Wet-Chemical Synthesis and Applications of Semiconductor Nanomaterial-Based Epitaxial Heterostructures
Corresponding Author: Hua Zhang
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 86
Abstract
Semiconductor nanomaterial-based epitaxial heterostructures with precisely controlled compositions and morphologies are of great importance for various applications in optoelectronics, thermoelectrics, and catalysis. Until now, various kinds of epitaxial heterostructures have been constructed. In this minireview, we will first introduce the synthesis of semiconductor nanomaterial-based epitaxial heterostructures by wet-chemical methods. Various architectures based on different kinds of seeds or templates are illustrated, and their growth mechanisms are discussed in detail. Then, the applications of epitaxial heterostructures in optoelectronics, catalysis, and thermoelectrics are described. Finally, we provide some challenges and personal perspectives for the future research directions of semiconductor nanomaterial-based epitaxial heterostructures.
Highlights:
1 The synthesis of semiconductor nanomaterial-based epitaxial heterostructures by wet-chemical methods is introduced. Various architectures based on different kinds of seeds or templates are illustrated, and their growth mechanisms are discussed in detail.
2 The applications of epitaxial heterostructures in optoelectronics, thermoelectrics, and catalysis are discussed.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- P.D. Cozzoli, T. Pellegrino, L. Manna, Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 35(11), 1195–1208 (2006). https://doi.org/10.1039/b517790c
- M.J. Bierman, S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2(10), 1050–1059 (2009). https://doi.org/10.1039/b912095e
- I. Gur, N.A. Fromer, C.-P. Chen, A.G. Kanaras, A.P. Alivisatos, Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 7(2), 409–414 (2007). https://doi.org/10.1021/nl062660t
- Y. Cui, U. Banin, M.T. Björk, A.P. Alivisatos, Electrical transport through a single nanoscale semiconductor branch point. Nano Lett. 5(7), 1519–1523 (2005). https://doi.org/10.1021/nl051064g
- R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184
- B. Tian, C.M. Lieber, Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013). https://doi.org/10.1146/annurev-anchem-062012-092623
- M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/C2CS35310E
- F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, S. Weiss, Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(9), 1679–1687 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.018
- X. Huang, C. Tan, Z. Yin, H. Zhang, Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26(14), 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
- X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012). https://doi.org/10.1039/C1CS15078B
- C. Hinkle, M. Milojevic, B. Brennan, A.M. Sonnet, F. Aguirre-Tostado, G. Hughes, E. Vogel, R. Wallace, Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning. Appl. Phys. Lett. 94(16), 162101 (2009). https://doi.org/10.1063/1.3120546
- M.J. Hale, S. Yi, J. Sexton, A. Kummel, M.J. Passlack, Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2 × 8)/(2 × 4). Chem. Phys. 119(13), 6719–6728 (2003). https://doi.org/10.1063/1.1601596
- Z. Lin, A. Yin, J. Mao, Y. Xia, N. Kempf, Q. He, Y. Wang, C.-Y. Chen, Y. Zhang, V. Ozolins, Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2(10), e1600993 (2016). https://doi.org/10.1126/sciadv.1600993
- L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002). https://doi.org/10.1038/nature01141
- H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48(5), 353–355 (1986). https://doi.org/10.1063/1.96549@apl.2019.APLCLASS2019.issue-1
- I. Markov, S. Stoyanov, Mechanisms of epitaxial growth. Contemp. Phys. 28(3), 267–320 (1987). https://doi.org/10.1080/00107518708219073
- C. Bouet, M.C. Tessier, S. Ithurria, B. Mahler, B. Nadal, B. Dubertret, Flat colloidal semiconductor nanoplatelets. Chem. Mater. 25(8), 1262–1271 (2013). https://doi.org/10.1021/cm303786a
- K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719
- E.P. Bakkers, J.A. Van Dam, S. De Franceschi, L.P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, P. Van der Sluis, Epitaxial growth of InP nanowires on germanium. Nat. Mater. 3(11), 769–773 (2004). https://doi.org/10.1038/nmat1235
- O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong et al., Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12(5), 445–451 (2013). https://doi.org/10.1038/nmat3539
- D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996), 190–195 (2004). https://doi.org/10.1038/nature02695
- G. Zhang, Q. Yu, W. Wang, X. Li, Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies. Adv. Mater. 22(17), 1959–1962 (2010). https://doi.org/10.1002/adma.200903812
- G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090
- X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). https://doi.org/10.1038/ncomms2472
- L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark et al., Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343(6167), 163–167 (2014). https://doi.org/10.1126/science.1246137
- H.-C. Shin, Y. Jang, T.-H. Kim, J.-H. Lee, D.-H. Oh et al., Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc. 137(21), 6897–6905 (2015). https://doi.org/10.1021/jacs.5b03151
- W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
- Y. Liu, M.D. Deal, J.D. Plummer, High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Appl. Phys. Lett. 84(14), 2563–2565 (2004). https://doi.org/10.1063/1.1691175
- M. Miyao, T. Tanaka, K. Toko, M. Tanaka, Giant Ge-on-insulator formation by Si–Ge mixing-triggered liquid-phase epitaxy. Appl. Phys. Express 2(4), 045503 (2009). https://doi.org/10.1143/apex.2.045503
- L. Carbone, P.D. Cozzoli, Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 5(5), 449–493 (2010). https://doi.org/10.1016/j.nantod.2010.08.006
- Markov IV, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd edn. (World scientific, Singapore, 2016). https://doi.org/10.1142/5172
- H. Lee, S. Yoon, J. Ahn, Y. Suh, J. Lee, H. Lim, D. Kim, Synthesis of type II CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications. Sol. Energy Mater. Sol. C 93(6), 779–782 (2009). https://doi.org/10.1016/j.solmat.2008.09.050
- J. Chen, X.J. Wu, L. Yin, B. Li, X. Hong et al., One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54(4), 1210–1214 (2015). https://doi.org/10.1002/anie.201410172
- W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42(13), 5714–5743 (2013). https://doi.org/10.1039/c3cs60012b
- L. Wang, H. Wei, Y. Fan, X. Gu, J. Zhan, One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. J. Phys. Chem. C 113(32), 14119–14125 (2009). https://doi.org/10.1021/jp902866b
- J.B. Rivest, P.K. Jain, Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42(1), 89–96 (2013). https://doi.org/10.1038/s41467-018-02878-w
- L. De Trizio, L. Manna, Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116(18), 10852–10887 (2016). https://doi.org/10.1021/acs.chemrev.5b00739
- B.J. Beberwyck, Y. Surendranath, A.P. Alivisatos, Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117(39), 19759–19770 (2013). https://doi.org/10.1021/jp405989z
- P.K. Jain, L. Amirav, S. Aloni, A.P. Alivisatos, Nanoheterostructure cation exchange: anionic framework conservation. J. Am. Chem. Soc. 132(29), 9997–9999 (2010). https://doi.org/10.1021/ja104126u
- H. Zhou, H. Sasahara, I. Honma, H. Komiyama, J.W. Haus, Coated semiconductor nanoparticles: the CdS/PbS system’s photoluminescence properties. Chem. Mater. 6(9), 1534–1541 (1994). https://doi.org/10.1021/cm00045a010
- S.E. Wark, C.-H. Hsia, D.H. Son, Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 130(29), 9550–9555 (2008). https://doi.org/10.1021/ja802187c
- A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. Weller, Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98(3), 934–941 (1994). https://doi.org/10.1021/j100122a026
- L. De Trizio, H. Li, A. Casu, A. Genovese, A. Sathya, G.C. Messina, L. Manna, Sn cation valency dependence in cation exchange reactions involving Cu2-xSe nanocrystals. J. Am. Chem. Soc. 136(46), 16277–16284 (2014). https://doi.org/10.1021/ja508161c
- I. Kriegel, A. Wisnet, A.R.S. Kandada, F. Scotognella, F. Tassone et al., Cation exchange synthesis and optoelectronic properties of type II CdTe-Cu2-xTe nano-heterostructures. J. Mate. Chem. C 2(17), 3189–3198 (2014). https://doi.org/10.1039/C3TC32049A
- M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, L. Polavarapu et al., One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures. J. Am. Chem. Soc. 133(7), 2052–2055 (2011). https://doi.org/10.1021/ja1090589
- J. Park, H. Zheng, Y.-W. Jun, A.P. Alivisatos, Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 131(39), 13943–13945 (2009). https://doi.org/10.1021/ja905732q
- J. Zhou, C. Pu, T. Jiao, X. Hou, X. Peng, A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals. J. Am. Chem. Soc. 138(20), 6475–6483 (2016). https://doi.org/10.1021/jacs.6b00674
- Y. Niu, C. Pu, R. Lai, R. Meng, W. Lin, H. Qin, X. Peng, One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Res. 10(4), 1149–1162 (2017). https://doi.org/10.1007/s12274-016-1287-3
- H. Qin, Y. Niu, R. Meng, X. Lin, R. Lai, W. Fang, X. Peng, Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136(1), 179–187 (2013). https://doi.org/10.1021/ja4078528
- J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulović, M.G. Bawendi, Blue luminescence from (CdS) ZnS core–shell nanocrystals. Angew. Chem. Int. Ed. 43(16), 2154–2158 (2004). https://doi.org/10.1002/anie.200453728
- Y. Yang, O. Chen, A. Angerhofer, Y.C. Cao, Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 128(38), 12428–12429 (2006). https://doi.org/10.1021/ja064818h
- D. Chen, F. Zhao, H. Qi, M. Rutherford, X. Peng, Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 22(4), 1437–1444 (2010). https://doi.org/10.1021/cm902516f
- M. Ethayaraja, C. Ravikumar, D. Muthukumaran, K. Dutta, R. Bandyopadhyaya, CdS- ZnS core-shell nanoparticle formation: experiment, mechanism, and simulation. J. Phys. Chem. C 111(8), 3246–3252 (2007). https://doi.org/10.1021/jp066066j
- S. Haubold, M. Haase, A. Kornowski, H. Weller, Strongly luminescent InP/ZnS core-shell nanoparticles. ChemPhysChem 2(5), 331–334 (2001). https://doi.org/10.1002/1439-7641
- E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, S.-W. Kim, Step-wise synthesis of InP/ZnS core − shell Quantum Dots and the role of zinc acetate. Chem. Mater. 21(4), 573–575 (2009). https://doi.org/10.1021/cm803084p
- S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, S. Kim, One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem 10(9–10), 1466–1470 (2009). https://doi.org/10.1002/cphc.200900159
- A. Narayanaswamy, L. Feiner, A. Meijerink, P. Van der Zaag, The effect of temperature and dot size on the spectral properties of colloidal inp/zns core-shell quantum dots. ACS Nano 3(9), 2539–2546 (2009). https://doi.org/10.1021/nn9004507
- M. Brumer, A. Kigel, L. Amirav, A. Sashchiuk, O. Solomesch, N. Tessler, E. Lifshitz, PbSe/PbS and PbSe/PbSexS1–x core/shell nanocrystals. Adv. Funct. Mater. 15(7), 1111–1116 (2005). https://doi.org/10.1021/jp0644356
- E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti et al., Air-stable PbSe/PbS and PbSe/PbSexS1-x core- shell nanocrystal quantum dots and their applications. J. Phys. Chem. B 110(50), 25356–25365 (2006). https://doi.org/10.1021/jp0644356
- J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, A.Y. Wang, Synthesis and surface modification of PbSe/PbS core-shell nanocrystals for potential device applications. Nanotechnology 17(21), 5428 (2006). https://doi.org/10.1088/0957-4484/17/21/024
- A. Sashchiuk, L. Langof, R. Chaim, E. Lifshitz, Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals. J. Cryst. Growth 240(3), 431–438 (2002). https://doi.org/10.1016/S0022-0248(02)01156-9
- K.A. Abel, H. Qiao, J.F. Young, F.C. van Veggel, Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 1(15), 2334–2338 (2010). https://doi.org/10.1021/jz1007565
- B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P.F. Smet et al., The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 5(1), 58–66 (2010). https://doi.org/10.1021/nn102980e
- D. Grodzińska, W.H. Evers, R. Dorland, J. van Rijssel, M.A. van Huis et al., Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots. Small 7(24), 3493–3501 (2011). https://doi.org/10.1002/smll.201101819
- S. Jiao, Q. Shen, I.N. Mora-Seró, J. Wang, Z. Pan et al., Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 9(1), 908–915 (2015). https://doi.org/10.1021/nn506638n
- R. Xie, X. Zhong, T. Basché, Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores. Adv. Mater. 17(22), 2741–2745 (2005). https://doi.org/10.1002/adma.200501029
- E. Groeneveld, L. Witteman, M. Lefferts, X. Ke, S. Bals, G. Van Tendeloo, C. de Mello Donega, Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals. ACS Nano 7(9), 7913–7930 (2013). https://doi.org/10.1021/nn402931y
- C.-T. Cheng, C.-Y. Chen, C.-W. Lai, W.-H. Liu, S.-C. Pu, P.-T. Chou, Y.-H. Chou, H.-T. Chiu, Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. J. Mater. Chem. 15(33), 3409–3414 (2005). https://doi.org/10.1039/B503681J
- W. Zhang, G. Chen, J. Wang, B.-C. Ye, X. Zhong, Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg. Chem. 48(20), 9723–9731 (2009). https://doi.org/10.1021/ic9010949
- Y.-S. Liu, Y. Sun, P.T. Vernier, C.-H. Liang, S.Y.C. Chong, M.A. Gundersen, pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C 111(7), 2872–2878 (2007). https://doi.org/10.1021/jp0654718
- P. Reiss, M. Protiere, L. Li, Core/shell semiconductor nanocrystals. Small 5(2), 154–168 (2009). https://doi.org/10.1002/smll.200800841
- R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2011). https://doi.org/10.1021/cr100449n
- J.Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran et al., Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem. Commun. 53(6), 1002–1024 (2017). https://doi.org/10.1039/C6CC08742F
- Y. Cao, U. Banin, Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 122(40), 9692–9702 (2000). https://doi.org/10.1021/ja001386g
- D.V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 108(49), 18826–18831 (2004). https://doi.org/10.1021/jp046481g
- J. Bleuse, S. Carayon, P. Reiss, Optical properties of core/multishell CdSe/Zn (S, Se) nanocrystals. Physica E: Low Dimen. Syst. Nanostruct. 21(2), 331–335 (2004). https://doi.org/10.1016/j.physe.2003.11.044
- L. Manna, E.C. Scher, L.-S. Li, A.P. Alivisatos, Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124(24), 7136–7145 (2002). https://doi.org/10.1021/ja025946i
- Y. Sun, Interfaced heterogeneous nanodimers. Natl. Sci. Rev. 2(3), 329–348 (2015). https://doi.org/10.1093/nsr/nwv037
- K.-W. Kwon, M. Shim, γ-Fe2O3/II − VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127(29), 10269–10275 (2005). https://doi.org/10.1021/ja051713q
- S. He, H. Zhang, S. Delikanli, Y. Qin, M.T. Swihart, H. Zeng, Bifunctional magneto-optical FePt-CdS hybrid nanoparticles. J. Phys. Chem. C 113(1), 87–90 (2008). https://doi.org/10.1021/jp806247f
- D.V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3(12), 1677–1681 (2003). https://doi.org/10.1021/nl034815s
- D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, A.P. Alivisatos, Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007). https://doi.org/10.1021/nl072003g
- L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello et al., Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7(10), 2942–2950 (2007). https://doi.org/10.1021/nl0717661
- A. Fiore, R. Mastria, M.G. Lupo, G. Lanzani, C. Giannini et al., Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131(6), 2274–2282 (2009). https://doi.org/10.1021/ja807874e
- P. Peng, D.J. Milliron, S.M. Hughes, J.C. Johnson, A.P. Alivisatos, R.J. Saykally, Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett. 5(9), 1809–1813 (2005). https://doi.org/10.1021/nl0511667
- H. Zhong, G.D. Scholes, Shape tuning of type II CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth. J. Am. Chem. Soc. 131(26), 9170–9171 (2009). https://doi.org/10.1021/ja903722d
- S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni, L. Manna, Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via “one-pot” cation exchange and seeded growth. Nano Lett. 10(9), 3770–3776 (2010). https://doi.org/10.1021/nl102539a
- K.K. Haldar, N. Pradhan, A. Patra, Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures. Small 9(20), 3424–3432 (2013). https://doi.org/10.1002/smll.201370125
- D.-H. Ha, A.H. Caldwell, M.J. Ward, S. Honrao, K. Mathew et al., Solid-solid phase transformations induced through cation exchange and strain in 2D heterostructured copper sulfide nanocrystals. Nano Lett. 14(12), 7090–7099 (2014). https://doi.org/10.1021/nl5035607
- G. Gariano, V. Lesnyak, R. Brescia, G. Bertoni, Z. Dang, R. Gaspari, L. De Trizio, L. Manna, Role of the crystal structure in cation exchange reactions involving colloidal Cu2Se nanocrystals. J. Am. Chem. Soc. 139(28), 9583–9590 (2017). https://doi.org/10.1021/jacs.7b03706
- J. Zhang, B.D. Chernomordik, R.W. Crisp, D.M. Kroupa, J.M. Luther, E.M. Miller, J. Gao, M.C. Beard, Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 9(7), 7151–7163 (2015). https://doi.org/10.1021/acsnano.5b01859
- S. Kudera, L. Carbone, M.F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W.J. Parak, L. Manna, Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano Lett. 5(3), 445–449 (2005). https://doi.org/10.1021/nl048060g
- M. Casavola, V. Grillo, E. Carlino, C. Giannini, F. Gozzo et al., Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 7(5), 1386–1395 (2007). https://doi.org/10.1021/nl070550w
- T. Mokari, U. Banin, Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem. Mater. 15(20), 3955–3960 (2003). https://doi.org/10.1021/cm034173+
- F. Shieh, A.E. Saunders, B.A. Korgel, General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109(18), 8538–8542 (2005). https://doi.org/10.1021/jp0509008
- S. Kumar, M. Jones, S.S. Lo, G.D. Scholes, Nanorod heterostructures showing photoinduced charge separation. Small 3(9), 1633–1639 (2007). https://doi.org/10.1002/smll.200700155
- H. McDaniel, N. Oh, M. Shim, CdSe-CdSexTe1-x nanorod heterostructures: tuning alloy composition and spatially indirect recombination energies. J. Mater. Chem. 22(23), 11621–11628 (2012). https://doi.org/10.1039/C2JM31464A
- B. Sadtler, D.O. Demchenko, H. Zheng, S.M. Hughes, M.G. Merkle, U. Dahmen, L.-W. Wang, A.P. Alivisatos, Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131(14), 5285–5293 (2009). https://doi.org/10.1021/ja809854q
- D. Lee, W.D. Kim, S. Lee, W.K. Bae, S. Lee, D.C. Lee, Direct Cd-to-Pb exchange of CdSe nanorods into PbSe/CdSe axial heterojunction nanorods. Chem. Mater. 27(15), 5295–5304 (2015). https://doi.org/10.1021/acs.chemmater.5b01548
- R.D. Robinson, B. Sadtler, D.O. Demchenko, C.K. Erdonmez, L.-W. Wang, A.P. Alivisatos, Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317(5836), 355–358 (2007). https://doi.org/10.1126/science.1142593
- W. Wang, J. Goebl, L. He, S. Aloni, Y. Hu, L. Zhen, Y. Yin, Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures. J. Am. Chem. Soc. 132(48), 17316–17324 (2010). https://doi.org/10.1021/ja108186w
- L. Cheng, Z.-G. Chen, L. Yang, G. Han, H.-Y. Xu, G.J. Snyder, G.-Q. Lu, J. Zou, T-shaped Bi2Te3-Te heteronanojunctions: epitaxial growth, structural modeling, and thermoelectric properties. J. Phys. Chem. C 117(24), 12458–12464 (2013). https://doi.org/10.1021/jp4041666
- W. Lu, Y. Ding, Y. Chen, Z.L. Wang, J. Fang, Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J. Am. Chem. Soc. 127(28), 10112–10116 (2005). https://doi.org/10.1021/ja052286j
- G. Zhang, H. Fang, H. Yang, L.A. Jauregui, Y.P. Chen, Y. Wu, Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012). https://doi.org/10.1021/nl301327d
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
- C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
- M. Chhowalla, Z. Liu, H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44(9), 2584–2586 (2015). https://doi.org/10.1039/C5CS90037A
- C. Tan, H. Zhang, Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137(38), 12162–12174 (2015). https://doi.org/10.1021/jacs.5b03590
- A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
- J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24(37), 5798–5806 (2014). https://doi.org/10.1002/adfm.201400330
- C. Tan, Z. Zeng, X. Huang, X. Rui, X.J. Wu et al., Liquid-Phase Epitaxial Growth of Two-Dimensional Semiconductor Hetero-nanostructures. Angew. Chem. Int. Ed. 54(6), 1841–1845 (2015). https://doi.org/10.1002/anie.201410890
- X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222
- Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/nmat4091
- H. Heo, J.H. Sung, G. Jin, J.H. Ahn, K. Kim et al., Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27(25), 3803–3810 (2015). https://doi.org/10.1002/adma.201500846
- M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface. Science 349(6247), 524–528 (2015). https://doi.org/10.1126/science.aab4097
- C. Huang, S. Wu, A.M. Sanchez, J.J. Peters, R. Beanland et al., Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13(12), 1096–1101 (2014). https://doi.org/10.1038/nmat4064
- J. Chen, X.-J. Wu, Y. Gong, Y. Zhu, Z. Yang et al., Edge epitaxy of two-dimensional MoSe2 and MoS2 nanosheets on one-dimensional nanowires. J. Am. Chem. Soc. 139(25), 8653–8660 (2017). https://doi.org/10.1021/jacs.7b03752
- J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 27(19), 1605817 (2017). https://doi.org/10.1002/adfm.201605817
- Y. Hu, Y. Huang, C. Tan, X. Zhang, Q. Lu et al., Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Mater. Chem. Front. 1(1), 24–36 (2017). https://doi.org/10.1039/C6QM00195E
- Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016). https://doi.org/10.1002/adma.201503270
- C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/C4CS00182F
- X. Zhang, Z. Lai, Z. Liu, C. Tan, Y. Huang et al., A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem. Int. Ed. 54(18), 5425–5428 (2015). https://doi.org/10.1002/anie.201501071
- Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan et al., Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 27(5), 935–939 (2015). https://doi.org/10.1002/adma.201404568
- X. Hong, J. Liu, B. Zheng, X. Huang, X. Zhang et al., A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 26(36), 6250–6254 (2014). https://doi.org/10.1002/adma.201402063
- C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng et al., Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Adv. Mater. 26(11), 1735–1739 (2014). https://doi.org/10.1002/adma.201304562
- E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, B. Dubertret, Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48(1), 22–30 (2015). https://doi.org/10.1021/ar500326c
- Y. Du, Z. Yin, J. Zhu, X. Huang, X.-J. Wu, Z. Zeng, Q. Yan, H. Zhang, A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1177–1177 (2012). https://doi.org/10.1038/ncomms2181
- H. Li, Y. Li, A. Aljarb, Y. Shi, L.-J. Li, Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118(13), 6134–6150 (2018). https://doi.org/10.1021/acs.chemrev.7b00212
- A. Koma, Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201, 236–241 (1999). https://doi.org/10.1016/S0022-0248(98)01329-3
- L.A. Walsh, C.L. Hinkle, van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 9, 504–515 (2017). https://doi.org/10.15124/5804ac81-b49b-46ce-aea8-73d47a9192cb
- X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). https://doi.org/10.1038/ncomms2472
- Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
- M.C. Weidman, A.J. Goodman, W.A. Tisdale, Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29(12), 5019–5030 (2017). https://doi.org/10.1021/acs.chemmater.7b01384
- M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358(6364), 745–750 (2017). https://doi.org/10.1126/science.aam7093
- G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), 1807689 (2019). https://doi.org/10.1002/adma.201807689
- J. Lu, A. Carvalho, H. Liu, S.X. Lim, A.H. Castro Neto, C.H. Sow, Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem. Int. Ed. 128(39), 12124–12128 (2016). https://doi.org/10.1002/anie.201603557
- C. Ma, Y. Shi, W. Hu, M.H. Chiu, Z. Liu et al., Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28(19), 3683–3689 (2016). https://doi.org/10.1002/adma.201600069
- Z. Zhang, F. Sun, Z. Zhu, J. Dai, K. Gao et al., Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Sci. China Mater. 62(1), 43–53 (2019). https://doi.org/10.1007/s40843-018-9274-y
- A. Koma, Van der Waals epitaxy-a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216(1), 72–76 (1992). https://doi.org/10.1016/0040-6090(92)90872-9
- X. Xu, H. Li, H. Yang, W. Xiang, G. Zhou, Y. Wu, X. Wang, Colloidal 2D-0D lateral nanoheterostructures: a case study of site-selective growth of CdS nanodots onto Bi2Se3 nanosheets. Nano Lett. 15(6), 4200–4205 (2015). https://doi.org/10.1021/acs.nanolett.5b01464
- X.-J. Wu, J. Chen, C. Tan, Y. Zhu, Y. Han, H. Zhang, Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8(5), 470–475 (2016). https://doi.org/10.1038/nchem.2473
- L. De Trizio, F. De Donato, A. Casu, A. Genovese, A. Falqui, M. Povia, L. Manna, Colloidal CdSe/Cu3P/CdSe nanocrystal heterostructures and their evolution upon thermal annealing. ACS Nano 7(5), 3997–4005 (2013). https://doi.org/10.1021/nn3060219
- A. Forticaux, S. Hacialioglu, J.P. DeGrave, R. Dziedzic, S. Jin, Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano 7(9), 8224–8232 (2013). https://doi.org/10.1021/nn4037078
- K. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
- X. Wang, Z. Wang, J. Zhang, X. Wang, Z. Zhang et al., Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 9(1), 3611 (2018). https://doi.org/10.1038/s41467-018-06053-z
- B. Mahler, B. Nadal, C. Bouet, G. Patriarche, B. Dubertret, Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134(45), 18591–18598 (2012). https://doi.org/10.1021/ja307944d
- S. Ithurria, D.V. Talapin, Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134(45), 18585–18590 (2012). https://doi.org/10.1021/ja308088d
- M. Tessier, B. Mahler, B. Nadal, H. Heuclin, S. Pedetti, B. Dubertret, Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 13(7), 3321–3328 (2013). https://doi.org/10.1021/nl401538n
- C. She, I. Fedin, D.S. Dolzhnikov, P.D. Dahlberg, G.S. Engel et al., Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 9(10), 9475–9485 (2015). https://doi.org/10.1021/acsnano.5b02509
- A. Polovitsyn, Z. Dang, J.L. Movilla Rosell, B. Martín García, A.H. Khan, G.H. Bertrand, R. Brescia, I. Moreels, Synthesis of air-stable CdSe/ZnS core–shell nanoplatelets with tunable emission wavelength. Chem. Mater. 29(13), 5671–5680 (2017). https://doi.org/10.1021/acs.chemmater.7b01513
- A. Prudnikau, A. Chuvilin, M. Artemyev, CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central cdse region through epitaxially grown CdS wings. J. Am. Chem. Soc. 135(39), 14476–14479 (2013). https://doi.org/10.1021/ja401737z
- S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917), 800–803 (2002). https://doi.org/10.1038/nature01217
- A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov et al., Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5(6), 1039–1044 (2005). https://doi.org/10.1021/nl050384x
- N. Oh, B.H. Kim, S.-Y. Cho, S. Nam, S.P. Rogers et al., Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355(6325), 616–619 (2017). https://doi.org/10.1126/science.aal2038
- M. Shim, Colloidal nanorod heterostructures for photovoltaics and optoelectronics. J. Phys. D Appl. Phys. 50(17), 173002 (2017). https://doi.org/10.1088/1361-6463/aa65a5
- A.G. Pattantyus-Abraham, I.J. Kramer, A.R. Barkhouse, X. Wang, G. Konstantatos et al., Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4(6), 3374–3380 (2010). https://doi.org/10.1021/nn100335g
- S. Lee, J.C. Flanagan, J. Kang, J. Kim, M. Shim, B. Park, Integration of CdSe/CdSexTe1-x type-II heterojunction nanorods into hierarchically porous TiO2 electrode for efficient solar energy conversion. Sci. Rep. 5, 17472 (2015). https://doi.org/10.1038/srep17472
- I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6), 435–446 (2005). https://doi.org/10.1038/nmat1390
- X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao et al., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014). https://doi.org/10.1038/nature13829
- V. Wood, V. Bulović, Colloidal quantum dot light-emitting devices. Nano Rev. 1(1), 5202 (2010). https://doi.org/10.3402/nano.v1i0.5202
- P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9(7), 2532–2536 (2009). https://doi.org/10.1021/nl9002969
- M. Liu, Y. Chen, C.-S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570(7759), 96–101 (2019). https://doi.org/10.1038/s41586-019-1239-7
- C. Pu, X. Peng, To battle surface traps on CdSe/CdS core/shell nanocrystals: shell isolation versus surface treatment. J. Am. Chem. Soc. 138(26), 8134–8142 (2016). https://doi.org/10.1021/jacs.6b02909
- R.A. Hikmet, P.T. Chin, D.V. Talapin, H. Weller, Polarized-light-emitting quantum-rod diodes. Adv. Mater. 17(11), 1436–1439 (2005). https://doi.org/10.1002/adma.200401763
- A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti et al., High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polar polymer injecting layers. Nano Lett. 15(8), 5455–5464 (2015). https://doi.org/10.1021/acs.nanolett.5b01849
- S. Nam, N. Oh, Y. Zhai, M. Shim, High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 9(1), 878–885 (2015). https://doi.org/10.1021/nn506577p
- Y. Jiang, N. Oh, M. Shim, Double-heterojunction nanorod light-emitting diodes with high efficiencies at high brightness using self-assembled monolayers. ACS Photonics 3(10), 1862–1868 (2016). https://doi.org/10.1021/acsphotonics.6b00371
- R.S. Selinsky, Q. Ding, S.M.J.C. Faber, S.Jin Wright, Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 42(7), 2963–2985 (2013). https://doi.org/10.1039/C2CS35374A
- Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan et al., Graphene-based materials for solar cell applications. Adv. Energy Mater. 4(1), 1300574 (2014). https://doi.org/10.1002/aenm.201300574
- C.-H. Chuang, S.S. Lo, G.D. Scholes, C. Burda, Charge separation and recombination in CdTe/CdSe core/shell nanocrystals as a function of shell coverage: probing the onset of the quasi type-II regime. J. Phys. Chem. Lett. 1(17), 2530–2535 (2010). https://doi.org/10.1021/jz1008399
- H. McDaniel, M. Pelton, N. Oh, M. Shim, Effects of lattice strain and band offset on electron transfer rates in type-II nanorod heterostructures. J. Phys. Chem. Lett. 3(9), 1094–1098 (2012). https://doi.org/10.1021/jz300275f
- K. Wu, Q. Li, Y. Jia, J.R. McBride, Z.-X. Xie, T. Lian, Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 9(1), 961–968 (2015). https://doi.org/10.1021/nn506796m
- H. McDaniel, P.E. Heil, C.-L. Tsai, K. Kim, M. Shim, Integration of type II nanorod heterostructures into photovoltaics. ACS Nano 5(9), 7677–7683 (2011). https://doi.org/10.1021/nn2029988
- K.P. Acharya, E. Khon, T. O’Conner, I. Nemitz, A. Klinkova, R.S. Khnayzer, P. Anzenbacher, M. Zamkov, Heteroepitaxial growth of colloidal nanocrystals onto substrate films via hot-injection routes. ACS Nano 5(6), 4953–4964 (2011). https://doi.org/10.1021/nn201064n
- S.Y. Leblebici, L. Leppert, Y. Li, S.E. Reyes-Lillo, S. Wickenburg et al., Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1(8), 16093 (2016). https://doi.org/10.1038/nenergy.2016.93
- L. Amirav, A.P. Alivisatos, Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 1(7), 1051–1054 (2010). https://doi.org/10.1021/jz100075c
- N. Razgoniaeva, P. Moroz, S. Lambright, M. Zamkov, Photocatalytic applications of colloidal heterostructured nanocrystals: what’s next? J. Phys. Chem. Lett. 6(21), 4352–4359 (2015). https://doi.org/10.1021/acs.jpclett.5b01883
- H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005
- R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001). https://doi.org/10.1142/9789814317665_0019
- B. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan, N.V. Myung, Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19(2), 296–299 (2007). https://doi.org/10.1002/adma.200600606
- G. Zhang, H. Fang, H. Yang, L.A. Jauregui, Y.P. Chen, Y. Wu, Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012). https://doi.org/10.1021/nl301327d
- A. Sitt, A. Salant, G. Menagen, U. Banin, Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 11(5), 2054–2060 (2011). https://doi.org/10.1021/nl200519b
- S. Hu, C. Liang, K. Tiong, Y. Lee, Y. Huang, Preparation and characterization of large niobium-doped MoSe2 single crystals. J. Cryst. Growth 285(3), 408–414 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.054
- B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, B. Dubertret, Towards non-blinking colloidal quantum dots. Nat. Mater. 7(8), 659–664 (2008). https://doi.org/10.1038/nmat2222
- Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder et al., “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130(15), 5026–5027 (2008). https://doi.org/10.1021/ja711379k
References
P.D. Cozzoli, T. Pellegrino, L. Manna, Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 35(11), 1195–1208 (2006). https://doi.org/10.1039/b517790c
M.J. Bierman, S. Jin, Potential applications of hierarchical branching nanowires in solar energy conversion. Energy Environ. Sci. 2(10), 1050–1059 (2009). https://doi.org/10.1039/b912095e
I. Gur, N.A. Fromer, C.-P. Chen, A.G. Kanaras, A.P. Alivisatos, Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Lett. 7(2), 409–414 (2007). https://doi.org/10.1021/nl062660t
Y. Cui, U. Banin, M.T. Björk, A.P. Alivisatos, Electrical transport through a single nanoscale semiconductor branch point. Nano Lett. 5(7), 1519–1523 (2005). https://doi.org/10.1021/nl051064g
R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009). https://doi.org/10.1038/nphoton.2009.184
B. Tian, C.M. Lieber, Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013). https://doi.org/10.1146/annurev-anchem-062012-092623
M.-R. Gao, Y.-F. Xu, J. Jiang, S.-H. Yu, Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42(7), 2986–3017 (2013). https://doi.org/10.1039/C2CS35310E
F. Pinaud, X. Michalet, L.A. Bentolila, J.M. Tsay, S. Doose, J.J. Li, G. Iyer, S. Weiss, Advances in fluorescence imaging with quantum dot bio-probes. Biomaterials 27(9), 1679–1687 (2006). https://doi.org/10.1016/j.biomaterials.2005.11.018
X. Huang, C. Tan, Z. Yin, H. Zhang, Hybrid nanostructures based on two-dimensional nanomaterials. Adv. Mater. 26(14), 2185–2204 (2014). https://doi.org/10.1002/adma.201304964
X. Huang, X. Qi, F. Boey, H. Zhang, Graphene-based composites. Chem. Soc. Rev. 41(2), 666–686 (2012). https://doi.org/10.1039/C1CS15078B
C. Hinkle, M. Milojevic, B. Brennan, A.M. Sonnet, F. Aguirre-Tostado, G. Hughes, E. Vogel, R. Wallace, Detection of Ga suboxides and their impact on III-V passivation and Fermi-level pinning. Appl. Phys. Lett. 94(16), 162101 (2009). https://doi.org/10.1063/1.3120546
M.J. Hale, S. Yi, J. Sexton, A. Kummel, M.J. Passlack, Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2 × 8)/(2 × 4). Chem. Phys. 119(13), 6719–6728 (2003). https://doi.org/10.1063/1.1601596
Z. Lin, A. Yin, J. Mao, Y. Xia, N. Kempf, Q. He, Y. Wang, C.-Y. Chen, Y. Zhang, V. Ozolins, Scalable solution-phase epitaxial growth of symmetry-mismatched heterostructures on two-dimensional crystal soft template. Sci. Adv. 2(10), e1600993 (2016). https://doi.org/10.1126/sciadv.1600993
L.J. Lauhon, M.S. Gudiksen, D. Wang, C.M. Lieber, Epitaxial core–shell and core–multishell nanowire heterostructures. Nature 420(6911), 57–61 (2002). https://doi.org/10.1038/nature01141
H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Metal organic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48(5), 353–355 (1986). https://doi.org/10.1063/1.96549@apl.2019.APLCLASS2019.issue-1
I. Markov, S. Stoyanov, Mechanisms of epitaxial growth. Contemp. Phys. 28(3), 267–320 (1987). https://doi.org/10.1080/00107518708219073
C. Bouet, M.C. Tessier, S. Ithurria, B. Mahler, B. Nadal, B. Dubertret, Flat colloidal semiconductor nanoplatelets. Chem. Mater. 25(8), 1262–1271 (2013). https://doi.org/10.1021/cm303786a
K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230), 706–710 (2009). https://doi.org/10.1038/nature07719
E.P. Bakkers, J.A. Van Dam, S. De Franceschi, L.P. Kouwenhoven, M. Kaiser, M. Verheijen, H. Wondergem, P. Van der Sluis, Epitaxial growth of InP nanowires on germanium. Nat. Mater. 3(11), 769–773 (2004). https://doi.org/10.1038/nmat1235
O. Chen, J. Zhao, V.P. Chauhan, J. Cui, C. Wong et al., Compact high-quality CdSe-CdS core-shell nanocrystals with narrow emission linewidths and suppressed blinking. Nat. Mater. 12(5), 445–451 (2013). https://doi.org/10.1038/nmat3539
D.J. Milliron, S.M. Hughes, Y. Cui, L. Manna, J. Li, L.-W. Wang, A.P. Alivisatos, Colloidal nanocrystal heterostructures with linear and branched topology. Nature 430(6996), 190–195 (2004). https://doi.org/10.1038/nature02695
G. Zhang, Q. Yu, W. Wang, X. Li, Nanostructures for thermoelectric applications: synthesis, growth mechanism, and property studies. Adv. Mater. 22(17), 1959–1962 (2010). https://doi.org/10.1002/adma.200903812
G.J. Snyder, E.S. Toberer, Complex thermoelectric materials. Nat. Mater. 7(2), 105–114 (2008). https://doi.org/10.1038/nmat2090
X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). https://doi.org/10.1038/ncomms2472
L. Liu, J. Park, D.A. Siegel, K.F. McCarty, K.W. Clark et al., Heteroepitaxial growth of two-dimensional hexagonal boron nitride templated by graphene edges. Science 343(6167), 163–167 (2014). https://doi.org/10.1126/science.1246137
H.-C. Shin, Y. Jang, T.-H. Kim, J.-H. Lee, D.-H. Oh et al., Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor. J. Am. Chem. Soc. 137(21), 6897–6905 (2015). https://doi.org/10.1021/jacs.5b03151
W. Yang, G. Chen, Z. Shi, C.-C. Liu, L. Zhang et al., Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12(9), 792–797 (2013). https://doi.org/10.1038/nmat3695
Y. Liu, M.D. Deal, J.D. Plummer, High-quality single-crystal Ge on insulator by liquid-phase epitaxy on Si substrates. Appl. Phys. Lett. 84(14), 2563–2565 (2004). https://doi.org/10.1063/1.1691175
M. Miyao, T. Tanaka, K. Toko, M. Tanaka, Giant Ge-on-insulator formation by Si–Ge mixing-triggered liquid-phase epitaxy. Appl. Phys. Express 2(4), 045503 (2009). https://doi.org/10.1143/apex.2.045503
L. Carbone, P.D. Cozzoli, Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 5(5), 449–493 (2010). https://doi.org/10.1016/j.nantod.2010.08.006
Markov IV, Crystal Growth for Beginners: Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd edn. (World scientific, Singapore, 2016). https://doi.org/10.1142/5172
H. Lee, S. Yoon, J. Ahn, Y. Suh, J. Lee, H. Lim, D. Kim, Synthesis of type II CdTe/CdSe heterostructure tetrapod nanocrystals for PV applications. Sol. Energy Mater. Sol. C 93(6), 779–782 (2009). https://doi.org/10.1016/j.solmat.2008.09.050
J. Chen, X.J. Wu, L. Yin, B. Li, X. Hong et al., One-pot synthesis of CdS nanocrystals hybridized with single-layer transition-metal dichalcogenide nanosheets for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54(4), 1210–1214 (2015). https://doi.org/10.1002/anie.201410172
W. Shi, S. Song, H. Zhang, Hydrothermal synthetic strategies of inorganic semiconducting nanostructures. Chem. Soc. Rev. 42(13), 5714–5743 (2013). https://doi.org/10.1039/c3cs60012b
L. Wang, H. Wei, Y. Fan, X. Gu, J. Zhan, One-dimensional CdS/α-Fe2O3 and CdS/Fe3O4 heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity. J. Phys. Chem. C 113(32), 14119–14125 (2009). https://doi.org/10.1021/jp902866b
J.B. Rivest, P.K. Jain, Cation exchange on the nanoscale: an emerging technique for new material synthesis, device fabrication, and chemical sensing. Chem. Soc. Rev. 42(1), 89–96 (2013). https://doi.org/10.1038/s41467-018-02878-w
L. De Trizio, L. Manna, Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 116(18), 10852–10887 (2016). https://doi.org/10.1021/acs.chemrev.5b00739
B.J. Beberwyck, Y. Surendranath, A.P. Alivisatos, Cation exchange: a versatile tool for nanomaterials synthesis. J. Phys. Chem. C 117(39), 19759–19770 (2013). https://doi.org/10.1021/jp405989z
P.K. Jain, L. Amirav, S. Aloni, A.P. Alivisatos, Nanoheterostructure cation exchange: anionic framework conservation. J. Am. Chem. Soc. 132(29), 9997–9999 (2010). https://doi.org/10.1021/ja104126u
H. Zhou, H. Sasahara, I. Honma, H. Komiyama, J.W. Haus, Coated semiconductor nanoparticles: the CdS/PbS system’s photoluminescence properties. Chem. Mater. 6(9), 1534–1541 (1994). https://doi.org/10.1021/cm00045a010
S.E. Wark, C.-H. Hsia, D.H. Son, Effects of ion solvation and volume change of reaction on the equilibrium and morphology in cation-exchange reaction of nanocrystals. J. Am. Chem. Soc. 130(29), 9550–9555 (2008). https://doi.org/10.1021/ja802187c
A. Mews, A. Eychmüller, M. Giersig, D. Schooss, H. Weller, Preparation, characterization, and photophysics of the quantum dot quantum well system cadmium sulfide/mercury sulfide/cadmium sulfide. J. Phys. Chem. 98(3), 934–941 (1994). https://doi.org/10.1021/j100122a026
L. De Trizio, H. Li, A. Casu, A. Genovese, A. Sathya, G.C. Messina, L. Manna, Sn cation valency dependence in cation exchange reactions involving Cu2-xSe nanocrystals. J. Am. Chem. Soc. 136(46), 16277–16284 (2014). https://doi.org/10.1021/ja508161c
I. Kriegel, A. Wisnet, A.R.S. Kandada, F. Scotognella, F. Tassone et al., Cation exchange synthesis and optoelectronic properties of type II CdTe-Cu2-xTe nano-heterostructures. J. Mate. Chem. C 2(17), 3189–3198 (2014). https://doi.org/10.1039/C3TC32049A
M.D. Regulacio, C. Ye, S.H. Lim, M. Bosman, L. Polavarapu et al., One-pot synthesis of Cu1.94S-CdS and Cu1.94S-ZnxCd1-xS nanodisk heterostructures. J. Am. Chem. Soc. 133(7), 2052–2055 (2011). https://doi.org/10.1021/ja1090589
J. Park, H. Zheng, Y.-W. Jun, A.P. Alivisatos, Hetero-epitaxial anion exchange yields single-crystalline hollow nanoparticles. J. Am. Chem. Soc. 131(39), 13943–13945 (2009). https://doi.org/10.1021/ja905732q
J. Zhou, C. Pu, T. Jiao, X. Hou, X. Peng, A two-step synthetic strategy toward monodisperse colloidal CdSe and CdSe/CdS core/shell nanocrystals. J. Am. Chem. Soc. 138(20), 6475–6483 (2016). https://doi.org/10.1021/jacs.6b00674
Y. Niu, C. Pu, R. Lai, R. Meng, W. Lin, H. Qin, X. Peng, One-pot/three-step synthesis of zinc-blende CdSe/CdS core/shell nanocrystals with thick shells. Nano Res. 10(4), 1149–1162 (2017). https://doi.org/10.1007/s12274-016-1287-3
H. Qin, Y. Niu, R. Meng, X. Lin, R. Lai, W. Fang, X. Peng, Single-dot spectroscopy of zinc-blende CdSe/CdS core/shell nanocrystals: nonblinking and correlation with ensemble measurements. J. Am. Chem. Soc. 136(1), 179–187 (2013). https://doi.org/10.1021/ja4078528
J.S. Steckel, J.P. Zimmer, S. Coe-Sullivan, N.E. Stott, V. Bulović, M.G. Bawendi, Blue luminescence from (CdS) ZnS core–shell nanocrystals. Angew. Chem. Int. Ed. 43(16), 2154–2158 (2004). https://doi.org/10.1002/anie.200453728
Y. Yang, O. Chen, A. Angerhofer, Y.C. Cao, Radial-position-controlled doping in CdS/ZnS core/shell nanocrystals. J. Am. Chem. Soc. 128(38), 12428–12429 (2006). https://doi.org/10.1021/ja064818h
D. Chen, F. Zhao, H. Qi, M. Rutherford, X. Peng, Bright and stable purple/blue emitting CdS/ZnS core/shell nanocrystals grown by thermal cycling using a single-source precursor. Chem. Mater. 22(4), 1437–1444 (2010). https://doi.org/10.1021/cm902516f
M. Ethayaraja, C. Ravikumar, D. Muthukumaran, K. Dutta, R. Bandyopadhyaya, CdS- ZnS core-shell nanoparticle formation: experiment, mechanism, and simulation. J. Phys. Chem. C 111(8), 3246–3252 (2007). https://doi.org/10.1021/jp066066j
S. Haubold, M. Haase, A. Kornowski, H. Weller, Strongly luminescent InP/ZnS core-shell nanoparticles. ChemPhysChem 2(5), 331–334 (2001). https://doi.org/10.1002/1439-7641
E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, S.-W. Kim, Step-wise synthesis of InP/ZnS core − shell Quantum Dots and the role of zinc acetate. Chem. Mater. 21(4), 573–575 (2009). https://doi.org/10.1021/cm803084p
S. Hussain, N. Won, J. Nam, J. Bang, H. Chung, S. Kim, One-pot fabrication of high-quality InP/ZnS (core/shell) quantum dots and their application to cellular imaging. ChemPhysChem 10(9–10), 1466–1470 (2009). https://doi.org/10.1002/cphc.200900159
A. Narayanaswamy, L. Feiner, A. Meijerink, P. Van der Zaag, The effect of temperature and dot size on the spectral properties of colloidal inp/zns core-shell quantum dots. ACS Nano 3(9), 2539–2546 (2009). https://doi.org/10.1021/nn9004507
M. Brumer, A. Kigel, L. Amirav, A. Sashchiuk, O. Solomesch, N. Tessler, E. Lifshitz, PbSe/PbS and PbSe/PbSexS1–x core/shell nanocrystals. Adv. Funct. Mater. 15(7), 1111–1116 (2005). https://doi.org/10.1021/jp0644356
E. Lifshitz, M. Brumer, A. Kigel, A. Sashchiuk, M. Bashouti et al., Air-stable PbSe/PbS and PbSe/PbSexS1-x core- shell nanocrystal quantum dots and their applications. J. Phys. Chem. B 110(50), 25356–25365 (2006). https://doi.org/10.1021/jp0644356
J. Xu, D. Cui, T. Zhu, G. Paradee, Z. Liang, Q. Wang, S. Xu, A.Y. Wang, Synthesis and surface modification of PbSe/PbS core-shell nanocrystals for potential device applications. Nanotechnology 17(21), 5428 (2006). https://doi.org/10.1088/0957-4484/17/21/024
A. Sashchiuk, L. Langof, R. Chaim, E. Lifshitz, Synthesis and characterization of PbSe and PbSe/PbS core-shell colloidal nanocrystals. J. Cryst. Growth 240(3), 431–438 (2002). https://doi.org/10.1016/S0022-0248(02)01156-9
K.A. Abel, H. Qiao, J.F. Young, F.C. van Veggel, Four-fold enhancement of the activation energy for nonradiative decay of excitons in PbSe/CdSe core/shell versus PbSe colloidal quantum dots. J. Phys. Chem. Lett. 1(15), 2334–2338 (2010). https://doi.org/10.1021/jz1007565
B. De Geyter, Y. Justo, I. Moreels, K. Lambert, P.F. Smet et al., The different nature of band edge absorption and emission in colloidal PbSe/CdSe core/shell quantum dots. ACS Nano 5(1), 58–66 (2010). https://doi.org/10.1021/nn102980e
D. Grodzińska, W.H. Evers, R. Dorland, J. van Rijssel, M.A. van Huis et al., Two-fold emission from the S-shell of PbSe/CdSe core/shell quantum dots. Small 7(24), 3493–3501 (2011). https://doi.org/10.1002/smll.201101819
S. Jiao, Q. Shen, I.N. Mora-Seró, J. Wang, Z. Pan et al., Band engineering in core/shell ZnTe/CdSe for photovoltage and efficiency enhancement in exciplex quantum dot sensitized solar cells. ACS Nano 9(1), 908–915 (2015). https://doi.org/10.1021/nn506638n
R. Xie, X. Zhong, T. Basché, Synthesis, characterization, and spectroscopy of type-II core/shell semiconductor nanocrystals with ZnTe cores. Adv. Mater. 17(22), 2741–2745 (2005). https://doi.org/10.1002/adma.200501029
E. Groeneveld, L. Witteman, M. Lefferts, X. Ke, S. Bals, G. Van Tendeloo, C. de Mello Donega, Tailoring ZnSe-CdSe colloidal quantum dots via cation exchange: from core/shell to alloy nanocrystals. ACS Nano 7(9), 7913–7930 (2013). https://doi.org/10.1021/nn402931y
C.-T. Cheng, C.-Y. Chen, C.-W. Lai, W.-H. Liu, S.-C. Pu, P.-T. Chou, Y.-H. Chou, H.-T. Chiu, Syntheses and photophysical properties of type-II CdSe/ZnTe/ZnS (core/shell/shell) quantum dots. J. Mater. Chem. 15(33), 3409–3414 (2005). https://doi.org/10.1039/B503681J
W. Zhang, G. Chen, J. Wang, B.-C. Ye, X. Zhong, Design and synthesis of highly luminescent near-infrared-emitting water-soluble CdTe/CdSe/ZnS core/shell/shell quantum dots. Inorg. Chem. 48(20), 9723–9731 (2009). https://doi.org/10.1021/ic9010949
Y.-S. Liu, Y. Sun, P.T. Vernier, C.-H. Liang, S.Y.C. Chong, M.A. Gundersen, pH-sensitive photoluminescence of CdSe/ZnSe/ZnS quantum dots in human ovarian cancer cells. J. Phys. Chem. C 111(7), 2872–2878 (2007). https://doi.org/10.1021/jp0654718
P. Reiss, M. Protiere, L. Li, Core/shell semiconductor nanocrystals. Small 5(2), 154–168 (2009). https://doi.org/10.1002/smll.200800841
R. Ghosh Chaudhuri, S. Paria, Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373–2433 (2011). https://doi.org/10.1021/cr100449n
J.Y. Jang, A. Shapiro, M. Isarov, A. Rubin-Brusilovski, A. Safran et al., Interface control of electronic and optical properties in IV–VI and II–VI core/shell colloidal quantum dots: a review. Chem. Commun. 53(6), 1002–1024 (2017). https://doi.org/10.1039/C6CC08742F
Y. Cao, U. Banin, Growth and properties of semiconductor core/shell nanocrystals with InAs cores. J. Am. Chem. Soc. 122(40), 9692–9702 (2000). https://doi.org/10.1021/ja001386g
D.V. Talapin, I. Mekis, S. Götzinger, A. Kornowski, O. Benson, H. Weller, CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core-shell-shell nanocrystals. J. Phys. Chem. B 108(49), 18826–18831 (2004). https://doi.org/10.1021/jp046481g
J. Bleuse, S. Carayon, P. Reiss, Optical properties of core/multishell CdSe/Zn (S, Se) nanocrystals. Physica E: Low Dimen. Syst. Nanostruct. 21(2), 331–335 (2004). https://doi.org/10.1016/j.physe.2003.11.044
L. Manna, E.C. Scher, L.-S. Li, A.P. Alivisatos, Epitaxial growth and photochemical annealing of graded CdS/ZnS shells on colloidal CdSe nanorods. J. Am. Chem. Soc. 124(24), 7136–7145 (2002). https://doi.org/10.1021/ja025946i
Y. Sun, Interfaced heterogeneous nanodimers. Natl. Sci. Rev. 2(3), 329–348 (2015). https://doi.org/10.1093/nsr/nwv037
K.-W. Kwon, M. Shim, γ-Fe2O3/II − VI sulfide nanocrystal heterojunctions. J. Am. Chem. Soc. 127(29), 10269–10275 (2005). https://doi.org/10.1021/ja051713q
S. He, H. Zhang, S. Delikanli, Y. Qin, M.T. Swihart, H. Zeng, Bifunctional magneto-optical FePt-CdS hybrid nanoparticles. J. Phys. Chem. C 113(1), 87–90 (2008). https://doi.org/10.1021/jp806247f
D.V. Talapin, R. Koeppe, S. Götzinger, A. Kornowski, J.M. Lupton, A.L. Rogach, O. Benson, J. Feldmann, H. Weller, Highly emissive colloidal CdSe/CdS heterostructures of mixed dimensionality. Nano Lett. 3(12), 1677–1681 (2003). https://doi.org/10.1021/nl034815s
D.V. Talapin, J.H. Nelson, E.V. Shevchenko, S. Aloni, B. Sadtler, A.P. Alivisatos, Seeded growth of highly luminescent CdSe/CdS nanoheterostructures with rod and tetrapod morphologies. Nano Lett. 7(10), 2951–2959 (2007). https://doi.org/10.1021/nl072003g
L. Carbone, C. Nobile, M. De Giorgi, F.D. Sala, G. Morello et al., Synthesis and micrometer-scale assembly of colloidal CdSe/CdS nanorods prepared by a seeded growth approach. Nano Lett. 7(10), 2942–2950 (2007). https://doi.org/10.1021/nl0717661
A. Fiore, R. Mastria, M.G. Lupo, G. Lanzani, C. Giannini et al., Tetrapod-shaped colloidal nanocrystals of II-VI semiconductors prepared by seeded growth. J. Am. Chem. Soc. 131(6), 2274–2282 (2009). https://doi.org/10.1021/ja807874e
P. Peng, D.J. Milliron, S.M. Hughes, J.C. Johnson, A.P. Alivisatos, R.J. Saykally, Femtosecond spectroscopy of carrier relaxation dynamics in type II CdSe/CdTe tetrapod heteronanostructures. Nano Lett. 5(9), 1809–1813 (2005). https://doi.org/10.1021/nl0511667
H. Zhong, G.D. Scholes, Shape tuning of type II CdTe-CdSe colloidal nanocrystal heterostructures through seeded growth. J. Am. Chem. Soc. 131(26), 9170–9171 (2009). https://doi.org/10.1021/ja903722d
S. Deka, K. Miszta, D. Dorfs, A. Genovese, G. Bertoni, L. Manna, Octapod-shaped colloidal nanocrystals of cadmium chalcogenides via “one-pot” cation exchange and seeded growth. Nano Lett. 10(9), 3770–3776 (2010). https://doi.org/10.1021/nl102539a
K.K. Haldar, N. Pradhan, A. Patra, Formation of heteroepitaxy in different shapes of Au-CdSe metal-semiconductor hybrid nanostructures. Small 9(20), 3424–3432 (2013). https://doi.org/10.1002/smll.201370125
D.-H. Ha, A.H. Caldwell, M.J. Ward, S. Honrao, K. Mathew et al., Solid-solid phase transformations induced through cation exchange and strain in 2D heterostructured copper sulfide nanocrystals. Nano Lett. 14(12), 7090–7099 (2014). https://doi.org/10.1021/nl5035607
G. Gariano, V. Lesnyak, R. Brescia, G. Bertoni, Z. Dang, R. Gaspari, L. De Trizio, L. Manna, Role of the crystal structure in cation exchange reactions involving colloidal Cu2Se nanocrystals. J. Am. Chem. Soc. 139(28), 9583–9590 (2017). https://doi.org/10.1021/jacs.7b03706
J. Zhang, B.D. Chernomordik, R.W. Crisp, D.M. Kroupa, J.M. Luther, E.M. Miller, J. Gao, M.C. Beard, Preparation of Cd/Pb chalcogenide heterostructured janus particles via controllable cation exchange. ACS Nano 9(7), 7151–7163 (2015). https://doi.org/10.1021/acsnano.5b01859
S. Kudera, L. Carbone, M.F. Casula, R. Cingolani, A. Falqui, E. Snoeck, W.J. Parak, L. Manna, Selective growth of PbSe on one or both tips of colloidal semiconductor nanorods. Nano Lett. 5(3), 445–449 (2005). https://doi.org/10.1021/nl048060g
M. Casavola, V. Grillo, E. Carlino, C. Giannini, F. Gozzo et al., Topologically controlled growth of magnetic-metal-functionalized semiconductor oxide nanorods. Nano Lett. 7(5), 1386–1395 (2007). https://doi.org/10.1021/nl070550w
T. Mokari, U. Banin, Synthesis and properties of CdSe/ZnS core/shell nanorods. Chem. Mater. 15(20), 3955–3960 (2003). https://doi.org/10.1021/cm034173+
F. Shieh, A.E. Saunders, B.A. Korgel, General shape control of colloidal CdS, CdSe, CdTe quantum rods and quantum rod heterostructures. J. Phys. Chem. B 109(18), 8538–8542 (2005). https://doi.org/10.1021/jp0509008
S. Kumar, M. Jones, S.S. Lo, G.D. Scholes, Nanorod heterostructures showing photoinduced charge separation. Small 3(9), 1633–1639 (2007). https://doi.org/10.1002/smll.200700155
H. McDaniel, N. Oh, M. Shim, CdSe-CdSexTe1-x nanorod heterostructures: tuning alloy composition and spatially indirect recombination energies. J. Mater. Chem. 22(23), 11621–11628 (2012). https://doi.org/10.1039/C2JM31464A
B. Sadtler, D.O. Demchenko, H. Zheng, S.M. Hughes, M.G. Merkle, U. Dahmen, L.-W. Wang, A.P. Alivisatos, Selective facet reactivity during cation exchange in cadmium sulfide nanorods. J. Am. Chem. Soc. 131(14), 5285–5293 (2009). https://doi.org/10.1021/ja809854q
D. Lee, W.D. Kim, S. Lee, W.K. Bae, S. Lee, D.C. Lee, Direct Cd-to-Pb exchange of CdSe nanorods into PbSe/CdSe axial heterojunction nanorods. Chem. Mater. 27(15), 5295–5304 (2015). https://doi.org/10.1021/acs.chemmater.5b01548
R.D. Robinson, B. Sadtler, D.O. Demchenko, C.K. Erdonmez, L.-W. Wang, A.P. Alivisatos, Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317(5836), 355–358 (2007). https://doi.org/10.1126/science.1142593
W. Wang, J. Goebl, L. He, S. Aloni, Y. Hu, L. Zhen, Y. Yin, Epitaxial growth of shape-controlled Bi2Te3-Te heterogeneous nanostructures. J. Am. Chem. Soc. 132(48), 17316–17324 (2010). https://doi.org/10.1021/ja108186w
L. Cheng, Z.-G. Chen, L. Yang, G. Han, H.-Y. Xu, G.J. Snyder, G.-Q. Lu, J. Zou, T-shaped Bi2Te3-Te heteronanojunctions: epitaxial growth, structural modeling, and thermoelectric properties. J. Phys. Chem. C 117(24), 12458–12464 (2013). https://doi.org/10.1021/jp4041666
W. Lu, Y. Ding, Y. Chen, Z.L. Wang, J. Fang, Bismuth telluride hexagonal nanoplatelets and their two-step epitaxial growth. J. Am. Chem. Soc. 127(28), 10112–10116 (2005). https://doi.org/10.1021/ja052286j
G. Zhang, H. Fang, H. Yang, L.A. Jauregui, Y.P. Chen, Y. Wu, Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012). https://doi.org/10.1021/nl301327d
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh, H. Zhang, The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5(4), 263–275 (2013). https://doi.org/10.1038/nchem.1589
C. Tan, X. Cao, X.-J. Wu, Q. He, J. Yang et al., Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117(9), 6225–6331 (2017). https://doi.org/10.1021/acs.chemrev.6b00558
M. Chhowalla, Z. Liu, H. Zhang, Two-dimensional transition metal dichalcogenide (TMD) nanosheets. Chem. Soc. Rev. 44(9), 2584–2586 (2015). https://doi.org/10.1039/C5CS90037A
C. Tan, H. Zhang, Epitaxial growth of hetero-nanostructures based on ultrathin two-dimensional nanosheets. J. Am. Chem. Soc. 137(38), 12162–12174 (2015). https://doi.org/10.1021/jacs.5b03590
A.K. Geim, I.V. Grigorieva, Van der Waals heterostructures. Nature 499(7459), 419–425 (2013). https://doi.org/10.1038/nature12385
J. Schornbaum, B. Winter, S.P. Schießl, F. Gannott, G. Katsukis, D.M. Guldi, E. Spiecker, J. Zaumseil, Epitaxial growth of PbSe quantum dots on MoS2 nanosheets and their near-infrared photoresponse. Adv. Funct. Mater. 24(37), 5798–5806 (2014). https://doi.org/10.1002/adfm.201400330
C. Tan, Z. Zeng, X. Huang, X. Rui, X.J. Wu et al., Liquid-Phase Epitaxial Growth of Two-Dimensional Semiconductor Hetero-nanostructures. Angew. Chem. Int. Ed. 54(6), 1841–1845 (2015). https://doi.org/10.1002/anie.201410890
X. Duan, C. Wang, J.C. Shaw, R. Cheng, Y. Chen et al., Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 9(12), 1024–1030 (2014). https://doi.org/10.1038/nnano.2014.222
Y. Gong, J. Lin, X. Wang, G. Shi, S. Lei et al., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13(12), 1135–1142 (2014). https://doi.org/10.1038/nmat4091
H. Heo, J.H. Sung, G. Jin, J.H. Ahn, K. Kim et al., Rotation-misfit-free heteroepitaxial stacking and stitching growth of hexagonal transition-metal dichalcogenide monolayers by nucleation kinetics controls. Adv. Mater. 27(25), 3803–3810 (2015). https://doi.org/10.1002/adma.201500846
M.-Y. Li, Y. Shi, C.-C. Cheng, L.-S. Lu, Y.-C. Lin et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface. Science 349(6247), 524–528 (2015). https://doi.org/10.1126/science.aab4097
C. Huang, S. Wu, A.M. Sanchez, J.J. Peters, R. Beanland et al., Lateral heterojunctions within monolayer MoSe2-WSe2 semiconductors. Nat. Mater. 13(12), 1096–1101 (2014). https://doi.org/10.1038/nmat4064
J. Chen, X.-J. Wu, Y. Gong, Y. Zhu, Z. Yang et al., Edge epitaxy of two-dimensional MoSe2 and MoS2 nanosheets on one-dimensional nanowires. J. Am. Chem. Soc. 139(25), 8653–8660 (2017). https://doi.org/10.1021/jacs.7b03752
J. Ping, Z. Fan, M. Sindoro, Y. Ying, H. Zhang, Recent advances in sensing applications of two-dimensional transition metal dichalcogenide nanosheets and their composites. Adv. Funct. Mater. 27(19), 1605817 (2017). https://doi.org/10.1002/adfm.201605817
Y. Hu, Y. Huang, C. Tan, X. Zhang, Q. Lu et al., Two-dimensional transition metal dichalcogenide nanomaterials for biosensing applications. Mater. Chem. Front. 1(1), 24–36 (2017). https://doi.org/10.1039/C6QM00195E
Q. Lu, Y. Yu, Q. Ma, B. Chen, H. Zhang, 2D Transition-metal-dichalcogenide-nanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions. Adv. Mater. 28(10), 1917–1933 (2016). https://doi.org/10.1002/adma.201503270
C. Tan, H. Zhang, Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44(9), 2713–2731 (2015). https://doi.org/10.1039/C4CS00182F
X. Zhang, Z. Lai, Z. Liu, C. Tan, Y. Huang et al., A facile and universal top-down method for preparation of monodisperse transition-metal dichalcogenide nanodots. Angew. Chem. Int. Ed. 54(18), 5425–5428 (2015). https://doi.org/10.1002/anie.201501071
Y. Zhang, B. Zheng, C. Zhu, X. Zhang, C. Tan et al., Single-layer transition metal dichalcogenide nanosheet-based nanosensors for rapid, sensitive, and multiplexed detection of DNA. Adv. Mater. 27(5), 935–939 (2015). https://doi.org/10.1002/adma.201404568
X. Hong, J. Liu, B. Zheng, X. Huang, X. Zhang et al., A universal method for preparation of noble metal nanoparticle-decorated transition metal dichalcogenide nanobelts. Adv. Mater. 26(36), 6250–6254 (2014). https://doi.org/10.1002/adma.201402063
C. Tan, X. Qi, X. Huang, J. Yang, B. Zheng et al., Single-layer transition metal dichalcogenide nanosheet-assisted assembly of aggregation-induced emission molecules to form organic nanosheets with enhanced fluorescence. Adv. Mater. 26(11), 1735–1739 (2014). https://doi.org/10.1002/adma.201304562
E. Lhuillier, S. Pedetti, S. Ithurria, B. Nadal, H. Heuclin, B. Dubertret, Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48(1), 22–30 (2015). https://doi.org/10.1021/ar500326c
Y. Du, Z. Yin, J. Zhu, X. Huang, X.-J. Wu, Z. Zeng, Q. Yan, H. Zhang, A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1177–1177 (2012). https://doi.org/10.1038/ncomms2181
H. Li, Y. Li, A. Aljarb, Y. Shi, L.-J. Li, Epitaxial growth of two-dimensional layered transition-metal dichalcogenides: growth mechanism, controllability, and scalability. Chem. Rev. 118(13), 6134–6150 (2018). https://doi.org/10.1021/acs.chemrev.7b00212
A. Koma, Van der Waals epitaxy for highly lattice-mismatched systems. J. Cryst. Growth 201, 236–241 (1999). https://doi.org/10.1016/S0022-0248(98)01329-3
L.A. Walsh, C.L. Hinkle, van der Waals epitaxy: 2D materials and topological insulators. Appl. Mater. Today 9, 504–515 (2017). https://doi.org/10.15124/5804ac81-b49b-46ce-aea8-73d47a9192cb
X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013). https://doi.org/10.1038/ncomms2472
Q.A. Akkerman, G. Rainò, M.V. Kovalenko, L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018). https://doi.org/10.1038/s41563-018-0018-4
M.C. Weidman, A.J. Goodman, W.A. Tisdale, Colloidal halide perovskite nanoplatelets: an exciting new class of semiconductor nanomaterials. Chem. Mater. 29(12), 5019–5030 (2017). https://doi.org/10.1021/acs.chemmater.7b01384
M.V. Kovalenko, L. Protesescu, M.I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 358(6364), 745–750 (2017). https://doi.org/10.1126/science.aam7093
G. Tang, P. You, Q. Tai, A. Yang, J. Cao et al., Solution-phase epitaxial growth of perovskite films on 2D material flakes for high-performance solar cells. Adv. Mater. 31(24), 1807689 (2019). https://doi.org/10.1002/adma.201807689
J. Lu, A. Carvalho, H. Liu, S.X. Lim, A.H. Castro Neto, C.H. Sow, Hybrid bilayer WSe2-CH3NH3PbI3 organolead halide perovskite as a high-performance photodetector. Angew. Chem. Int. Ed. 128(39), 12124–12128 (2016). https://doi.org/10.1002/anie.201603557
C. Ma, Y. Shi, W. Hu, M.H. Chiu, Z. Liu et al., Heterostructured WS2/CH3NH3PbI3 photoconductors with suppressed dark current and enhanced photodetectivity. Adv. Mater. 28(19), 3683–3689 (2016). https://doi.org/10.1002/adma.201600069
Z. Zhang, F. Sun, Z. Zhu, J. Dai, K. Gao et al., Unconventional solution-phase epitaxial growth of organic-inorganic hybrid perovskite nanocrystals on metal sulfide nanosheets. Sci. China Mater. 62(1), 43–53 (2019). https://doi.org/10.1007/s40843-018-9274-y
A. Koma, Van der Waals epitaxy-a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films 216(1), 72–76 (1992). https://doi.org/10.1016/0040-6090(92)90872-9
X. Xu, H. Li, H. Yang, W. Xiang, G. Zhou, Y. Wu, X. Wang, Colloidal 2D-0D lateral nanoheterostructures: a case study of site-selective growth of CdS nanodots onto Bi2Se3 nanosheets. Nano Lett. 15(6), 4200–4205 (2015). https://doi.org/10.1021/acs.nanolett.5b01464
X.-J. Wu, J. Chen, C. Tan, Y. Zhu, Y. Han, H. Zhang, Controlled growth of high-density CdS and CdSe nanorod arrays on selective facets of two-dimensional semiconductor nanoplates. Nat. Chem. 8(5), 470–475 (2016). https://doi.org/10.1038/nchem.2473
L. De Trizio, F. De Donato, A. Casu, A. Genovese, A. Falqui, M. Povia, L. Manna, Colloidal CdSe/Cu3P/CdSe nanocrystal heterostructures and their evolution upon thermal annealing. ACS Nano 7(5), 3997–4005 (2013). https://doi.org/10.1021/nn3060219
A. Forticaux, S. Hacialioglu, J.P. DeGrave, R. Dziedzic, S. Jin, Three-dimensional mesoscale heterostructures of ZnO nanowire arrays epitaxially grown on CuGaO2 nanoplates as individual diodes. ACS Nano 7(9), 8224–8232 (2013). https://doi.org/10.1021/nn4037078
K. Novoselov, A. Mishchenko, A. Carvalho, A.C. Neto, 2D materials and van der Waals heterostructures. Science 353(6298), aac9439 (2016). https://doi.org/10.1126/science.aac9439
X. Wang, Z. Wang, J. Zhang, X. Wang, Z. Zhang et al., Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 9(1), 3611 (2018). https://doi.org/10.1038/s41467-018-06053-z
B. Mahler, B. Nadal, C. Bouet, G. Patriarche, B. Dubertret, Core/shell colloidal semiconductor nanoplatelets. J. Am. Chem. Soc. 134(45), 18591–18598 (2012). https://doi.org/10.1021/ja307944d
S. Ithurria, D.V. Talapin, Colloidal atomic layer deposition (c-ALD) using self-limiting reactions at nanocrystal surface coupled to phase transfer between polar and nonpolar media. J. Am. Chem. Soc. 134(45), 18585–18590 (2012). https://doi.org/10.1021/ja308088d
M. Tessier, B. Mahler, B. Nadal, H. Heuclin, S. Pedetti, B. Dubertret, Spectroscopy of colloidal semiconductor core/shell nanoplatelets with high quantum yield. Nano Lett. 13(7), 3321–3328 (2013). https://doi.org/10.1021/nl401538n
C. She, I. Fedin, D.S. Dolzhnikov, P.D. Dahlberg, G.S. Engel et al., Red, yellow, green, and blue amplified spontaneous emission and lasing using colloidal CdSe nanoplatelets. ACS Nano 9(10), 9475–9485 (2015). https://doi.org/10.1021/acsnano.5b02509
A. Polovitsyn, Z. Dang, J.L. Movilla Rosell, B. Martín García, A.H. Khan, G.H. Bertrand, R. Brescia, I. Moreels, Synthesis of air-stable CdSe/ZnS core–shell nanoplatelets with tunable emission wavelength. Chem. Mater. 29(13), 5671–5680 (2017). https://doi.org/10.1021/acs.chemmater.7b01513
A. Prudnikau, A. Chuvilin, M. Artemyev, CdSe-CdS nanoheteroplatelets with efficient photoexcitation of central cdse region through epitaxially grown CdS wings. J. Am. Chem. Soc. 135(39), 14476–14479 (2013). https://doi.org/10.1021/ja401737z
S. Coe, W.-K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420(6917), 800–803 (2002). https://doi.org/10.1038/nature01217
A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov et al., Multicolor light-emitting diodes based on semiconductor nanocrystals encapsulated in GaN charge injection layers. Nano Lett. 5(6), 1039–1044 (2005). https://doi.org/10.1021/nl050384x
N. Oh, B.H. Kim, S.-Y. Cho, S. Nam, S.P. Rogers et al., Double-heterojunction nanorod light-responsive LEDs for display applications. Science 355(6325), 616–619 (2017). https://doi.org/10.1126/science.aal2038
M. Shim, Colloidal nanorod heterostructures for photovoltaics and optoelectronics. J. Phys. D Appl. Phys. 50(17), 173002 (2017). https://doi.org/10.1088/1361-6463/aa65a5
A.G. Pattantyus-Abraham, I.J. Kramer, A.R. Barkhouse, X. Wang, G. Konstantatos et al., Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano 4(6), 3374–3380 (2010). https://doi.org/10.1021/nn100335g
S. Lee, J.C. Flanagan, J. Kang, J. Kim, M. Shim, B. Park, Integration of CdSe/CdSexTe1-x type-II heterojunction nanorods into hierarchically porous TiO2 electrode for efficient solar energy conversion. Sci. Rep. 5, 17472 (2015). https://doi.org/10.1038/srep17472
I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4(6), 435–446 (2005). https://doi.org/10.1038/nmat1390
X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao et al., Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515(7525), 96–99 (2014). https://doi.org/10.1038/nature13829
V. Wood, V. Bulović, Colloidal quantum dot light-emitting devices. Nano Rev. 1(1), 5202 (2010). https://doi.org/10.3402/nano.v1i0.5202
P.O. Anikeeva, J.E. Halpert, M.G. Bawendi, V. Bulovic, Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum. Nano Lett. 9(7), 2532–2536 (2009). https://doi.org/10.1021/nl9002969
M. Liu, Y. Chen, C.-S. Tan, R. Quintero-Bermudez, A.H. Proppe et al., Lattice anchoring stabilizes solution-processed semiconductors. Nature 570(7759), 96–101 (2019). https://doi.org/10.1038/s41586-019-1239-7
C. Pu, X. Peng, To battle surface traps on CdSe/CdS core/shell nanocrystals: shell isolation versus surface treatment. J. Am. Chem. Soc. 138(26), 8134–8142 (2016). https://doi.org/10.1021/jacs.6b02909
R.A. Hikmet, P.T. Chin, D.V. Talapin, H. Weller, Polarized-light-emitting quantum-rod diodes. Adv. Mater. 17(11), 1436–1439 (2005). https://doi.org/10.1002/adma.200401763
A. Castelli, F. Meinardi, M. Pasini, F. Galeotti, V. Pinchetti et al., High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polar polymer injecting layers. Nano Lett. 15(8), 5455–5464 (2015). https://doi.org/10.1021/acs.nanolett.5b01849
S. Nam, N. Oh, Y. Zhai, M. Shim, High efficiency and optical anisotropy in double-heterojunction nanorod light-emitting diodes. ACS Nano 9(1), 878–885 (2015). https://doi.org/10.1021/nn506577p
Y. Jiang, N. Oh, M. Shim, Double-heterojunction nanorod light-emitting diodes with high efficiencies at high brightness using self-assembled monolayers. ACS Photonics 3(10), 1862–1868 (2016). https://doi.org/10.1021/acsphotonics.6b00371
R.S. Selinsky, Q. Ding, S.M.J.C. Faber, S.Jin Wright, Quantum dot nanoscale heterostructures for solar energy conversion. Chem. Soc. Rev. 42(7), 2963–2985 (2013). https://doi.org/10.1039/C2CS35374A
Z. Yin, J. Zhu, Q. He, X. Cao, C. Tan et al., Graphene-based materials for solar cell applications. Adv. Energy Mater. 4(1), 1300574 (2014). https://doi.org/10.1002/aenm.201300574
C.-H. Chuang, S.S. Lo, G.D. Scholes, C. Burda, Charge separation and recombination in CdTe/CdSe core/shell nanocrystals as a function of shell coverage: probing the onset of the quasi type-II regime. J. Phys. Chem. Lett. 1(17), 2530–2535 (2010). https://doi.org/10.1021/jz1008399
H. McDaniel, M. Pelton, N. Oh, M. Shim, Effects of lattice strain and band offset on electron transfer rates in type-II nanorod heterostructures. J. Phys. Chem. Lett. 3(9), 1094–1098 (2012). https://doi.org/10.1021/jz300275f
K. Wu, Q. Li, Y. Jia, J.R. McBride, Z.-X. Xie, T. Lian, Efficient and ultrafast formation of long-lived charge-transfer exciton state in atomically thin cadmium selenide/cadmium telluride type-II heteronanosheets. ACS Nano 9(1), 961–968 (2015). https://doi.org/10.1021/nn506796m
H. McDaniel, P.E. Heil, C.-L. Tsai, K. Kim, M. Shim, Integration of type II nanorod heterostructures into photovoltaics. ACS Nano 5(9), 7677–7683 (2011). https://doi.org/10.1021/nn2029988
K.P. Acharya, E. Khon, T. O’Conner, I. Nemitz, A. Klinkova, R.S. Khnayzer, P. Anzenbacher, M. Zamkov, Heteroepitaxial growth of colloidal nanocrystals onto substrate films via hot-injection routes. ACS Nano 5(6), 4953–4964 (2011). https://doi.org/10.1021/nn201064n
S.Y. Leblebici, L. Leppert, Y. Li, S.E. Reyes-Lillo, S. Wickenburg et al., Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1(8), 16093 (2016). https://doi.org/10.1038/nenergy.2016.93
L. Amirav, A.P. Alivisatos, Photocatalytic hydrogen production with tunable nanorod heterostructures. J. Phys. Chem. Lett. 1(7), 1051–1054 (2010). https://doi.org/10.1021/jz100075c
N. Razgoniaeva, P. Moroz, S. Lambright, M. Zamkov, Photocatalytic applications of colloidal heterostructured nanocrystals: what’s next? J. Phys. Chem. Lett. 6(21), 4352–4359 (2015). https://doi.org/10.1021/acs.jpclett.5b01883
H. Alam, S. Ramakrishna, A review on the enhancement of figure of merit from bulk to nano-thermoelectric materials. Nano Energy 2(2), 190–212 (2013). https://doi.org/10.1016/j.nanoen.2012.10.005
R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’quinn, Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413(6856), 597–602 (2001). https://doi.org/10.1142/9789814317665_0019
B. Yoo, F. Xiao, K.N. Bozhilov, J. Herman, M.A. Ryan, N.V. Myung, Electrodeposition of thermoelectric superlattice nanowires. Adv. Mater. 19(2), 296–299 (2007). https://doi.org/10.1002/adma.200600606
G. Zhang, H. Fang, H. Yang, L.A. Jauregui, Y.P. Chen, Y. Wu, Design principle of telluride-based nanowire heterostructures for potential thermoelectric applications. Nano Lett. 12(7), 3627–3633 (2012). https://doi.org/10.1021/nl301327d
A. Sitt, A. Salant, G. Menagen, U. Banin, Highly emissive nano rod-in-rod heterostructures with strong linear polarization. Nano Lett. 11(5), 2054–2060 (2011). https://doi.org/10.1021/nl200519b
S. Hu, C. Liang, K. Tiong, Y. Lee, Y. Huang, Preparation and characterization of large niobium-doped MoSe2 single crystals. J. Cryst. Growth 285(3), 408–414 (2005). https://doi.org/10.1016/j.jcrysgro.2005.08.054
B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J.-P. Hermier, B. Dubertret, Towards non-blinking colloidal quantum dots. Nat. Mater. 7(8), 659–664 (2008). https://doi.org/10.1038/nmat2222
Y. Chen, J. Vela, H. Htoon, J.L. Casson, D.J. Werder et al., “Giant” multishell CdSe nanocrystal quantum dots with suppressed blinking. J. Am. Chem. Soc. 130(15), 5026–5027 (2008). https://doi.org/10.1021/ja711379k