Patterning of Metal Halide Perovskite Thin Films and Functional Layers for Optoelectronic Applications
Corresponding Author: Seong Min Kang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 184
Abstract
In recent years, metal halide perovskites have received significant attention as materials for next-generation optoelectronic devices owing to their excellent optoelectronic properties. The unprecedented rapid evolution in the device performance has been achieved by gaining an advanced understanding of the composition, crystal growth, and defect engineering of perovskites. As device performances approach their theoretical limits, effective optical management becomes essential for achieving higher efficiency. In this review, we discuss the status and perspectives of nano to micron-scale patterning methods for the optical management of perovskite optoelectronic devices. We initially discuss the importance of effective light harvesting and light outcoupling via optical management. Subsequently, the recent progress in various patterning/texturing techniques applied to perovskite optoelectronic devices is summarized by categorizing them into top-down and bottom-up methods. Finally, we discuss the perspectives of advanced patterning/texturing technologies for the development and commercialization of perovskite optoelectronic devices.
Highlights:
1 This review discusses the status and perspectives of nano- to micron-scale patterning method for the optical management of perovskite optoelectronic devices.
2 We provide an overview of nanopatterning/texturing technologies for perovskites to achieve a high device performance and categorize them into top-down and bottom-up approaches.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
- Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose x-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
- S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909), 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
- J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
- W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13(6), 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
- Best research-cell efficiency chart, national renewable research laboratory.
- N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
- J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang et al., A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3(2), 290–302 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
- Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
- H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015)
- H.S. Kim, N.G. Park, Future research directions in perovskite solar cells: Exquisite photon management and thermodynamic phase stability. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204807
- Y. Tachibana, K. Hara, K. Sayama, H. Arakawa, Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem. Mater. 14(6), 2527–2535 (2002). https://doi.org/10.1021/cm011563s
- J.-W. Lee, S.H. Lee, H.-S. Ko, J. Kwon, J.H. Park et al., Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells. J. Mater. Chem. A 3(17), 9179–9186 (2015). https://doi.org/10.1039/C4TA04988H
- X. Wang, W. Wang, J. Liu, J. Qi, Y. He, TiO2 Reducing optical reflection loss for perovskite solar cells via printable mesoporous SiO2 antireflection coatings. Adv. Funct. Mater. 32(44), 2203872 (2022). https://doi.org/10.1002/adfm.202203872
- Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photon. 9(2), 106–112 (2015). https://doi.org/10.1038/nphoton.2014.284
- S.G. Kim, J.H. Kim, P. Ramming, Y. Zhong, K. Schötz, TiO2 How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat. Commun. 12(1), 1554 (2021). https://doi.org/10.1038/s41467-021-21803-2
- S.D. Stranks, R.L. Hoye, D. Di, R.H. Friend, F. Deschler, The physics of light emission in halide perovskite devices. Adv. Mater. 31(47), 1803336 (2019). https://doi.org/10.1002/adma.201803336
- J.W. Lee, Y.J. Choi, J.M. Yang, S. Ham, S.K. Jeon, TiO2 In-situ formed type i nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 11(3), 3311–3319 (2017). https://doi.org/10.1021/acsnano.7b00608
- X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14(4), 215–218 (2020). https://doi.org/10.1038/s41566-019-0559-3
- T. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131(2), 415–427 (1985). https://doi.org/10.1002/pssb.2221310202
- C. He, G. Zha, C. Deng, Y. An, R. Mao, TiO2 Refractive index dispersion of organic–inorganic hybrid halide perovskite CH3NH3PbX3 (X═ Cl, Br, I) single crystals. Cryst. Res. Technol. 54(5), 1900011 (2019). https://doi.org/10.1002/crat.201900011
- L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31(2), 1805836 (2019). https://doi.org/10.1002/adma.201805836
- S.-S. Meng, Y.-Q. Li, J.-X. Tang, Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018). https://doi.org/10.1016/j.orgel.2018.06.014
- J.M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J.P. Rivett, TiO2 Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7(1), 13941 (2016). https://doi.org/10.1038/ncomms13941
- B. Jeong, H. Han, H.H. Kim, W.K. Choi, Y.J. Park et al., Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano 14(2), 1645–1655 (2020). https://doi.org/10.1021/acsnano.9b06980
- Y. Wang, Y. Lan, Q. Song, F. Vogelbacher, T. Xu et al., Colorful efficient moire-perovskite solar cells. Adv. Mater. 33(15), e2008091 (2021). https://doi.org/10.1002/adma.202008091
- M.E. Kamminga, H.H. Fang, M.A. Loi, G.H. Ten Brink, G.R. Blake et al., Micropatterned 2d hybrid perovskite thin films with enhanced photoluminescence lifetimes. ACS Appl. Mater. Interfaces 10(15), 12878–12885 (2018). https://doi.org/10.1021/acsami.8b02236
- S.V. Makarov, V. Milichko, E.V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran et al., Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4(4), 728–735 (2017). https://doi.org/10.1021/acsphotonics.6b00940
- R. Schmager, I.M. Hossain, F. Schackmar, B.S. Richards, G. Gomard, U.W. Paetzold, Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Sol. Energy Mater. Sol. Cells. 201, 110080 (2019). https://doi.org/10.1016/j.solmat.2019.110080
- Z.Y. Cheng, Z. Wang, R.B. Xing, Y.C. Han, J. Lin, Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography. Chem. Phys. Lett. 376(3–4), 481–486 (2003). https://doi.org/10.1016/s0009-2614(03)01017-0
- N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen et al., Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 29(12), 1605003 (2017). https://doi.org/10.1002/adma.201605003
- X. He, P. Liu, H. Zhang, Q. Liao, J. Yao et al., Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29(12), 1604510 (2017). https://doi.org/10.1002/adma.201604510
- J. Mao, W.E.I. Sha, H. Zhang, X. Ren, J. Zhuang et al., Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 27(10), 1606525 (2017). https://doi.org/10.1002/adfm.201606525
- J. Moon, S. Kwon, M. Alahbakhshi, Y. Lee, K. Cho et al., Surface energy-driven preferential grain growth of metal halide perovskites: Effects of nanoimprint lithography beyond direct patterning. ACS Appl. Mater. Interfaces 13(4), 5368–5378 (2021). https://doi.org/10.1021/acsami.0c17655
- H. Kim, K. Roh, J.P. Murphy, L. Zhao, W.B. Gunnarsson et al., Optically pumped lasing from hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 8(1), 1901297 (2019). https://doi.org/10.1002/adom.201901297
- S.M. Kang, S. Jang, J.K. Lee, J. Yoon, D.E. Yoo et al., Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12(18), 2443–2449 (2016). https://doi.org/10.1002/smll.201600428
- J.S. Choi, Y.W. Jang, U. Kim, M. Choi, S.M. Kang, Optically and mechanically engineered anti-reflective film for highly efficient rigid and flexible perovskite solar cells. Adv. Energy Mater. 33, 2201520 (2022). https://doi.org/10.1002/aenm.202201520
- Y. Shen, L.P. Cheng, Y.Q. Li, W. Li, J.D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31(24), e1901517 (2019). https://doi.org/10.1002/adma.201901517
- J. Wu, J. Chen, Y. Zhang, Z. Xu, L. Zhao et al., Pinhole-free hybrid perovskite film with arbitrarily-shaped micro-patterns for functional optoelectronic devices. Nano Lett. 17(6), 3563–3569 (2017). https://doi.org/10.1021/acs.nanolett.7b00722
- D. Xing, C.C. Lin, Y.L. Ho, A.S.A. Kamal, I.T. Wang et al., Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array. Adv. Funct. Mater. 31(1), 2006283 (2020). https://doi.org/10.1002/adfm.202006283
- J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
- C.Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong et al., Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 15(19), e1900730 (2019). https://doi.org/10.1002/smll.201900730
- C. Zou, C. Chang, D. Sun, K.F. Bohringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
- G. Kim, S. An, S.-K. Hyeong, S.-K. Lee, M. Kim et al., Perovskite pattern formation by chemical vapor deposition using photolithographically defined templates. Chem. Mater. 31(19), 8212–8221 (2019). https://doi.org/10.1021/acs.chemmater.9b03155
- J. Wu, F. Ye, W. Yang, Z. Xu, D. Luo et al., Perovskite single-crystal microarrays for efficient photovoltaic devices. Chem. Mater. 30(14), 4590–4596 (2018). https://doi.org/10.1021/acs.chemmater.8b00945
- C.H. Lin, Q. Zeng, E. Lafalce, S. Yu, M.J. Smith et al., Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 6(16), 1800474 (2018). https://doi.org/10.1002/adom.201800474
- S. Jeon, S.Y. Lee, S.K. Kim, W. Kim, T. Park et al., All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 17, 2000501 (2020). https://doi.org/10.1002/adom.202000501
- W. Lee, J. Lee, H. Yun, J. Kim, J. Park et al., High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29(40), 1702902 (2017). https://doi.org/10.1002/adma.201702902
- D. Lyashenko, A. Perez, A. Zakhidov, High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Phys. Status Solidi A. 214(1), 1600302 (2017). https://doi.org/10.1002/pssa.201600302
- M.A. Haque, A. Syed, F.H. Akhtar, R. Shevate, S. Singh et al., Giant humidity effect on hybrid halide perovskite microstripes: Reversibility and sensing mechanism. ACS Appl. Mater. Interfaces 11(33), 29821–29829 (2019). https://doi.org/10.1021/acsami.9b07751
- C.-Y. Huang, H. Li, Y. Wu, C.-H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-micro Lett. 15(1), 16 (2023). https://doi.org/10.1007/s40820-022-00983-6
- A. Walter, S.-J. Moon, B.A. Kamino, L. Lofgren, D. Sacchetto et al., Closing the cell-to-module efficiency gap: A fully laser scribed perovskite minimodule with 16% steady-state aperture area efficiency. IEEE J. Photovolt. 8(1), 151–155 (2018). https://doi.org/10.1109/jphotov.2017.2765082
- L. Bayer, M. Ehrhardt, P. Lorenz, S. Pisoni, S. Buecheler et al., Morphology and topography of perovskite solar cell films ablated and scribed with short and ultrashort laser pulses. Appl. Surf. Sci. 416, 112–117 (2017). https://doi.org/10.1016/j.apsusc.2017.04.058
- B. Taheri, F. De Rossi, G. Lucarelli, L.A. Castriotta, A. Di Carlo et al., Laser-scribing optimization for sprayed SnO2-based perovskite solar modules on flexible plastic substrates. ACS Appl. Energy Mater. 4(5), 4507–4518 (2021). https://doi.org/10.1021/acsaem.1c00140
- J. Chen, Y. Wu, X. Li, F. Cao, Y. Gu et al., Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv. Mater. Technol. 2(10), 1700132 (2017). https://doi.org/10.1002/admt.201700132
- X. Huang, Q. Guo, S. Kang, T. Ouyang, Q. Chen et al., Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14(3), 3150–3158 (2020). https://doi.org/10.1021/acsnano.9b08314
- X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3d laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14(2), 82–88 (2019). https://doi.org/10.1038/s41566-019-0538-8
- A.L. Palma, F. Matteocci, A. Agresti, S. Pescetelli, E. Calabro et al., Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 7(6), 1674–1680 (2017). https://doi.org/10.1109/jphotov.2017.2732223
- W. Zhan, L. Meng, C. Shao, X.-G. Wu, K. Shi et al., In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8(3), 765–770 (2021). https://doi.org/10.1021/acsphotonics.1c00118
- J.A. Steele, H. Yuan, C.Y.X. Tan, M. Keshavarz, C. Steuwe et al., Direct laser writing of delta- to alpha-phase transformation in formamidinium lead iodide. ACS Nano 11(8), 8072–8083 (2017). https://doi.org/10.1021/acsnano.7b02777
- F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1), 1224–1230 (2016). https://doi.org/10.1021/acsnano.5b06536
- C. Zhou, G. Cao, Z. Gan, Q. Ou, W. Chen et al., Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl. Mater. Interfaces 11(29), 26017–26023 (2019). https://doi.org/10.1021/acsami.9b07708
- J.W. Lee, D.K. Lee, D.N. Jeong, N.G. Park, Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29(47), 1807047 (2019). https://doi.org/10.1002/adfm.201807047
- C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6(1), 7747 (2015). https://doi.org/10.1038/ncomms8747
- G. Wang, D. Li, H.-C. Cheng, Y. Li, C.-Y. Chen et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1(9), e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
- C.-K. Lin, Q. Zhao, Y. Zhang, S. Cestellos-Blanco, Q. Kong et al., Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14(3), 3500–3508 (2020). https://doi.org/10.1021/acsnano.9b09685
- J. Feng, X. Yan, Y. Zhang, X. Wang, Y. Wu et al., “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 28(19), 3732–3741 (2016). https://doi.org/10.1002/adma.201505952
- S.S. Chou, B.S. Swartzentruber, M.T. Janish, K.C. Meyer, L.B. Biedermann et al., Laser direct write synthesis of lead halide perovskites. J. Phys. Chem. Lett. 7(19), 3736–3741 (2016). https://doi.org/10.1021/acs.jpclett.6b01557
- M. Chen, J. Yang, Z. Wang, Z. Xu, H. Lee et al., 3d nanoprinting of perovskites. Adv. Mater. 31(44), 1904073 (2019). https://doi.org/10.1002/adma.201904073
- Z. Gu, K. Wang, H. Li, M. Gao, L. Li et al., Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 13(8), 1603217 (2017). https://doi.org/10.1002/smll.201603217
- C.H. Lin, T.Y. Li, J. Zhang, Z.Y. Chiao, P.C. Wei et al., Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 73, 104801 (2020). https://doi.org/10.1016/j.nanoen.2020.104801
- Z. Gu, Z. Huang, C. Li, M. Li, Y. Song, A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 4(6), eaat2390 (2018). https://doi.org/10.1126/sciadv.aat2390
- S. Jia, G. Li, P. Liu, R. Cai, H. Tang et al., Highly luminescent and stable green quasi-2d perovskite-embedded polymer sheets by inkjet printing. Adv. Funct. Mater. 30(24), 1910817 (2020). https://doi.org/10.1002/adfm.201910817
- L. Shi, L. Meng, F. Jiang, Y. Ge, F. Li et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 29(37), 1903648 (2019). https://doi.org/10.1002/adfm.201903648
- Y. Altintas, I. Torun, A.F. Yazici, E. Beskazak, T. Erdem et al., Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem. Eng. J. 380, 122493 (2020). https://doi.org/10.1016/j.cej.2019.122493
- D. Li, J. Wang, M. Li, G. Xie, B. Guo et al., Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 5(6), 2000099 (2020). https://doi.org/10.1002/admt.202000099
- C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy towards efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. (2022). https://doi.org/10.1002/adma.202107798
- S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao et al., Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 7(4), eabb2412 (2021). https://doi.org/10.1126/sciadv.abb2412
- K.A. Bush, N. Rolston, A. Gold-Parker, S. Manzoor, J. Hausele et al., Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett. 3(6), 1225–1232 (2018). https://doi.org/10.1021/acsenergylett.8b00544
- S.M. Kang, J.H. An, Robust and transparent lossless directional omniphobic ultra-thin sticker-type film with re-entrant micro-stripe arrays. ACS Appl. Mater. Interfaces 14, 39646–39653 (2022). https://doi.org/10.1021/acsami.2c12398
- M.C. Kim, S. Jang, J. Choi, S.M. Kang, M. Choi, Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano-Micro Lett. 11(1), 53 (2019). https://doi.org/10.1007/s40820-019-0284-y
- B. Jeong, H. Han, C. Park, Micro-and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), 2000597 (2020). https://doi.org/10.1002/adma.202000597
- C. Wagner, N. Harned, Lithography gets extreme. Nat. Photonics 4(1), 24–26 (2010). https://doi.org/10.1038/nphoton.2009.251
- L. Liang, T. Ma, Z. Chen, J. Wang, J. Hu et al., Patterning technologies for metal halide perovskites: A review. Adv. Mater. Technol. 8(3), 2200419 (2023). https://doi.org/10.1002/admt.202200419
- Y. Zhan, Q. Cheng, Y. Song, M. Li, Micro-nano structure functionalized perovskite optoelectronics: From structure functionalities to device applications. Adv. Funct. Mater. 32(24), 2200385 (2022). https://doi.org/10.1002/adfm.202200385
- S.X. Li, Y.S. Xu, C.L. Li, Q. Guo, G. Wang et al., Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 32(28), 2001998 (2020). https://doi.org/10.1002/adma.202001998
- C.H. Chan, C.R. Lin, M.C. Liu, K.M. Lee, Z.J. Ji et al., Enhanced electron collection and light harvesting of CH3NH3PbI3 perovskite solar cells using nanopatterned substrates. Adv. Mater. Interfaces 5(23), 1801118 (2018). https://doi.org/10.1002/admi.201801118
- J. Wang, H. Zhang, L. Wang, K. Yang, L. Cang et al., Highly stable and efficient mesoporous and hollow silica antireflection coatings for perovskite solar cells. ACS Appl. Energy Mater. 3(5), 4484–4491 (2020). https://doi.org/10.1021/acsaem.0c00175
- L. Qiu, J. Deng, X. Lu, Z. Yang, H. Peng, Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53(39), 10425–10428 (2014). https://doi.org/10.1002/anie.201404973
- C. Bohr, M. Pfeiffer, S. Oz, F. von Toperczer, A. Lepcha et al., Electrospun hybrid perovskite fibers—flexible networks of one-dimensional semiconductors for light-harvesting applications. ACS Appl. Mater. Interfaces 11(28), 25163–25169 (2019). https://doi.org/10.1021/acsami.9b05700
- F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
- P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotech. 17, 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
- E.M. Tennyson, K. Frohna, W.K. Drake, F. Sahli, T. Chien-Jen Yang et al., Multimodal microscale imaging of textured perovskite–silicon tandem solar cells. ACS Energy Lett. 6, 2293–2304 (2021). https://doi.org/10.1021/acsenergylett.1c00568
- J.H. Lee, B.S. Kim, J. Park, J.W. Lee, K. Kim, Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202200928
- Y. Wang, I. Ahmad, T. Leung, J. Lin, W. Chen et al., Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2(3), 215–236 (2022). https://doi.org/10.1021/acsmaterialsau.1c00045
- S.M. Kang, N. Ahn, J.-W. Lee, M. Choi, N.-G. Park, Water-repellent perovskite solar cell. J. Mater. Chem. A 2(47), 20017–20021 (2014). https://doi.org/10.1039/C4TA05413J
- J. Yoon, U. Kim, J.S. Choi, M. Choi, S.M. Kang, Bioinspired liquid-repelling sealing films for flexible perovskite solar cells. Mater. Today Energy 20, 100622 (2021). https://doi.org/10.1016/j.mtener.2020.100622
References
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, N.G. Park, High-efficiency perovskite solar cells. Chem. Rev. 120(15), 7867–7918 (2020). https://doi.org/10.1021/acs.chemrev.0c00107
Y.C. Kim, K.H. Kim, D.-Y. Son, D.-N. Jeong, J.-Y. Seo et al., Printable organometallic perovskite enables large-area, low-dose x-ray imaging. Nature 550(7674), 87–91 (2017). https://doi.org/10.1038/nature24032
S. Tan, T. Huang, I. Yavuz, R. Wang, T.W. Yoon et al., Stability-limiting heterointerfaces of perovskite photovoltaics. Nature 605(7909), 268–273 (2022). https://doi.org/10.1038/s41586-022-04604-5
J.S. Kim, J.-M. Heo, G.-S. Park, S.-J. Woo, C. Cho et al., Ultra-bright, efficient and stable perovskite light-emitting diodes. Nature 611(7937), 688–694 (2022). https://doi.org/10.1038/s41586-022-05304-w
W. Xu, Q. Hu, S. Bai, C. Bao, Y. Miao et al., Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photonics 13(6), 418–424 (2019). https://doi.org/10.1038/s41566-019-0390-x
Best research-cell efficiency chart, national renewable research laboratory.
N.J. Jeon, J.H. Noh, W.S. Yang, Y.C. Kim, S. Ryu et al., Compositional engineering of perovskite materials for high-performance solar cells. Nature 517(7535), 476–480 (2015). https://doi.org/10.1038/nature14133
J.-W. Lee, S.-H. Bae, Y.-T. Hsieh, N. De Marco, M. Wang et al., A bifunctional lewis base additive for microscopic homogeneity in perovskite solar cells. Chem 3(2), 290–302 (2017). https://doi.org/10.1016/j.chempr.2017.05.020
Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen et al., Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13(7), 460–466 (2019). https://doi.org/10.1038/s41566-019-0398-2
H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222–1225 (2015)
H.S. Kim, N.G. Park, Future research directions in perovskite solar cells: Exquisite photon management and thermodynamic phase stability. Adv. Mater. (2022). https://doi.org/10.1002/adma.202204807
Y. Tachibana, K. Hara, K. Sayama, H. Arakawa, Quantitative analysis of light-harvesting efficiency and electron-transfer yield in ruthenium-dye-sensitized nanocrystalline TiO2 solar cells. Chem. Mater. 14(6), 2527–2535 (2002). https://doi.org/10.1021/cm011563s
J.-W. Lee, S.H. Lee, H.-S. Ko, J. Kwon, J.H. Park et al., Opto-electronic properties of TiO2 nanohelices with embedded HC(NH2)2PbI3 perovskite solar cells. J. Mater. Chem. A 3(17), 9179–9186 (2015). https://doi.org/10.1039/C4TA04988H
X. Wang, W. Wang, J. Liu, J. Qi, Y. He, TiO2 Reducing optical reflection loss for perovskite solar cells via printable mesoporous SiO2 antireflection coatings. Adv. Funct. Mater. 32(44), 2203872 (2022). https://doi.org/10.1002/adfm.202203872
Q. Lin, A. Armin, R.C.R. Nagiri, P.L. Burn, P. Meredith, Electro-optics of perovskite solar cells. Nat. Photon. 9(2), 106–112 (2015). https://doi.org/10.1038/nphoton.2014.284
S.G. Kim, J.H. Kim, P. Ramming, Y. Zhong, K. Schötz, TiO2 How antisolvent miscibility affects perovskite film wrinkling and photovoltaic properties. Nat. Commun. 12(1), 1554 (2021). https://doi.org/10.1038/s41467-021-21803-2
S.D. Stranks, R.L. Hoye, D. Di, R.H. Friend, F. Deschler, The physics of light emission in halide perovskite devices. Adv. Mater. 31(47), 1803336 (2019). https://doi.org/10.1002/adma.201803336
J.W. Lee, Y.J. Choi, J.M. Yang, S. Ham, S.K. Jeon, TiO2 In-situ formed type i nanocrystalline perovskite film for highly efficient light-emitting diode. ACS Nano 11(3), 3311–3319 (2017). https://doi.org/10.1021/acsnano.7b00608
X. Zhao, Z.-K. Tan, Large-area near-infrared perovskite light-emitting diodes. Nat. Photon. 14(4), 215–218 (2020). https://doi.org/10.1038/s41566-019-0559-3
T. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Solidi B 131(2), 415–427 (1985). https://doi.org/10.1002/pssb.2221310202
C. He, G. Zha, C. Deng, Y. An, R. Mao, TiO2 Refractive index dispersion of organic–inorganic hybrid halide perovskite CH3NH3PbX3 (X═ Cl, Br, I) single crystals. Cryst. Res. Technol. 54(5), 1900011 (2019). https://doi.org/10.1002/crat.201900011
L. Zhao, K.M. Lee, K. Roh, S.U.Z. Khan, B.P. Rand, Improved outcoupling efficiency and stability of perovskite light-emitting diodes using thin emitting layers. Adv. Mater. 31(2), 1805836 (2019). https://doi.org/10.1002/adma.201805836
S.-S. Meng, Y.-Q. Li, J.-X. Tang, Theoretical perspective to light outcoupling and management in perovskite light-emitting diodes. Org. Electron. 61, 351–358 (2018). https://doi.org/10.1016/j.orgel.2018.06.014
J.M. Richter, M. Abdi-Jalebi, A. Sadhanala, M. Tabachnyk, J.P. Rivett, TiO2 Enhancing photoluminescence yields in lead halide perovskites by photon recycling and light out-coupling. Nat. Commun. 7(1), 13941 (2016). https://doi.org/10.1038/ncomms13941
B. Jeong, H. Han, H.H. Kim, W.K. Choi, Y.J. Park et al., Polymer-assisted nanoimprinting for environment- and phase-stable perovskite nanopatterns. ACS Nano 14(2), 1645–1655 (2020). https://doi.org/10.1021/acsnano.9b06980
Y. Wang, Y. Lan, Q. Song, F. Vogelbacher, T. Xu et al., Colorful efficient moire-perovskite solar cells. Adv. Mater. 33(15), e2008091 (2021). https://doi.org/10.1002/adma.202008091
M.E. Kamminga, H.H. Fang, M.A. Loi, G.H. Ten Brink, G.R. Blake et al., Micropatterned 2d hybrid perovskite thin films with enhanced photoluminescence lifetimes. ACS Appl. Mater. Interfaces 10(15), 12878–12885 (2018). https://doi.org/10.1021/acsami.8b02236
S.V. Makarov, V. Milichko, E.V. Ushakova, M. Omelyanovich, A. Cerdan Pasaran et al., Multifold emission enhancement in nanoimprinted hybrid perovskite metasurfaces. ACS Photonics 4(4), 728–735 (2017). https://doi.org/10.1021/acsphotonics.6b00940
R. Schmager, I.M. Hossain, F. Schackmar, B.S. Richards, G. Gomard, U.W. Paetzold, Light coupling to quasi-guided modes in nanoimprinted perovskite solar cells. Sol. Energy Mater. Sol. Cells. 201, 110080 (2019). https://doi.org/10.1016/j.solmat.2019.110080
Z.Y. Cheng, Z. Wang, R.B. Xing, Y.C. Han, J. Lin, Patterning and photoluminescent properties of perovskite-type organic/inorganic hybrid luminescent films by soft lithography. Chem. Phys. Lett. 376(3–4), 481–486 (2003). https://doi.org/10.1016/s0009-2614(03)01017-0
N. Pourdavoud, S. Wang, A. Mayer, T. Hu, Y. Chen et al., Photonic nanostructures patterned by thermal nanoimprint directly into organo-metal halide perovskites. Adv. Mater. 29(12), 1605003 (2017). https://doi.org/10.1002/adma.201605003
X. He, P. Liu, H. Zhang, Q. Liao, J. Yao et al., Patterning multicolored microdisk laser arrays of cesium lead halide perovskite. Adv. Mater. 29(12), 1604510 (2017). https://doi.org/10.1002/adma.201604510
J. Mao, W.E.I. Sha, H. Zhang, X. Ren, J. Zhuang et al., Novel direct nanopatterning approach to fabricate periodically nanostructured perovskite for optoelectronic applications. Adv. Funct. Mater. 27(10), 1606525 (2017). https://doi.org/10.1002/adfm.201606525
J. Moon, S. Kwon, M. Alahbakhshi, Y. Lee, K. Cho et al., Surface energy-driven preferential grain growth of metal halide perovskites: Effects of nanoimprint lithography beyond direct patterning. ACS Appl. Mater. Interfaces 13(4), 5368–5378 (2021). https://doi.org/10.1021/acsami.0c17655
H. Kim, K. Roh, J.P. Murphy, L. Zhao, W.B. Gunnarsson et al., Optically pumped lasing from hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 8(1), 1901297 (2019). https://doi.org/10.1002/adom.201901297
S.M. Kang, S. Jang, J.K. Lee, J. Yoon, D.E. Yoo et al., Moth-eye TiO2 layer for improving light harvesting efficiency in perovskite solar cells. Small 12(18), 2443–2449 (2016). https://doi.org/10.1002/smll.201600428
J.S. Choi, Y.W. Jang, U. Kim, M. Choi, S.M. Kang, Optically and mechanically engineered anti-reflective film for highly efficient rigid and flexible perovskite solar cells. Adv. Energy Mater. 33, 2201520 (2022). https://doi.org/10.1002/aenm.202201520
Y. Shen, L.P. Cheng, Y.Q. Li, W. Li, J.D. Chen et al., High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31(24), e1901517 (2019). https://doi.org/10.1002/adma.201901517
J. Wu, J. Chen, Y. Zhang, Z. Xu, L. Zhao et al., Pinhole-free hybrid perovskite film with arbitrarily-shaped micro-patterns for functional optoelectronic devices. Nano Lett. 17(6), 3563–3569 (2017). https://doi.org/10.1021/acs.nanolett.7b00722
D. Xing, C.C. Lin, Y.L. Ho, A.S.A. Kamal, I.T. Wang et al., Self-healing lithographic patterning of perovskite nanocrystals for large-area single-mode laser array. Adv. Funct. Mater. 31(1), 2006283 (2020). https://doi.org/10.1002/adfm.202006283
J. Harwell, J. Burch, A. Fikouras, M.C. Gather, A. Di Falco et al., Patterning multicolor hybrid perovskite films via top-down lithography. ACS Nano 13(4), 3823–3829 (2019). https://doi.org/10.1021/acsnano.8b09592
C.Y. Wu, Z. Wang, L. Liang, T. Gui, W. Zhong et al., Graphene-assisted growth of patterned perovskite films for sensitive light detector and optical image sensor application. Small 15(19), e1900730 (2019). https://doi.org/10.1002/smll.201900730
C. Zou, C. Chang, D. Sun, K.F. Bohringer, L.Y. Lin, Photolithographic patterning of perovskite thin films for multicolor display applications. Nano Lett. 20(5), 3710–3717 (2020). https://doi.org/10.1021/acs.nanolett.0c00701
G. Kim, S. An, S.-K. Hyeong, S.-K. Lee, M. Kim et al., Perovskite pattern formation by chemical vapor deposition using photolithographically defined templates. Chem. Mater. 31(19), 8212–8221 (2019). https://doi.org/10.1021/acs.chemmater.9b03155
J. Wu, F. Ye, W. Yang, Z. Xu, D. Luo et al., Perovskite single-crystal microarrays for efficient photovoltaic devices. Chem. Mater. 30(14), 4590–4596 (2018). https://doi.org/10.1021/acs.chemmater.8b00945
C.H. Lin, Q. Zeng, E. Lafalce, S. Yu, M.J. Smith et al., Large-area lasing and multicolor perovskite quantum dot patterns. Adv. Opt. Mater. 6(16), 1800474 (2018). https://doi.org/10.1002/adom.201800474
S. Jeon, S.Y. Lee, S.K. Kim, W. Kim, T. Park et al., All-solution processed multicolor patterning technique of perovskite nanocrystal for color pixel array and flexible optoelectronic devices. Adv. Opt. Mater. 17, 2000501 (2020). https://doi.org/10.1002/adom.202000501
W. Lee, J. Lee, H. Yun, J. Kim, J. Park et al., High-resolution spin-on-patterning of perovskite thin films for a multiplexed image sensor array. Adv. Mater. 29(40), 1702902 (2017). https://doi.org/10.1002/adma.201702902
D. Lyashenko, A. Perez, A. Zakhidov, High-resolution patterning of organohalide lead perovskite pixels for photodetectors using orthogonal photolithography. Phys. Status Solidi A. 214(1), 1600302 (2017). https://doi.org/10.1002/pssa.201600302
M.A. Haque, A. Syed, F.H. Akhtar, R. Shevate, S. Singh et al., Giant humidity effect on hybrid halide perovskite microstripes: Reversibility and sensing mechanism. ACS Appl. Mater. Interfaces 11(33), 29821–29829 (2019). https://doi.org/10.1021/acsami.9b07751
C.-Y. Huang, H. Li, Y. Wu, C.-H. Lin, X. Guan et al., Inorganic halide perovskite quantum dots: a versatile nanomaterial platform for electronic applications. Nano-micro Lett. 15(1), 16 (2023). https://doi.org/10.1007/s40820-022-00983-6
A. Walter, S.-J. Moon, B.A. Kamino, L. Lofgren, D. Sacchetto et al., Closing the cell-to-module efficiency gap: A fully laser scribed perovskite minimodule with 16% steady-state aperture area efficiency. IEEE J. Photovolt. 8(1), 151–155 (2018). https://doi.org/10.1109/jphotov.2017.2765082
L. Bayer, M. Ehrhardt, P. Lorenz, S. Pisoni, S. Buecheler et al., Morphology and topography of perovskite solar cell films ablated and scribed with short and ultrashort laser pulses. Appl. Surf. Sci. 416, 112–117 (2017). https://doi.org/10.1016/j.apsusc.2017.04.058
B. Taheri, F. De Rossi, G. Lucarelli, L.A. Castriotta, A. Di Carlo et al., Laser-scribing optimization for sprayed SnO2-based perovskite solar modules on flexible plastic substrates. ACS Appl. Energy Mater. 4(5), 4507–4518 (2021). https://doi.org/10.1021/acsaem.1c00140
J. Chen, Y. Wu, X. Li, F. Cao, Y. Gu et al., Simple and fast patterning process by laser direct writing for perovskite quantum dots. Adv. Mater. Technol. 2(10), 1700132 (2017). https://doi.org/10.1002/admt.201700132
X. Huang, Q. Guo, S. Kang, T. Ouyang, Q. Chen et al., Three-dimensional laser-assisted patterning of blue-emissive metal halide perovskite nanocrystals inside a glass with switchable photoluminescence. ACS Nano 14(3), 3150–3158 (2020). https://doi.org/10.1021/acsnano.9b08314
X. Huang, Q. Guo, D. Yang, X. Xiao, X. Liu et al., Reversible 3d laser printing of perovskite quantum dots inside a transparent medium. Nat. Photonics 14(2), 82–88 (2019). https://doi.org/10.1038/s41566-019-0538-8
A.L. Palma, F. Matteocci, A. Agresti, S. Pescetelli, E. Calabro et al., Laser-patterning engineering for perovskite solar modules with 95% aperture ratio. IEEE J. Photovolt. 7(6), 1674–1680 (2017). https://doi.org/10.1109/jphotov.2017.2732223
W. Zhan, L. Meng, C. Shao, X.-G. Wu, K. Shi et al., In situ patterning perovskite quantum dots by direct laser writing fabrication. ACS Photonics 8(3), 765–770 (2021). https://doi.org/10.1021/acsphotonics.1c00118
J.A. Steele, H. Yuan, C.Y.X. Tan, M. Keshavarz, C. Steuwe et al., Direct laser writing of delta- to alpha-phase transformation in formamidinium lead iodide. ACS Nano 11(8), 8072–8083 (2017). https://doi.org/10.1021/acsnano.7b02777
F. Palazon, Q.A. Akkerman, M. Prato, L. Manna, X-ray lithography on perovskite nanocrystals films: From patterning with anion-exchange reactions to enhanced stability in air and water. ACS Nano 10(1), 1224–1230 (2016). https://doi.org/10.1021/acsnano.5b06536
C. Zhou, G. Cao, Z. Gan, Q. Ou, W. Chen et al., Spatially modulating the fluorescence color of mixed-halide perovskite nanoplatelets through direct femtosecond laser writing. ACS Appl. Mater. Interfaces 11(29), 26017–26023 (2019). https://doi.org/10.1021/acsami.9b07708
J.W. Lee, D.K. Lee, D.N. Jeong, N.G. Park, Control of crystal growth toward scalable fabrication of perovskite solar cells. Adv. Funct. Mater. 29(47), 1807047 (2019). https://doi.org/10.1002/adfm.201807047
C. Bi, Q. Wang, Y. Shao, Y. Yuan, Z. Xiao et al., Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6(1), 7747 (2015). https://doi.org/10.1038/ncomms8747
G. Wang, D. Li, H.-C. Cheng, Y. Li, C.-Y. Chen et al., Wafer-scale growth of large arrays of perovskite microplate crystals for functional electronics and optoelectronics. Sci. Adv. 1(9), e1500613 (2015). https://doi.org/10.1126/sciadv.1500613
C.-K. Lin, Q. Zhao, Y. Zhang, S. Cestellos-Blanco, Q. Kong et al., Two-step patterning of scalable all-inorganic halide perovskite arrays. ACS Nano 14(3), 3500–3508 (2020). https://doi.org/10.1021/acsnano.9b09685
J. Feng, X. Yan, Y. Zhang, X. Wang, Y. Wu et al., “Liquid knife” to fabricate patterning single-crystalline perovskite microplates toward high-performance laser arrays. Adv. Mater. 28(19), 3732–3741 (2016). https://doi.org/10.1002/adma.201505952
S.S. Chou, B.S. Swartzentruber, M.T. Janish, K.C. Meyer, L.B. Biedermann et al., Laser direct write synthesis of lead halide perovskites. J. Phys. Chem. Lett. 7(19), 3736–3741 (2016). https://doi.org/10.1021/acs.jpclett.6b01557
M. Chen, J. Yang, Z. Wang, Z. Xu, H. Lee et al., 3d nanoprinting of perovskites. Adv. Mater. 31(44), 1904073 (2019). https://doi.org/10.1002/adma.201904073
Z. Gu, K. Wang, H. Li, M. Gao, L. Li et al., Direct-writing multifunctional perovskite single crystal arrays by inkjet printing. Small 13(8), 1603217 (2017). https://doi.org/10.1002/smll.201603217
C.H. Lin, T.Y. Li, J. Zhang, Z.Y. Chiao, P.C. Wei et al., Designed growth and patterning of perovskite nanowires for lasing and wide color gamut phosphors with long-term stability. Nano Energy 73, 104801 (2020). https://doi.org/10.1016/j.nanoen.2020.104801
Z. Gu, Z. Huang, C. Li, M. Li, Y. Song, A general printing approach for scalable growth of perovskite single-crystal films. Sci. Adv. 4(6), eaat2390 (2018). https://doi.org/10.1126/sciadv.aat2390
S. Jia, G. Li, P. Liu, R. Cai, H. Tang et al., Highly luminescent and stable green quasi-2d perovskite-embedded polymer sheets by inkjet printing. Adv. Funct. Mater. 30(24), 1910817 (2020). https://doi.org/10.1002/adfm.201910817
L. Shi, L. Meng, F. Jiang, Y. Ge, F. Li et al., In situ inkjet printing strategy for fabricating perovskite quantum dot patterns. Adv. Funct. Mater. 29(37), 1903648 (2019). https://doi.org/10.1002/adfm.201903648
Y. Altintas, I. Torun, A.F. Yazici, E. Beskazak, T. Erdem et al., Multiplexed patterning of cesium lead halide perovskite nanocrystals by additive jet printing for efficient white light generation. Chem. Eng. J. 380, 122493 (2020). https://doi.org/10.1016/j.cej.2019.122493
D. Li, J. Wang, M. Li, G. Xie, B. Guo et al., Inkjet printing matrix perovskite quantum dot light-emitting devices. Adv. Mater. Technol. 5(6), 2000099 (2020). https://doi.org/10.1002/admt.202000099
C. Wei, W. Su, J. Li, B. Xu, Q. Shan et al., A universal ternary-solvent-ink strategy towards efficient inkjet-printed perovskite quantum dot light-emitting diodes. Adv. Mater. (2022). https://doi.org/10.1002/adma.202107798
S. Chen, X. Xiao, B. Chen, L.L. Kelly, J. Zhao et al., Crystallization in one-step solution deposition of perovskite films: Upward or downward? Sci. Adv. 7(4), eabb2412 (2021). https://doi.org/10.1126/sciadv.abb2412
K.A. Bush, N. Rolston, A. Gold-Parker, S. Manzoor, J. Hausele et al., Controlling thin-film stress and wrinkling during perovskite film formation. ACS Energy Lett. 3(6), 1225–1232 (2018). https://doi.org/10.1021/acsenergylett.8b00544
S.M. Kang, J.H. An, Robust and transparent lossless directional omniphobic ultra-thin sticker-type film with re-entrant micro-stripe arrays. ACS Appl. Mater. Interfaces 14, 39646–39653 (2022). https://doi.org/10.1021/acsami.2c12398
M.C. Kim, S. Jang, J. Choi, S.M. Kang, M. Choi, Moth-eye structured polydimethylsiloxane films for high-efficiency perovskite solar cells. Nano-Micro Lett. 11(1), 53 (2019). https://doi.org/10.1007/s40820-019-0284-y
B. Jeong, H. Han, C. Park, Micro-and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32(30), 2000597 (2020). https://doi.org/10.1002/adma.202000597
C. Wagner, N. Harned, Lithography gets extreme. Nat. Photonics 4(1), 24–26 (2010). https://doi.org/10.1038/nphoton.2009.251
L. Liang, T. Ma, Z. Chen, J. Wang, J. Hu et al., Patterning technologies for metal halide perovskites: A review. Adv. Mater. Technol. 8(3), 2200419 (2023). https://doi.org/10.1002/admt.202200419
Y. Zhan, Q. Cheng, Y. Song, M. Li, Micro-nano structure functionalized perovskite optoelectronics: From structure functionalities to device applications. Adv. Funct. Mater. 32(24), 2200385 (2022). https://doi.org/10.1002/adfm.202200385
S.X. Li, Y.S. Xu, C.L. Li, Q. Guo, G. Wang et al., Perovskite single-crystal microwire-array photodetectors with performance stability beyond 1 year. Adv. Mater. 32(28), 2001998 (2020). https://doi.org/10.1002/adma.202001998
C.H. Chan, C.R. Lin, M.C. Liu, K.M. Lee, Z.J. Ji et al., Enhanced electron collection and light harvesting of CH3NH3PbI3 perovskite solar cells using nanopatterned substrates. Adv. Mater. Interfaces 5(23), 1801118 (2018). https://doi.org/10.1002/admi.201801118
J. Wang, H. Zhang, L. Wang, K. Yang, L. Cang et al., Highly stable and efficient mesoporous and hollow silica antireflection coatings for perovskite solar cells. ACS Appl. Energy Mater. 3(5), 4484–4491 (2020). https://doi.org/10.1021/acsaem.0c00175
L. Qiu, J. Deng, X. Lu, Z. Yang, H. Peng, Integrating perovskite solar cells into a flexible fiber. Angew. Chem. Int. Ed. 53(39), 10425–10428 (2014). https://doi.org/10.1002/anie.201404973
C. Bohr, M. Pfeiffer, S. Oz, F. von Toperczer, A. Lepcha et al., Electrospun hybrid perovskite fibers—flexible networks of one-dimensional semiconductors for light-harvesting applications. ACS Appl. Mater. Interfaces 11(28), 25163–25169 (2019). https://doi.org/10.1021/acsami.9b05700
F. Sahli, J. Werner, B.A. Kamino, M. Bräuninger, R. Monnard et al., Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat. Mater. 17(9), 820–826 (2018). https://doi.org/10.1038/s41563-018-0115-4
P. Tockhorn, J. Sutter, A. Cruz, P. Wagner, K. Jäger et al., Nano-optical designs for high-efficiency monolithic perovskite–silicon tandem solar cells. Nat. Nanotech. 17, 1214–1221 (2022). https://doi.org/10.1038/s41565-022-01228-8
E.M. Tennyson, K. Frohna, W.K. Drake, F. Sahli, T. Chien-Jen Yang et al., Multimodal microscale imaging of textured perovskite–silicon tandem solar cells. ACS Energy Lett. 6, 2293–2304 (2021). https://doi.org/10.1021/acsenergylett.1c00568
J.H. Lee, B.S. Kim, J. Park, J.W. Lee, K. Kim, Opportunities and challenges for perovskite solar cells based on vacuum thermal evaporation. Adv. Mater. Technol. (2022). https://doi.org/10.1002/admt.202200928
Y. Wang, I. Ahmad, T. Leung, J. Lin, W. Chen et al., Encapsulation and stability testing of perovskite solar cells for real life applications. ACS Mater. Au 2(3), 215–236 (2022). https://doi.org/10.1021/acsmaterialsau.1c00045
S.M. Kang, N. Ahn, J.-W. Lee, M. Choi, N.-G. Park, Water-repellent perovskite solar cell. J. Mater. Chem. A 2(47), 20017–20021 (2014). https://doi.org/10.1039/C4TA05413J
J. Yoon, U. Kim, J.S. Choi, M. Choi, S.M. Kang, Bioinspired liquid-repelling sealing films for flexible perovskite solar cells. Mater. Today Energy 20, 100622 (2021). https://doi.org/10.1016/j.mtener.2020.100622