Moth-eye Structured Polydimethylsiloxane Films for High-Efficiency Perovskite Solar Cells
Corresponding Author: Mansoo Choi
Nano-Micro Letters,
Vol. 11 (2019), Article Number: 53
Abstract
Large-area polydimethylsiloxane (PDMS) films with variably sized moth-eye structures were fabricated to improve the efficiency of perovskite solar cells. An approach that incorporated photolithography, bilayer PDMS deposition and replication was used in the fabrication process. By simply attaching the moth-eye PDMS films to the transparent substrates of perovskite solar cells, the optical properties of the devices could be tuned by changing the size of the moth-eye structures. The device with 300-nm moth-eye PDMS films greatly enhanced power conversion efficiency of ~ 21% due to the antireflective effect of the moth-eye structure. Furthermore, beautiful coloration was observed on the 1000-nm moth-eye PDMS films through optical interference caused by the diffraction grating effect. Our results imply that moth-eye PDMS films can greatly enhance the efficiency of perovskite solar cells and building-integrated photovoltaics.
Highlights:
1 Moth-eye structured polydimethylsiloxane (PDMS) films with different sizes were fabricated to improve the efficiency of perovskite solar cells.
2 The PDMS with 300-nm moth-eye films significantly reduced light reflection at the front of the glass and therefore enhanced the solar cell efficiency of ~ 21%.
3 The PDMS with 1000-nm moth-eye films exhibited beautiful coloration.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
- C. Vidyasagar, B.M.M. Flores, V.M.J. Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
- M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
- J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
- H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
- H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262–2266 (2016). https://doi.org/10.1039/C6EE01037G
- W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
- J.W. Lee, Z. Dai, C. Lee, H.M. Lee, T.H. Han et al., Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018). https://doi.org/10.1021/jacs.8b01037
- Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu et al., Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017). https://doi.org/10.1002/adma.201703852
- N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
- S.M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, N.G. Park, Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12(18), 2443–2449 (2016). https://doi.org/10.1002/smll.201600428
- G.S. Selopal, R. Milan, L. Ortolani, V. Morandi, R. Rizzoli et al., Graphene as transparent front contact for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 135, 99–105 (2015). https://doi.org/10.1016/j.solmat.2014.10.016
- P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett. 10, 5 (2018). https://doi.org/10.1007/s40820-017-0159-z
- S.M. Kang, N. Ahn, J.-W. Lee, M. Choi, N.-G. Park, Water-repellent perovskite solar cell. J. Mater. Chem. A 2(47), 20017–20021 (2014). https://doi.org/10.1039/C4TA05413J
- H. Tao, W. Zhang, C. Zhang, L. Han, J. Wang, B. Tan, Y. Li, C. Kan, High absorption perovskite solar cell with optical coupling structure. Opt. Commun. 443, 262–267 (2019). https://doi.org/10.1016/j.optcom.2019.02.001
- I. Hwang, D. Choi, S. Lee, J.H. Seo, K.-H. Kim, I. Yoon, K. Seo, Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers. ACS Appl. Mater. Interfaces 9(25), 21276–21282 (2017). https://doi.org/10.1021/acsami.7b04525
- K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, Z. Zheng, Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. J. Mater. Chem. A 5(3), 969–974 (2017). https://doi.org/10.1039/C6TA07586J
- W.-Q. Wu, L. Wang, A 3d hybrid nanowire/microcuboid optoelectronic electrode for maximised light harvesting in perovskite solar cells. J. Mater. Chem. A 7(3), 932–939 (2019). https://doi.org/10.1039/C8TA09806A
- K. Jung, H.-J. Song, G. Lee, Y. Ko, K. Ahn et al., Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8(3), 2590–2601 (2014). https://doi.org/10.1021/nn500276n
- S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, R. Martins, Photonic-structured tio2 for high-efficiency, flexible and stable perovskite solar cells. Nano Energy 59, 91–101 (2019). https://doi.org/10.1016/j.nanoen.2019.02.023
- W. Xie, J. Zhou, S. Huang, W. Ou-Yang, W. Xie, Z. Sun, X. Chen, Plasmon-enhanced perovskite solar cells using ultra-thin LiF spacer isolating AgAl and Au composite nanoparticles from metal electrode. Org. Electron. 59, 272–278 (2018). https://doi.org/10.1016/j.orgel.2018.05.020
- F. Tao, P. Hiralal, L. Ren, Y. Wang, Q. Dai, G.J. Amaratunga, H. Zhou, Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings. Nanosc. Res. Lett. 9, 361 (2014). https://doi.org/10.1186/1556-276X-9-361
- M.M. Tavakoli, K.-H. Tsui, Q. Zhang, J. He, Y. Yao, D.L. Fan, Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9, 10287–10295 (2015). https://doi.org/10.1021/acsnano.5b04284
- D.H. Kim, B. Dudem, J.W. Jung, J.S. Yu, Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer. ACS Appl. Mater. Interfaces 10, 13113–13123 (2018). https://doi.org/10.1021/acsami.8b02987
- J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen et al., Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode. Adv. Energy Mater. 7, 1700492 (2017). https://doi.org/10.1002/aenm.201700492
- B. Dudem, J.H. Heo, J.W. Leem, J.S. Yu, S.H. Im, CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 4, 7573–7579 (2016). https://doi.org/10.1039/C6TA01800A
- Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
- T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, G.M. Whitesides, Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314 (2002). https://doi.org/10.1021/la020169l
- Z. Hawash, L.K. Ono, Y. Qi, Photovoltaics: Recent advances in spiro-MeOTAD hole transport material and its applications in organic–inorganic halide perovskite solar cells. Adv. Mater. Interfaces 5, 1700623 (2018). https://doi.org/10.1002/admi.201700623
- Y.M. Song, H.J. Choi, J.S. Yu, Y.T. Lee, Design of highly transparent glasses with broadband antireflective subwavelength structures. Opt. Express 18, 13063–13071 (2010). https://doi.org/10.1364/OE.18.013036
- A. Bagal, E.C. Dandley, J. Zhao, X.A. Zhang, C.J. Oldham, G.N. Parsons, C.-H. Chang, Multifunctional nano-accordion structures for stretchable transparent conductors. Mater. Horiz. 2, 486 (2015). https://doi.org/10.1039/C5MH00070J
- J.A. Christians, J.S. Manser, P.V. Kamat, Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J. Phys. Chem. Lett. 6, 852–857 (2015). https://doi.org/10.1021/acs.jpclett.5b00289
- E. Zimmermann, P. Ehrenreich, T. Pfadler, J.A. Dorman, J. Weickert, L. Schmidt-Mende, Erroneous efficiency reports harm organic solar cell research. Nat. Photon. 8, 669–672 (2014). https://doi.org/10.1038/nphoton.2014.210
- A. Carella, F. Borbone, R. Centore, Research progress on photosensitizers for DSSC. Front. Chem. 6, 481 (2018). https://doi.org/10.3389/fchem.2018.00481
- Y. Ren, D. Sun, Y. Cao, H.N. Tsao, Y. Yuan, S.M. Zakeeruddin, P. Wang, M. Gratzel, A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J. Am. Chem. Soc. 140, 2405 (2018). https://doi.org/10.1021/jacs.7b12348
- L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang, Y. Sun, J. Yang, X. Li, Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6
References
A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050–6051 (2009). https://doi.org/10.1021/ja809598r
C. Vidyasagar, B.M.M. Flores, V.M.J. Pérez, Recent advances in synthesis and properties of hybrid halide perovskites for photovoltaics. Nano-Micro Lett. 10, 68 (2018). https://doi.org/10.1007/s40820-018-0221-5
M. Liu, M.B. Johnston, H.J. Snaith, Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501, 395–398 (2013). https://doi.org/10.1038/nature12509
J. Burschka, N. Pellet, S.J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013). https://doi.org/10.1038/nature12340
H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl et al., Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012). https://doi.org/10.1038/srep00591
H. Yoon, S.M. Kang, J.-K. Lee, M. Choi, Hysteresis-free low-temperature-processed planar perovskite solar cells with 19.1% efficiency. Energy Environ. Sci. 9, 2262–2266 (2016). https://doi.org/10.1039/C6EE01037G
W.S. Yang, B.-W. Park, E.H. Jung, N.J. Jeon, Y.C. Kim et al., Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells. Science 356, 1376–1379 (2017). https://doi.org/10.1126/science.aan2301
J.W. Lee, Z. Dai, C. Lee, H.M. Lee, T.H. Han et al., Tuning molecular interactions for highly reproducible and efficient formamidinium perovskite solar cells via adduct approach. J. Am. Chem. Soc. 140, 6317–6324 (2018). https://doi.org/10.1021/jacs.8b01037
Q. Jiang, Z. Chu, P. Wang, X. Yang, H. Liu et al., Planar-structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017). https://doi.org/10.1002/adma.201703852
N. Ahn, D.Y. Son, I.H. Jang, S.M. Kang, M. Choi, N.G. Park, Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead (II) iodide. J. Am. Chem. Soc. 137, 8696–8699 (2015). https://doi.org/10.1021/jacs.5b04930
S.M. Kang, S. Jang, J.-K. Lee, J. Yoon, D.-E. Yoo, J.-W. Lee, M. Choi, N.G. Park, Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12(18), 2443–2449 (2016). https://doi.org/10.1002/smll.201600428
G.S. Selopal, R. Milan, L. Ortolani, V. Morandi, R. Rizzoli et al., Graphene as transparent front contact for dye sensitized solar cells. Sol. Energy Mater. Sol. Cells 135, 99–105 (2015). https://doi.org/10.1016/j.solmat.2014.10.016
P. Liao, X. Zhao, G. Li, Y. Shen, M. Wang, A new method for fitting current–voltage curves of planar heterojunction perovskite solar cells. Nano-Micro Lett. 10, 5 (2018). https://doi.org/10.1007/s40820-017-0159-z
S.M. Kang, N. Ahn, J.-W. Lee, M. Choi, N.-G. Park, Water-repellent perovskite solar cell. J. Mater. Chem. A 2(47), 20017–20021 (2014). https://doi.org/10.1039/C4TA05413J
H. Tao, W. Zhang, C. Zhang, L. Han, J. Wang, B. Tan, Y. Li, C. Kan, High absorption perovskite solar cell with optical coupling structure. Opt. Commun. 443, 262–267 (2019). https://doi.org/10.1016/j.optcom.2019.02.001
I. Hwang, D. Choi, S. Lee, J.H. Seo, K.-H. Kim, I. Yoon, K. Seo, Enhancement of light absorption in photovoltaic devices using textured polydimethylsiloxane stickers. ACS Appl. Mater. Interfaces 9(25), 21276–21282 (2017). https://doi.org/10.1021/acsami.7b04525
K. Li, Y. Zhang, H. Zhen, H. Wang, S. Liu, F. Yan, Z. Zheng, Versatile biomimetic haze films for efficiency enhancement of photovoltaic devices. J. Mater. Chem. A 5(3), 969–974 (2017). https://doi.org/10.1039/C6TA07586J
W.-Q. Wu, L. Wang, A 3d hybrid nanowire/microcuboid optoelectronic electrode for maximised light harvesting in perovskite solar cells. J. Mater. Chem. A 7(3), 932–939 (2019). https://doi.org/10.1039/C8TA09806A
K. Jung, H.-J. Song, G. Lee, Y. Ko, K. Ahn et al., Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano 8(3), 2590–2601 (2014). https://doi.org/10.1021/nn500276n
S. Haque, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, R. Martins, Photonic-structured tio2 for high-efficiency, flexible and stable perovskite solar cells. Nano Energy 59, 91–101 (2019). https://doi.org/10.1016/j.nanoen.2019.02.023
W. Xie, J. Zhou, S. Huang, W. Ou-Yang, W. Xie, Z. Sun, X. Chen, Plasmon-enhanced perovskite solar cells using ultra-thin LiF spacer isolating AgAl and Au composite nanoparticles from metal electrode. Org. Electron. 59, 272–278 (2018). https://doi.org/10.1016/j.orgel.2018.05.020
F. Tao, P. Hiralal, L. Ren, Y. Wang, Q. Dai, G.J. Amaratunga, H. Zhou, Tuning the peak position of subwavelength silica nanosphere broadband antireflection coatings. Nanosc. Res. Lett. 9, 361 (2014). https://doi.org/10.1186/1556-276X-9-361
M.M. Tavakoli, K.-H. Tsui, Q. Zhang, J. He, Y. Yao, D.L. Fan, Highly efficient flexible perovskite solar cells with antireflection and self-cleaning nanostructures. ACS Nano 9, 10287–10295 (2015). https://doi.org/10.1021/acsnano.5b04284
D.H. Kim, B. Dudem, J.W. Jung, J.S. Yu, Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer. ACS Appl. Mater. Interfaces 10, 13113–13123 (2018). https://doi.org/10.1021/acsami.8b02987
J. Wei, R.-P. Xu, Y.-Q. Li, C. Li, J.-D. Chen et al., Enhanced light harvesting in perovskite solar cells by a bioinspired nanostructured back electrode. Adv. Energy Mater. 7, 1700492 (2017). https://doi.org/10.1002/aenm.201700492
B. Dudem, J.H. Heo, J.W. Leem, J.S. Yu, S.H. Im, CH3NH3PbI3 planar perovskite solar cells with antireflection and self-cleaning function layers. J. Mater. Chem. A 4, 7573–7579 (2016). https://doi.org/10.1039/C6TA01800A
Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng et al., Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells. Nat. Energy 2, 16177 (2016). https://doi.org/10.1038/nenergy.2016.177
T.W. Odom, J.C. Love, D.B. Wolfe, K.E. Paul, G.M. Whitesides, Improved pattern transfer in soft lithography using composite stamps. Langmuir 18, 5314 (2002). https://doi.org/10.1021/la020169l
Z. Hawash, L.K. Ono, Y. Qi, Photovoltaics: Recent advances in spiro-MeOTAD hole transport material and its applications in organic–inorganic halide perovskite solar cells. Adv. Mater. Interfaces 5, 1700623 (2018). https://doi.org/10.1002/admi.201700623
Y.M. Song, H.J. Choi, J.S. Yu, Y.T. Lee, Design of highly transparent glasses with broadband antireflective subwavelength structures. Opt. Express 18, 13063–13071 (2010). https://doi.org/10.1364/OE.18.013036
A. Bagal, E.C. Dandley, J. Zhao, X.A. Zhang, C.J. Oldham, G.N. Parsons, C.-H. Chang, Multifunctional nano-accordion structures for stretchable transparent conductors. Mater. Horiz. 2, 486 (2015). https://doi.org/10.1039/C5MH00070J
J.A. Christians, J.S. Manser, P.V. Kamat, Best practices in perovskite solar cell efficiency measurements. Avoiding the error of making bad cells look good. J. Phys. Chem. Lett. 6, 852–857 (2015). https://doi.org/10.1021/acs.jpclett.5b00289
E. Zimmermann, P. Ehrenreich, T. Pfadler, J.A. Dorman, J. Weickert, L. Schmidt-Mende, Erroneous efficiency reports harm organic solar cell research. Nat. Photon. 8, 669–672 (2014). https://doi.org/10.1038/nphoton.2014.210
A. Carella, F. Borbone, R. Centore, Research progress on photosensitizers for DSSC. Front. Chem. 6, 481 (2018). https://doi.org/10.3389/fchem.2018.00481
Y. Ren, D. Sun, Y. Cao, H.N. Tsao, Y. Yuan, S.M. Zakeeruddin, P. Wang, M. Gratzel, A stable blue photosensitizer for color palette of dye-sensitized solar cells reaching 12.6% efficiency. J. Am. Chem. Soc. 140, 2405 (2018). https://doi.org/10.1021/jacs.7b12348
L. Chu, W. Ahmad, W. Liu, J. Yang, R. Zhang, Y. Sun, J. Yang, X. Li, Lead-free halide double perovskite materials: A new superstar toward green and stable optoelectronic applications. Nano-Micro Lett. 11, 16 (2019). https://doi.org/10.1007/s40820-019-0244-6