Molecular Mechanisms of Intracellular Delivery of Nanoparticles Monitored by an Enzyme-Induced Proximity Labeling
Corresponding Author: Bing He
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 103
Abstract
Achieving increasingly finely targeted drug delivery to organs, tissues, cells, and even to intracellular biomacromolecules is one of the core goals of nanomedicines. As the delivery destination is refined to cellular and subcellular targets, it is essential to explore the delivery of nanomedicines at the molecular level. However, due to the lack of technical methods, the molecular mechanism of the intracellular delivery of nanomedicines remains unclear to date. Here, we develop an enzyme-induced proximity labeling technology in nanoparticles (nano-EPL) for the real-time monitoring of proteins that interact with intracellular nanomedicines. Poly(lactic-co-glycolic acid) nanoparticles coupled with horseradish peroxidase (HRP) were fabricated as a model (HRP(+)-PNPs) to evaluate the molecular mechanism of nano delivery in macrophages. By adding the labeling probe biotin-phenol and the catalytic substrate H2O2 at different time points in cellular delivery, nano-EPL technology was validated for the real-time in situ labeling of proteins interacting with nanoparticles. Nano-EPL achieves the dynamic molecular profiling of 740 proteins to map the intracellular delivery of HRP (+)-PNPs in macrophages over time. Based on dynamic clustering analysis of these proteins, we further discovered that different organelles, including endosomes, lysosomes, the endoplasmic reticulum, and the Golgi apparatus, are involved in delivery with distinct participation timelines. More importantly, the engagement of these organelles differentially affects the drug delivery efficiency, reflecting the spatial–temporal heterogeneity of nano delivery in cells. In summary, these findings highlight a significant methodological advance toward understanding the molecular mechanisms involved in the intracellular delivery of nanomedicines.
Highlights:
1 Novel enzyme-induced proximity labeling technology in nanoparticles (nano-EPL).
2 Nano-EPL enables dynamic molecular mapping of the intracellular delivery of nanoparticles in macrophages.
3 Nano-EPL enables the elucidation of a comprehensive phagosome-centered timeline during the vesicular transportation of nanoparticles, revealing distinct organelle engagement and its differential impact on drug delivery efficiency.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J. Bao, Q. Zhang, T. Duan, R. Hu, J. Tang, The fate of nanops in vivo and the strategy of designing stealth nanop for drug delivery. Curr. Drug Targets 22, 922–946 (2021). https://doi.org/10.2174/1389450122666210118105122
- E.D. Pereira, D.L. da Silva, T.F. Paiva, L.L. de Almeida Carvalho, H.V. Rocha, J.C. Pinto, In vitro release and in vivo pharmacokinetics of praziquantel loaded in different polymer ps. Materials 16(9), 3382 (2023). https://doi.org/10.3390/ma16093382
- W. Byoun, M. Jang, H. Yoo, Fabrication of highly fluorescent multiple Fe3O4 nanops core-silica shell nanops. J. Nanopart. Res. 21, 1 (2018). https://doi.org/10.1007/s11051-018-4445-6
- D. Yang, D. Liu, H. Deng, J. Zhang, M. Qin et al., Transferrin functionization elevates transcytosis of nanogranules across epithelium by triggering polarity-associated transport flow and positive cellular feedback loop. ACS Nano 13, 5058–5076 (2019). https://doi.org/10.1021/acsnano.8b07231
- J. Zhang, M. Qin, D. Yang, L. Yuan, X. Zou et al., Nanoprotein interaction atlas reveals the transport pathway of gold nanops across epithelium and its association with Wnt/β-catenin signaling. ACS Nano 15, 17977–17997 (2021). https://doi.org/10.1021/acsnano.1c06452
- D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 (2022). https://doi.org/10.1007/s40820-021-00771-8
- P. Zhang, Y. Xiao, X. Sun, X. Lin, S. Koo et al., Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147–167 (2023). https://doi.org/10.1016/j.medj.2022.12.001
- B. Ouyang, W. Poon, Y.-N. Zhang, Z.P. Lin, B.R. Kingston et al., The dose threshold for nanop tumour delivery. Nat. Mater. 19, 1362–1371 (2020). https://doi.org/10.1038/s41563-020-0755-z
- Y. Cheng, J. Ren, S. Fan, P. Wu, W. Cong et al., Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. Nanoscale Horiz. 7, 779–789 (2022). https://doi.org/10.1039/d2nh00067a
- Z. Zhang, J. Ren, W. Dai, H. Zhang, X. Wang et al., Fast and dynamic mapping of the protein Corona on nanop surfaces by photocatalytic proximity labeling. Adv. Mater. 35, e2206636 (2023). https://doi.org/10.1002/adma.202206636
- X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
- A. Babu, N. Amreddy, R. Muralidharan, G. Pathuri, H. Gali et al., Chemodrug delivery using integrin-targeted PLGA-Chitosan nanop for lung cancer therapy. Sci. Rep. 7, 14674 (2017). https://doi.org/10.1038/s41598-017-15012-5
- M. Cao, R. Cai, L. Zhao, M. Guo, L. Wang et al., Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021). https://doi.org/10.1038/s41565-021-00856-w
- E. Hinde, K. Thammasiraphop, H.T. Duong, J. Yeow, B. Karagoz et al., Pair correlation microscopy reveals the role of nanop shape in intracellular transport and site of drug release. Nat. Nanotechnol. 12, 81–89 (2017). https://doi.org/10.1038/nnano.2016.160
- T. Hou, T. Wang, W. Mu, R. Yang, S. Liang et al., Nanop-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nano-Micro Lett. 13, 6 (2020). https://doi.org/10.1007/s40820-020-00531-0
- C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, Nanop biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
- P. Lung, J. Yang, Q. Li, Nanop formulated vaccines: opportunities and challenges. Nanoscale 12, 5746–5763 (2020). https://doi.org/10.1039/c9nr08958f
- L. Xu, S. Weng, S. Li, K. Wang, Y. Shen et al., Engineering the intestinal lymphatic transport of oral nanops to educate macrophages for cancer combined immunotherapy. ACS Nano 17, 11817–11837 (2023). https://doi.org/10.1021/acsnano.3c02985
- A.-M. Pauwels, M. Trost, R. Beyaert, E. Hoffmann, Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38, 407–422 (2017). https://doi.org/10.1016/j.it.2017.03.006
- P. Nair-Gupta, A. Baccarini, N. Tung, F. Seyffer, O. Florey et al., TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521 (2014). https://doi.org/10.1016/j.cell.2014.04.054
- R. Levin-Konigsberg, A.R. Mantegazza, A guide to measuring phagosomal dynamics. FEBS J. 288, 1412–1433 (2021). https://doi.org/10.1111/febs.15506
- J. Li, S. Han, H. Li, N.D. Udeshi, T. Svinkina et al., Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373-386.e15 (2020). https://doi.org/10.1016/j.cell.2019.12.029
- H.-W. Rhee, P. Zou, N.D. Udeshi, J.D. Martell, V.K. Mootha et al., Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013). https://doi.org/10.1126/science.1230593
- M. Sohda, Y. Misumi, S. Ogata, S. Sakisaka, S. Hirose et al., Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem. Biophys. Res. Commun. 456, 275–281 (2015). https://doi.org/10.1016/j.bbrc.2014.11.071
- M. Rubino, M. Miaczynska, R. Lippé, M. Zerial, Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 (2000). https://doi.org/10.1074/jbc.275.6.3745
- F. Demarchi, C. Bertoli, T. Copetti, E.-L. Eskelinen, C. Schneider, Calpain as a novel regulator of autophagosome formation. Autophagy 3, 235–237 (2007). https://doi.org/10.4161/auto.3661
- C. Gorbea, G. Pratt, V. Ustrell, R. Bell, S. Sahasrabudhe et al., A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J. Biol. Chem. 285, 31616–31633 (2010). https://doi.org/10.1074/jbc.M110.154120
- L. Smalinskaitė, M.K. Kim, A.J.O. Lewis, R.J. Keenan, R.S. Hegde, Mechanism of an intramembrane chaperone for multipass membrane proteins. Nature 611, 161–166 (2022). https://doi.org/10.1038/s41586-022-05336-2
- C.-L. Luo, X.-C. Xu, C.-J. Liu, S. He, J.-R. Chen et al., RBFOX2/GOLIM4 splicing axis activates vesicular transport pathway to promote nasopharyngeal carcinogenesis. Adv. Sci. 8, e2004852 (2021). https://doi.org/10.1002/advs.202004852
- A.-M. Pauwels, A. Härtlova, J. Peltier, Y. Driege, G. Baudelet et al., Spatiotemporal changes of the phagosomal proteome in dendritic cells in response to LPS stimulation. Mol. Cell. Proteom. 18, 909–922 (2019). https://doi.org/10.1074/mcp.RA119.001316
References
J. Bao, Q. Zhang, T. Duan, R. Hu, J. Tang, The fate of nanops in vivo and the strategy of designing stealth nanop for drug delivery. Curr. Drug Targets 22, 922–946 (2021). https://doi.org/10.2174/1389450122666210118105122
E.D. Pereira, D.L. da Silva, T.F. Paiva, L.L. de Almeida Carvalho, H.V. Rocha, J.C. Pinto, In vitro release and in vivo pharmacokinetics of praziquantel loaded in different polymer ps. Materials 16(9), 3382 (2023). https://doi.org/10.3390/ma16093382
W. Byoun, M. Jang, H. Yoo, Fabrication of highly fluorescent multiple Fe3O4 nanops core-silica shell nanops. J. Nanopart. Res. 21, 1 (2018). https://doi.org/10.1007/s11051-018-4445-6
D. Yang, D. Liu, H. Deng, J. Zhang, M. Qin et al., Transferrin functionization elevates transcytosis of nanogranules across epithelium by triggering polarity-associated transport flow and positive cellular feedback loop. ACS Nano 13, 5058–5076 (2019). https://doi.org/10.1021/acsnano.8b07231
J. Zhang, M. Qin, D. Yang, L. Yuan, X. Zou et al., Nanoprotein interaction atlas reveals the transport pathway of gold nanops across epithelium and its association with Wnt/β-catenin signaling. ACS Nano 15, 17977–17997 (2021). https://doi.org/10.1021/acsnano.1c06452
D.O. Lopez-Cantu, X. Wang, H. Carrasco-Magallanes, S. Afewerki, X. Zhang et al., From bench to the clinic: the path to translation of nanotechnology-enabled mRNA SARS-CoV-2 vaccines. Nano-Micro Lett. 14, 41 (2022). https://doi.org/10.1007/s40820-021-00771-8
P. Zhang, Y. Xiao, X. Sun, X. Lin, S. Koo et al., Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med 4, 147–167 (2023). https://doi.org/10.1016/j.medj.2022.12.001
B. Ouyang, W. Poon, Y.-N. Zhang, Z.P. Lin, B.R. Kingston et al., The dose threshold for nanop tumour delivery. Nat. Mater. 19, 1362–1371 (2020). https://doi.org/10.1038/s41563-020-0755-z
Y. Cheng, J. Ren, S. Fan, P. Wu, W. Cong et al., Nanoparticulates reduce tumor cell migration through affinity interactions with extracellular migrasomes and retraction fibers. Nanoscale Horiz. 7, 779–789 (2022). https://doi.org/10.1039/d2nh00067a
Z. Zhang, J. Ren, W. Dai, H. Zhang, X. Wang et al., Fast and dynamic mapping of the protein Corona on nanop surfaces by photocatalytic proximity labeling. Adv. Mater. 35, e2206636 (2023). https://doi.org/10.1002/adma.202206636
X. Zhang, X. Chen, Y. Zhao, Nanozymes: versatile platforms for cancer diagnosis and therapy. Nano-Micro Lett. 14(1), 95 (2022). https://doi.org/10.1007/s40820-022-00828-2
A. Babu, N. Amreddy, R. Muralidharan, G. Pathuri, H. Gali et al., Chemodrug delivery using integrin-targeted PLGA-Chitosan nanop for lung cancer therapy. Sci. Rep. 7, 14674 (2017). https://doi.org/10.1038/s41598-017-15012-5
M. Cao, R. Cai, L. Zhao, M. Guo, L. Wang et al., Molybdenum derived from nanomaterials incorporates into molybdenum enzymes and affects their activities in vivo. Nat. Nanotechnol. 16, 708–716 (2021). https://doi.org/10.1038/s41565-021-00856-w
E. Hinde, K. Thammasiraphop, H.T. Duong, J. Yeow, B. Karagoz et al., Pair correlation microscopy reveals the role of nanop shape in intracellular transport and site of drug release. Nat. Nanotechnol. 12, 81–89 (2017). https://doi.org/10.1038/nnano.2016.160
T. Hou, T. Wang, W. Mu, R. Yang, S. Liang et al., Nanop-loaded polarized-macrophages for enhanced tumor targeting and cell-chemotherapy. Nano-Micro Lett. 13, 6 (2020). https://doi.org/10.1007/s40820-020-00531-0
C.M. Hu, R.H. Fang, K.C. Wang, B.T. Luk, S. Thamphiwatana, D. Dehaini, P. Nguyen, P. Angsantikul, C.H. Wen, A.V. Kroll, C. Carpenter, Nanop biointerfacing by platelet membrane cloaking. Nature 526(7571), 118–121 (2015). https://doi.org/10.1038/nature15373
P. Lung, J. Yang, Q. Li, Nanop formulated vaccines: opportunities and challenges. Nanoscale 12, 5746–5763 (2020). https://doi.org/10.1039/c9nr08958f
L. Xu, S. Weng, S. Li, K. Wang, Y. Shen et al., Engineering the intestinal lymphatic transport of oral nanops to educate macrophages for cancer combined immunotherapy. ACS Nano 17, 11817–11837 (2023). https://doi.org/10.1021/acsnano.3c02985
A.-M. Pauwels, M. Trost, R. Beyaert, E. Hoffmann, Patterns, receptors, and signals: regulation of phagosome maturation. Trends Immunol. 38, 407–422 (2017). https://doi.org/10.1016/j.it.2017.03.006
P. Nair-Gupta, A. Baccarini, N. Tung, F. Seyffer, O. Florey et al., TLR signals induce phagosomal MHC-I delivery from the endosomal recycling compartment to allow cross-presentation. Cell 158, 506–521 (2014). https://doi.org/10.1016/j.cell.2014.04.054
R. Levin-Konigsberg, A.R. Mantegazza, A guide to measuring phagosomal dynamics. FEBS J. 288, 1412–1433 (2021). https://doi.org/10.1111/febs.15506
J. Li, S. Han, H. Li, N.D. Udeshi, T. Svinkina et al., Cell-surface proteomic profiling in the fly brain uncovers wiring regulators. Cell 180, 373-386.e15 (2020). https://doi.org/10.1016/j.cell.2019.12.029
H.-W. Rhee, P. Zou, N.D. Udeshi, J.D. Martell, V.K. Mootha et al., Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328–1331 (2013). https://doi.org/10.1126/science.1230593
M. Sohda, Y. Misumi, S. Ogata, S. Sakisaka, S. Hirose et al., Trans-Golgi protein p230/golgin-245 is involved in phagophore formation. Biochem. Biophys. Res. Commun. 456, 275–281 (2015). https://doi.org/10.1016/j.bbrc.2014.11.071
M. Rubino, M. Miaczynska, R. Lippé, M. Zerial, Selective membrane recruitment of EEA1 suggests a role in directional transport of clathrin-coated vesicles to early endosomes. J. Biol. Chem. 275, 3745–3748 (2000). https://doi.org/10.1074/jbc.275.6.3745
F. Demarchi, C. Bertoli, T. Copetti, E.-L. Eskelinen, C. Schneider, Calpain as a novel regulator of autophagosome formation. Autophagy 3, 235–237 (2007). https://doi.org/10.4161/auto.3661
C. Gorbea, G. Pratt, V. Ustrell, R. Bell, S. Sahasrabudhe et al., A protein interaction network for Ecm29 links the 26 S proteasome to molecular motors and endosomal components. J. Biol. Chem. 285, 31616–31633 (2010). https://doi.org/10.1074/jbc.M110.154120
L. Smalinskaitė, M.K. Kim, A.J.O. Lewis, R.J. Keenan, R.S. Hegde, Mechanism of an intramembrane chaperone for multipass membrane proteins. Nature 611, 161–166 (2022). https://doi.org/10.1038/s41586-022-05336-2
C.-L. Luo, X.-C. Xu, C.-J. Liu, S. He, J.-R. Chen et al., RBFOX2/GOLIM4 splicing axis activates vesicular transport pathway to promote nasopharyngeal carcinogenesis. Adv. Sci. 8, e2004852 (2021). https://doi.org/10.1002/advs.202004852
A.-M. Pauwels, A. Härtlova, J. Peltier, Y. Driege, G. Baudelet et al., Spatiotemporal changes of the phagosomal proteome in dendritic cells in response to LPS stimulation. Mol. Cell. Proteom. 18, 909–922 (2019). https://doi.org/10.1074/mcp.RA119.001316