
- N.D. Pham, J. Shang, Y. Yang, M.T. Hoang, V.T. Tiong et al., Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy 69, 104412 (2020). https://doi.org/10.1016/j.nanoen.2019.104412
- D.J. Rogers, S.D. Luck, D.E. Irish, D.A. Guzonas, G.F. Atkinson, Surface enhanced Raman spectroscopy of pyridine, pyridinium ions and chloride ions adsorbed on the silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 167(1), 237–249 (1984). https://doi.org/10.1016/0368-1874(84)87069-0
- J. Zhang, Q. Daniel, T. Zhang, X. Wen, B. Xu et al., Chemical dopant engineering in hole transport layers for efficient perovskite solar cells: insight into the interfacial recombination. ACS Nano 12(10), 10452–10462 (2018). https://doi.org/10.1021/acsnano.8b06062
- G. Ren, Z. Li, W. Wu, S. Han, C. Liu et al., Performance improvement of planar perovskite solar cells with cobalt-doped interface layer. Appl. Surf. Sci. 507, 145081 (2020). https://doi.org/10.1016/j.apsusc.2019.145081
- Q. Xiong, C. Wang, Q. Zhou, L. Wang, X. Wang et al., Rear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresis. Adv. Funct. Mater. 32(7), 2107823 (2022). https://doi.org/10.1002/adfm.202107823
- P. Yadav, M.H. Alotaibi, N. Arora, M.I. Dar, S.M. Zakeeruddin et al., Influence of the nature of a cation on dynamics of charge transfer processes in perovskite solar cells. Adv. Funct. Mater. 28(8), 1706073 (2018). https://doi.org/10.1002/adfm.201706073
- S. Yuan, Y. Xian, Y. Long, A. Cabot, W. Li et al., Chromium-based metal-organic framework as a-site cation in CsPbI2Br perovskite solar cells. Adv. Funct. Mater. 31(51), 2106233 (2021). https://doi.org/10.1002/adfm.202106233
- C. Liu, D. Zhang, Z. Li, X. Zhang, L. Shen et al., Efficient 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) hole transport layer in perovskite solar cells enabled by using the nonstoichiometric precursors. Adv. Funct. Mater. 28(36), 1803126 (2018). https://doi.org/10.1002/adfm.201803126
- Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
- J. Zhang, Y. Fang, W. Zhao, R. Han, J. Wen et al., Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells. Adv. Mater. 33(45), 2103770 (2021). https://doi.org/10.1002/adma.202103770
References
M.A. Green, E.D. Dunlop, J. Hohl-Ebinger, M. Yoshita, N. Kopidakis et al., Solar cell efficiency tables (version 60). Prog. Photovolt. Res. Appl. 30(7), 687–701 (2022). https://doi.org/10.1002/pip.3595
Y. Rong, Y. Hu, A. Mei, H. Tan, I.S. Makhsud et al., Challenges for commercializing perovskite solar cells. Science 361(6408), eaat8235 (2018). https://doi.org/10.1126/science.aat8235
R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J. Xue et al., A review of perovskites solar cell stability. Adv. Funct. Mater. 29(47), 1808843 (2019). https://doi.org/10.1002/adfm.201808843
B. Chen, S. Wang, Y. Song, C. Li, F. Hao, A critical review on the moisture stability of halide perovskite films and solar cells. Chem. Eng. J. 430, 132701 (2022). https://doi.org/10.1016/j.cej.2021.132701
S.P. Dunfield, L. Bliss, F. Zhang, J.M. Luther, K. Zhu et al., From defects to degradation: a mechanistic understanding of degradation in perovskite solar cell devices and modules. Adv. Energy Mater. 10(26), 1904054 (2020). https://doi.org/10.1002/aenm.201904054
C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119(5), 3418–3451 (2019). https://doi.org/10.1021/acs.chemrev.8b00336
L.K. Ono, Y. Qi, S. Liu, Progress toward stable lead halide perovskite solar cells. Joule 2(10), 1961–1990 (2018). https://doi.org/10.1016/j.joule.2018.07.007
Y. Sun, X. Fang, Z. Ma, L. Xu, Y. Lu et al., Enhanced UV-light stability of organometal halide perovskite solar cells with interface modification and a UV absorption layer. J. Mater. Chem. C 5(34), 8682–8687 (2017). https://doi.org/10.1039/C7TC02603J
R. Wang, J. Xue, L. Meng, J.W. Lee, Z. Zhao et al., Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 3(6), 1464–1477 (2019). https://doi.org/10.1016/j.joule.2019.04.005
S.H. Li, Z. Xing, B.S. Wu, Z.C. Chen, Y.R. Yao et al., Hybrid fullerene-based electron transport layers improving the thermal stability of perovskite solar cells. ACS Appl. Mater. Interfaces 12(18), 20733–20740 (2020). https://doi.org/10.1021/acsami.0c02119
Y.R. Shi, K.L. Wang, Y.H. Lou, D.B. Zhang, C.H. Chen et al., Unraveling the role of active hydrogen caused by carbonyl groups in surface-defect passivation of perovskite photovoltaics. Nano Energy 97, 107200 (2022). https://doi.org/10.1016/j.nanoen.2022.107200
C.H. Chen, Z.H. Su, Y.H. Lou, Y.J. Yu, K.L. Wang et al., Full-dimensional grain boundary stress release for flexible perovskite indoor photovoltaics. Adv. Mater. 34(16), 2200320 (2022). https://doi.org/10.1002/adma.202200320
G. Ren, W. Han, Y. Deng, W. Wu, Z. Li et al., Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. J. Mater. Chem. A 9(8), 4589–4625 (2021). https://doi.org/10.1039/D0TA11564A
M. Li, Z.K. Wang, Y.G. Yang, Y. Hu, S.L. Feng et al., Copper salts doped spiro-OMeTAD for high-performance perovskite solar cells. Adv. Energy Mater. 6(21), 1601156 (2016). https://doi.org/10.1002/aenm.201601156
D. Poplavskyy, J. Nelson, Nondispersive hole transport in amorphous films of methoxy-spirofluorene-arylamine organic compound. J. Appl. Phys. 93(1), 341–346 (2002). https://doi.org/10.1063/1.1525866
T.H. Schloemer, J.A. Christians, J.M. Luther, A. Sellinger, Doping strategies for small molecule organic hole-transport materials: impacts on perovskite solar cell performance and stability. Chem. Sci. 10(7), 1904–1935 (2019). https://doi.org/10.1039/C8SC05284K
H. Min, D.Y. Lee, J. Kim, G. Kim, K.S. Lee et al., Perovskite solar cells with atomically coherent interlayers on SnO2 electrodes. Nature 598(7881), 444–450 (2021). https://doi.org/10.1038/s41586-021-03964-8
J.J. Yoo, G. Seo, M.R. Chua, T.G. Park, Y. Lu et al., Efficient perovskite solar cells via improved carrier management. Nature 590(7847), 587–593 (2021). https://doi.org/10.1038/s41586-021-03285-w
I. Lee, J.H. Yun, H.J. Son, T.S. Kim, Accelerated degradation due to weakened adhesion from Li-TFSI additives in perovskite solar cells. ACS Appl. Mater. Interfaces 9(8), 7029–7035 (2017). https://doi.org/10.1021/acsami.6b14089
Z. Li, C. Xiao, Y. Yang, S.P. Harvey, D.H. Kim et al., Extrinsic ion migration in perovskite solar cells. Energy Environ. Sci. 10(5), 1234–1242 (2017). https://doi.org/10.1039/C7EE00358G
L.L. Jiang, Z.K. Wang, M. Li, C.H. Li, P.F. Fang et al., Flower-like MoS2 nanocrystals: a powerful sorbent of Li+ in the spiro-OMeTAD layer for highly efficient and stable perovskite solar cells. J. Mater. Chem. A 7(8), 3655–3663 (2019). https://doi.org/10.1039/C8TA11800K
Y. Yue, N. Salim, Y. Wu, X. Yang, A. Islam et al., Enhanced stability of perovskite solar cells through corrosion-free pyridine derivatives in hole-transporting materials. Adv. Mater. 28(48), 10738–10743 (2016). https://doi.org/10.1002/adma.201602822
W. Li, H. Dong, L. Wang, N. Li, X. Guo et al., Montmorillonite as bifunctional buffer layer material for hybrid perovskite solar cells with protection from corrosion and retarding recombination. J. Mater. Chem. A 2(33), 13587–13592 (2014). https://doi.org/10.1039/C4TA01550A
S. Wang, Z. Huang, X. Wang, Y. Li, M. Günther et al., Unveiling the role of tBP-LiTFSI complexes in perovskite solar cells. J. Am. Chem. Soc. 140(48), 16720–16730 (2018). https://doi.org/10.1021/jacs.8b09809
A. Magomedov, E. Kasparavičius, K. Rakstys, S. Paek, N. Gasilova et al., Pyridination of hole transporting material in perovskite solar cells questions the long-term stability. J. Mater. Chem. C 6(33), 8874–8878 (2018). https://doi.org/10.1039/C8TC02242A
E. Kasparavicius, A. Magomedov, T. Malinauskas, V. Getautis, Long-term stability of the oxidized hole-transporting materials used in perovskite solar cells. Chem. A Eur. J. 24(39), 9910–9918 (2018). https://doi.org/10.1002/chem.201801441
F. Lamberti, T. Gatti, E. Cescon, R. Sorrentino, A. Rizzo et al., Evidence of spiro-OMeTAD de-doping by tert-butylpyridine additive in hole-transporting layers for perovskite solar cells. Chem 5(7), 1806–1817 (2019). https://doi.org/10.1016/j.chempr.2019.04.003
E.J. Juarez-Perez, M.R. Leyden, S. Wang, L.K. Ono, Z. Hawash et al., Role of the dopants on the morphological and transport properties of spiro-MeOTAD hole transport layer. Chem. Mater. 28(16), 5702–5709 (2016). https://doi.org/10.1021/acs.chemmater.6b01777
S.N. Habisreutinger, N.K. Noel, H.J. Snaith, R.J. Nicholas, Investigating the role of 4-tert butylpyridine in perovskite solar cells. Adv. Energy Mater. 7(1), 1601079 (2017). https://doi.org/10.1002/aenm.201601079
G. Cavallo, P. Metrangolo, R. Milani, T. Pilati, A. Priimagi et al., The halogen bond. Chem. Rev. 116(4), 2478–2601 (2016). https://doi.org/10.1021/acs.chemrev.5b00484
P. Metrangolo, G. Resnati, Halogen versus hydrogen. Science 321(5891), 918–919 (2008). https://doi.org/10.1126/science.1162215
I.G. Grosu, L. Pop, M. Miclǎuş, N.D. Hǎdade, A. Terec et al., Halogen bonds (N–-I) at work: supramolecular catemeric architectures of 2,7-dipyridylfluorene with ortho-, meta-, or para-diiodotetrafluorobenzene isomers. Cryst. Growth Des. 20(5), 3429–3441 (2020). https://doi.org/10.1021/acs.cgd.0c00205
S. Yurdakul, M. Bahat, Fourier transform infrared and Raman spectroscopic studies on 4-tert.butylpyridine and its metal(II) tetracyanonickelate complexes. J. Mol. Struct. 412(1), 97–102 (1997). https://doi.org/10.1016/S0022-2860(96)09392-1
H. Sun, M. Wang, A. Khan, Y. Shan, K. Zhao et al., Co-crystals with delayed fluorescence assembled by 1,4-diiodotetrafluorobenzene and polycyclic aromatic compounds via halogen bonds. ChemistrySelect 2(22), 6323–6330 (2017). https://doi.org/10.1002/slct.201701288
F.Z. Qiu, M.H. Li, S. Wang, J.Y. Sun, Y. Jiang et al., Regulating the crystalline phase of intermediate films enables FA1-xMAxPbI3 perovskite solar cells with efficiency over 22%. J. Mater. Chem. A 9(42), 24064–24070 (2021). https://doi.org/10.1039/D1TA06410J
F. Ma, J. Li, W. Li, N. Lin, L. Wang et al., Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem. Sci. 8(1), 800–805 (2017). https://doi.org/10.1039/C6SC03542F
A.F. Silva, N. Veissid, C.Y. An, I. Pepe, N.B. Oliveira et al., Optical determination of the direct bandgap energy of lead iodide crystals. Appl. Phys. Lett. 69(13), 1930–1932 (1996). https://doi.org/10.1063/1.117625
S. Chen, R. Pei, T. Zhao, D.J. Dyer, Gold nanop assemblies by metal ion-pyridine complexation and their rectified quantized charging in aqueous solutions. J. Phys. Chem. B 106(8), 1903–1908 (2002). https://doi.org/10.1021/jp013574e
L.K. Ono, S. Liu, Y. Qi, Reducing detrimental defects for high-performance metal halide perovskite solar cells. Angew. Chem. Int. Ed. 59(17), 6676–6698 (2020). https://doi.org/10.1002/anie.201905521
Y. Liu, Y. Hu, X. Zhang, P. Zeng, F. Li et al., Inhibited aggregation of lithium salt in spiro-OMeTAD toward highly efficient perovskite solar cells. Nano Energy 70, 104483 (2020). https://doi.org/10.1016/j.nanoen.2020.104483
N.D. Pham, J. Shang, Y. Yang, M.T. Hoang, V.T. Tiong et al., Alkaline-earth bis(trifluoromethanesulfonimide) additives for efficient and stable perovskite solar cells. Nano Energy 69, 104412 (2020). https://doi.org/10.1016/j.nanoen.2019.104412
D.J. Rogers, S.D. Luck, D.E. Irish, D.A. Guzonas, G.F. Atkinson, Surface enhanced Raman spectroscopy of pyridine, pyridinium ions and chloride ions adsorbed on the silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 167(1), 237–249 (1984). https://doi.org/10.1016/0368-1874(84)87069-0
J. Zhang, Q. Daniel, T. Zhang, X. Wen, B. Xu et al., Chemical dopant engineering in hole transport layers for efficient perovskite solar cells: insight into the interfacial recombination. ACS Nano 12(10), 10452–10462 (2018). https://doi.org/10.1021/acsnano.8b06062
G. Ren, Z. Li, W. Wu, S. Han, C. Liu et al., Performance improvement of planar perovskite solar cells with cobalt-doped interface layer. Appl. Surf. Sci. 507, 145081 (2020). https://doi.org/10.1016/j.apsusc.2019.145081
Q. Xiong, C. Wang, Q. Zhou, L. Wang, X. Wang et al., Rear interface engineering to suppress migration of iodide ions for efficient perovskite solar cells with minimized hysteresis. Adv. Funct. Mater. 32(7), 2107823 (2022). https://doi.org/10.1002/adfm.202107823
P. Yadav, M.H. Alotaibi, N. Arora, M.I. Dar, S.M. Zakeeruddin et al., Influence of the nature of a cation on dynamics of charge transfer processes in perovskite solar cells. Adv. Funct. Mater. 28(8), 1706073 (2018). https://doi.org/10.1002/adfm.201706073
S. Yuan, Y. Xian, Y. Long, A. Cabot, W. Li et al., Chromium-based metal-organic framework as a-site cation in CsPbI2Br perovskite solar cells. Adv. Funct. Mater. 31(51), 2106233 (2021). https://doi.org/10.1002/adfm.202106233
C. Liu, D. Zhang, Z. Li, X. Zhang, L. Shen et al., Efficient 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA) hole transport layer in perovskite solar cells enabled by using the nonstoichiometric precursors. Adv. Funct. Mater. 28(36), 1803126 (2018). https://doi.org/10.1002/adfm.201803126
Z. Xiong, X. Chen, B. Zhang, G.O. Odunmbaku, Z. Ou et al., Simultaneous interfacial modification and crystallization control by biguanide hydrochloride for stable perovskite solar cells with PCE of 24.4%. Adv. Mater. 34(8), 2106118 (2022). https://doi.org/10.1002/adma.202106118
J. Zhang, Y. Fang, W. Zhao, R. Han, J. Wen et al., Molten-salt-assisted CsPbI3 perovskite crystallization for nearly 20%-efficiency solar cells. Adv. Mater. 33(45), 2103770 (2021). https://doi.org/10.1002/adma.202103770