Ultrasensitive and Highly Stretchable Multiple-Crosslinked Ionic Hydrogel Sensors with Long-Term Stability
Corresponding Author: Seong Min Kang
Nano-Micro Letters,
Vol. 15 (2023), Article Number: 51
Abstract
Flexible hydrogels are receiving significant attention for their application in wearable sensors. However, most hydrogel materials exhibit weak and one-time adhesion, low sensitivity, ice crystallization, water evaporation, and poor self-recovery, thereby limiting their application as sensors. These issues are only partly addressed in previous studies. Herein, a multiple-crosslinked poly(2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide-co-acrylamide) (P(SBMA-co-AAm)) multifunctional hydrogel is prepared via a one-pot synthesis method to overcome the aforementioned limitations. Specifically, ions, glycerol, and 2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide are incorporated to reduce the freezing point and improve the moisture retention ability. The proposed hydrogel is superior to existing hydrogels because it exhibits good stretchability (a strain of 2900%), self-healing properties, and transparency through effective energy dissipation in its dynamic crosslinked network. Further, 2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide as a zwitterion monomer results in an excellent gauge factor of 43.4 at strains of 1300–1600% by improving the ion transportability and achieving a strong adhesion of 20.9 kPa owing to the dipole–dipole moment. The proposed hydrogel is promising for next-generation biomedical applications, such as soft robots, and health monitoring.
Highlights:
1 A multiple-crosslinked poly(2-(methacryloyloxy)ethyl)dimethyl-(3-sulfopropyl)ammonium hydroxide-co-acrylamide multifunctional hydrogel was prepared via a one-pot synthesis method.
2 The proposed hydrogel exhibits water retention, antifreeze properties, self-healing, and transparency as well as improved strength, good adhesiveness, and a high gauge factor.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
- H. Wei, A. Li, D. Kong, Z. Li, D. Cui et al., Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv. Compos. Hybrid Mater. 4(1), 86–95 (2021). https://doi.org/10.1007/s42114-020-00201-0
- H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3(3), 1746–1767 (2010). https://doi.org/10.3390/ma3031746
- J.B. Leach, C.E. Schmidt, Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26(2), 125–135 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.018
- Y. Lee, W.J. Song, J.Y. Sun, Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020). https://doi.org/10.1016/j.mtphys.2020.100258
- W.J. Zheng, N. An, J.H. Yang, J. Zhou, Y.M. Chen, Tough Al-alginate/poly(N -isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl. Mater. Interfaces 7(3), 1758–1764 (2015). https://doi.org/10.1021/am507339r
- M.J. Webber, E.T. Pashuck, (Macro)molecular self-assembly for hydrogel drug delivery. Adv. Drug Deliv. Rev. 172, 275–295 (2021). https://doi.org/10.1016/j.addr.2021.01.006
- X. Chang, L. Chen, J. Chen, Y. Zhu, Z. Guo, Advances in transparent and stretchable strain sensors. Adv. Compos. Hybrid Mater. 4(3), 435–450 (2021). https://doi.org/10.1007/s42114-021-00292-3
- X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 1–19 (2021). https://doi.org/10.1007/s40820-021-00592-9
- Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, 6337 (2017). https://doi.org/10.1126/science.aaf3627
- X. Sun, Z. Qin, L. Ye, H. Zhang, Q. Yu et al., Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J. 382, 122832 (2020). https://doi.org/10.1016/j.cej.2019.122832
- M. Sianipar, S.H. Kim, F. Iskandar, I.G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 7(81), 51175–51198 (2017). https://doi.org/10.1039/c7ra08570b
- Y. Wu, S. Sun, A. Geng, L. Wang, C. Song et al., Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: inspired from a Chinese cuisine. Compos. Sci. Technol. 196, 108226 (2020). https://doi.org/10.1016/j.compscitech.2020.108226
- Y. Lu, Y. Yue, Q. Ding, C. Mei, X. Xu et al., Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces 13(42), 50281–50297 (2021). https://doi.org/10.1021/acsami.1c16828
- X. Sun, F. Yao, J. Li, Nanocomposite hydrogel-based strain and pressure sensors: a review. J. Mater. Chem. A 8(36), 18605–18623 (2020). https://doi.org/10.1039/D0TA06965E
- Y. Cai, J. Qin, W. Li, A. Tyagi, Z. Liu et al., A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 7(47), 27099–27109 (2019). https://doi.org/10.1039/C9TA11084D
- C. Cui, C. Shao, L. Meng, J. Yang, High-strength, self-adhesive, and strain-sensitive chitosan/poly(acrylic acid) double-network nanocomposite hydrogels fabricated by salt-soaking strategy for flexible sensors. ACS Appl. Mater. Interfaces 11(42), 39228–39237 (2019). https://doi.org/10.1021/acsami.9b15817
- M. Song, H. Yu, J. Zhu, Z. Ouyang, S.Y.H. Abdalkarim et al., Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 398, 125547 (2020). https://doi.org/10.1016/j.cej.2020.125547
- Y. Wang, Y. Xia, P. Xiang, Y. Dai, Y. Gao et al., Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chem. Eng. J. 428, 131171 (2022). https://doi.org/10.1016/j.cej.2021.131171
- Y. Nie, D. Yue, W. Xiao, W. Wang, H. Chen et al., Anti-freezing and self-healing nanocomposite hydrogels based on poly(vinyl alcohol) for highly sensitive and durable flexible sensors. Chem. Eng. J. 436, 135243 (2022). https://doi.org/10.1016/j.cej.2022.135243
- X. Liu, L. Duan, G. Gao, Rapidly self-recoverable and fatigue-resistant hydrogels toughened by chemical crosslinking and hydrophobic association. Eur. Polym. J. 89, 185–194 (2017). https://doi.org/10.1016/j.eurpolymj.2017.02.025
- L. Wang, G. Gao, Y. Zhou, T. Xu, J. Chen et al., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces 11(3), 3506–3515 (2019). https://doi.org/10.1021/acsami.8b20755
- C.J. Lee, H. Wu, Y. Hu, M. Young, H. Wang et al., Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10(6), 5845–5852 (2018). https://doi.org/10.1021/acsami.7b15934
- Y. Bai, B. Chen, F. Xiang, J. Zhou, H. Wang et al., Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105(15), 151903 (2014). https://doi.org/10.1063/1.4898189
- Q. Zhang, X. Liu, X. Ren, F. Jia, L. Duan et al., Nucleotide-regulated tough and rapidly self-recoverable hydrogels for highly sensitive and durable pressure and strain sensors. Chem. Mater. 31(15), 5881–5889 (2019). https://doi.org/10.1021/acs.chemmater.9b02039
- H. Rehage, H. Hoffmann, Viscoelastic surfactant solutions: model systems for rheological research. Mol. Phys. 74(5), 933–973 (1991). https://doi.org/10.1080/00268979100102721
- B. Yang, W. Yuan, Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl. Mater. Interfaces 11(43), 40620–40628 (2019). https://doi.org/10.1021/acsami.9b14040
- H. Guo, M. Bai, C. Wen, M. Liu, S. Tian et al., A zwitterionic-aromatic motif-based ionic skin for highly biocompatible and glucose-responsive sensor. J. Colloid Interface Sci. 600, 561–571 (2021). https://doi.org/10.1016/j.jcis.2021.05.012
- H. Wei, Z. Wang, H. Zhang, Y. Huang, Z. Wang et al., Highly transparent, self-adhesive, and 3d-printable ionic hydrogels for multimode tactical sensing. Chem. Mater. 33(17), 6731–6742 (2021). https://doi.org/10.1021/acs.chemmater.1c01246
- M. Guo, J. Yan, X. Yang, J. Lai, P. An et al., A transparent glycerol-hydrogel with stimuli-responsive actuation induced unexpectedly at subzero temperatures. J. Mater. Chem. A 9(12), 7935–7945 (2021). https://doi.org/10.1039/D1TA00112D
- G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1–8 (2018). https://doi.org/10.1002/adfm.201802576
- M. Guo, Y. Wu, S. Xue, Y. Xia, X. Yang et al., A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. J. Mater. Chem. A 7(45), 25969–25977 (2019). https://doi.org/10.1039/C9TA10183G
- C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
- J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma et al., An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 32(13), 2107404 (2022). https://doi.org/10.1002/adfm.202107404
- Y. Gao, S. Gu, F. Jia, G. Gao, A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. J. Mater. Chem. A 8(45), 24175–24183 (2020). https://doi.org/10.1039/D0TA07883B
- Z. Wang, X. Zhang, T. Cao, T. Wang, L. Sun et al., Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel. ACS Appl. Mater. Interfaces 13(38), 46022–46032 (2021). https://doi.org/10.1021/acsami.1c15052
- J. Yin, C. Lu, C. Li, Z. Yu, C. Shen et al., A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor. Compos. Part B Eng. 230, 109528 (2022). https://doi.org/10.1016/j.compositesb.2021.109528
- T. Zhu, Y. Cheng, C. Cao, J. Mao, L. Li et al., A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 385, 123912 (2020). https://doi.org/10.1016/j.cej.2019.123912
- L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
- S. Xia, Q. Zhang, S. Song, L. Duan, G. Gao, Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31(22), 9522–9531 (2019). https://doi.org/10.1021/acs.chemmater.9b03919
- S. Xia, S. Song, F. Jia, G. Gao, A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 7(30), 4638–4648 (2019). https://doi.org/10.1039/C9TB01039D
- Y. Li, C. Liu, X. Lv, S. Sun, A highly sensitive strain sensor based on a silica@polyaniline core–shell p reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter 17(8), 2142–2150 (2021). https://doi.org/10.1039/D0SM01998D
- L.M. Zhang, Y. He, S. Cheng, H. Sheng, K. Dai et al., Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small 15(21), 1804651 (2019). https://doi.org/10.1002/smll.201804651
References
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119(8), 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
H. Wei, A. Li, D. Kong, Z. Li, D. Cui et al., Polypyrrole/reduced graphene aerogel film for wearable piezoresisitic sensors with high sensing performances. Adv. Compos. Hybrid Mater. 4(1), 86–95 (2021). https://doi.org/10.1007/s42114-020-00201-0
H. Tan, K.G. Marra, Injectable, biodegradable hydrogels for tissue engineering applications. Materials 3(3), 1746–1767 (2010). https://doi.org/10.3390/ma3031746
J.B. Leach, C.E. Schmidt, Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds. Biomaterials 26(2), 125–135 (2005). https://doi.org/10.1016/j.biomaterials.2004.02.018
Y. Lee, W.J. Song, J.Y. Sun, Hydrogel soft robotics. Mater. Today Phys. 15, 100258 (2020). https://doi.org/10.1016/j.mtphys.2020.100258
W.J. Zheng, N. An, J.H. Yang, J. Zhou, Y.M. Chen, Tough Al-alginate/poly(N -isopropylacrylamide) hydrogel with tunable LCST for soft robotics. ACS Appl. Mater. Interfaces 7(3), 1758–1764 (2015). https://doi.org/10.1021/am507339r
M.J. Webber, E.T. Pashuck, (Macro)molecular self-assembly for hydrogel drug delivery. Adv. Drug Deliv. Rev. 172, 275–295 (2021). https://doi.org/10.1016/j.addr.2021.01.006
X. Chang, L. Chen, J. Chen, Y. Zhu, Z. Guo, Advances in transparent and stretchable strain sensors. Adv. Compos. Hybrid Mater. 4(3), 435–450 (2021). https://doi.org/10.1007/s42114-021-00292-3
X. Wang, X. Liu, D.W. Schubert, Highly sensitive ultrathin flexible thermoplastic polyurethane/carbon black fibrous film strain sensor with adjustable scaffold networks. Nano-Micro Lett. 13(1), 1–19 (2021). https://doi.org/10.1007/s40820-021-00592-9
Y.S. Zhang, A. Khademhosseini, Advances in engineering hydrogels. Science 356, 6337 (2017). https://doi.org/10.1126/science.aaf3627
X. Sun, Z. Qin, L. Ye, H. Zhang, Q. Yu et al., Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness. Chem. Eng. J. 382, 122832 (2020). https://doi.org/10.1016/j.cej.2019.122832
M. Sianipar, S.H. Kim, F. Iskandar, I.G. Wenten, Functionalized carbon nanotube (CNT) membrane: progress and challenges. RSC Adv. 7(81), 51175–51198 (2017). https://doi.org/10.1039/c7ra08570b
Y. Wu, S. Sun, A. Geng, L. Wang, C. Song et al., Using TEMPO-oxidized-nanocellulose stabilized carbon nanotubes to make pigskin hydrogel conductive as flexible sensor and supercapacitor electrode: inspired from a Chinese cuisine. Compos. Sci. Technol. 196, 108226 (2020). https://doi.org/10.1016/j.compscitech.2020.108226
Y. Lu, Y. Yue, Q. Ding, C. Mei, X. Xu et al., Self-recovery, fatigue-resistant, and multifunctional sensor assembled by a nanocellulose/carbon nanotube nanocomplex-mediated hydrogel. ACS Appl. Mater. Interfaces 13(42), 50281–50297 (2021). https://doi.org/10.1021/acsami.1c16828
X. Sun, F. Yao, J. Li, Nanocomposite hydrogel-based strain and pressure sensors: a review. J. Mater. Chem. A 8(36), 18605–18623 (2020). https://doi.org/10.1039/D0TA06965E
Y. Cai, J. Qin, W. Li, A. Tyagi, Z. Liu et al., A stretchable, conformable, and biocompatible graphene strain sensor based on a structured hydrogel for clinical application. J. Mater. Chem. A 7(47), 27099–27109 (2019). https://doi.org/10.1039/C9TA11084D
C. Cui, C. Shao, L. Meng, J. Yang, High-strength, self-adhesive, and strain-sensitive chitosan/poly(acrylic acid) double-network nanocomposite hydrogels fabricated by salt-soaking strategy for flexible sensors. ACS Appl. Mater. Interfaces 11(42), 39228–39237 (2019). https://doi.org/10.1021/acsami.9b15817
M. Song, H. Yu, J. Zhu, Z. Ouyang, S.Y.H. Abdalkarim et al., Constructing stimuli-free self-healing, robust and ultrasensitive biocompatible hydrogel sensors with conductive cellulose nanocrystals. Chem. Eng. J. 398, 125547 (2020). https://doi.org/10.1016/j.cej.2020.125547
Y. Wang, Y. Xia, P. Xiang, Y. Dai, Y. Gao et al., Protein-assisted freeze-tolerant hydrogel with switchable performance toward customizable flexible sensor. Chem. Eng. J. 428, 131171 (2022). https://doi.org/10.1016/j.cej.2021.131171
Y. Nie, D. Yue, W. Xiao, W. Wang, H. Chen et al., Anti-freezing and self-healing nanocomposite hydrogels based on poly(vinyl alcohol) for highly sensitive and durable flexible sensors. Chem. Eng. J. 436, 135243 (2022). https://doi.org/10.1016/j.cej.2022.135243
X. Liu, L. Duan, G. Gao, Rapidly self-recoverable and fatigue-resistant hydrogels toughened by chemical crosslinking and hydrophobic association. Eur. Polym. J. 89, 185–194 (2017). https://doi.org/10.1016/j.eurpolymj.2017.02.025
L. Wang, G. Gao, Y. Zhou, T. Xu, J. Chen et al., Tough, adhesive, self-healable, and transparent ionically conductive zwitterionic nanocomposite hydrogels as skin strain sensors. ACS Appl. Mater. Interfaces 11(3), 3506–3515 (2019). https://doi.org/10.1021/acsami.8b20755
C.J. Lee, H. Wu, Y. Hu, M. Young, H. Wang et al., Ionic conductivity of polyelectrolyte hydrogels. ACS Appl. Mater. Interfaces 10(6), 5845–5852 (2018). https://doi.org/10.1021/acsami.7b15934
Y. Bai, B. Chen, F. Xiang, J. Zhou, H. Wang et al., Transparent hydrogel with enhanced water retention capacity by introducing highly hydratable salt. Appl. Phys. Lett. 105(15), 151903 (2014). https://doi.org/10.1063/1.4898189
Q. Zhang, X. Liu, X. Ren, F. Jia, L. Duan et al., Nucleotide-regulated tough and rapidly self-recoverable hydrogels for highly sensitive and durable pressure and strain sensors. Chem. Mater. 31(15), 5881–5889 (2019). https://doi.org/10.1021/acs.chemmater.9b02039
H. Rehage, H. Hoffmann, Viscoelastic surfactant solutions: model systems for rheological research. Mol. Phys. 74(5), 933–973 (1991). https://doi.org/10.1080/00268979100102721
B. Yang, W. Yuan, Highly stretchable, adhesive, and mechanical zwitterionic nanocomposite hydrogel biomimetic skin. ACS Appl. Mater. Interfaces 11(43), 40620–40628 (2019). https://doi.org/10.1021/acsami.9b14040
H. Guo, M. Bai, C. Wen, M. Liu, S. Tian et al., A zwitterionic-aromatic motif-based ionic skin for highly biocompatible and glucose-responsive sensor. J. Colloid Interface Sci. 600, 561–571 (2021). https://doi.org/10.1016/j.jcis.2021.05.012
H. Wei, Z. Wang, H. Zhang, Y. Huang, Z. Wang et al., Highly transparent, self-adhesive, and 3d-printable ionic hydrogels for multimode tactical sensing. Chem. Mater. 33(17), 6731–6742 (2021). https://doi.org/10.1021/acs.chemmater.1c01246
M. Guo, J. Yan, X. Yang, J. Lai, P. An et al., A transparent glycerol-hydrogel with stimuli-responsive actuation induced unexpectedly at subzero temperatures. J. Mater. Chem. A 9(12), 7935–7945 (2021). https://doi.org/10.1039/D1TA00112D
G. Ge, Y. Zhang, J. Shao, W. Wang, W. Si et al., Stretchable, transparent, and self-patterned hydrogel-based pressure sensor for human motions detection. Adv. Funct. Mater. 28(32), 1–8 (2018). https://doi.org/10.1002/adfm.201802576
M. Guo, Y. Wu, S. Xue, Y. Xia, X. Yang et al., A highly stretchable, ultra-tough, remarkably tolerant, and robust self-healing glycerol-hydrogel for a dual-responsive soft actuator. J. Mater. Chem. A 7(45), 25969–25977 (2019). https://doi.org/10.1039/C9TA10183G
C. Shao, M. Wang, L. Meng, H. Chang, B. Wang et al., Mussel-inspired cellulose nanocomposite tough hydrogels with synergistic self-healing, adhesive, and strain-sensitive properties. Chem. Mater. 30(9), 3110–3121 (2018). https://doi.org/10.1021/acs.chemmater.8b01172
J. Ren, Y. Liu, Z. Wang, S. Chen, Y. Ma et al., An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 32(13), 2107404 (2022). https://doi.org/10.1002/adfm.202107404
Y. Gao, S. Gu, F. Jia, G. Gao, A skin-matchable, recyclable and biofriendly strain sensor based on a hydrolyzed keratin-containing hydrogel. J. Mater. Chem. A 8(45), 24175–24183 (2020). https://doi.org/10.1039/D0TA07883B
Z. Wang, X. Zhang, T. Cao, T. Wang, L. Sun et al., Antiliquid-interfering, antibacteria, and adhesive wearable strain sensor based on superhydrophobic and conductive composite hydrogel. ACS Appl. Mater. Interfaces 13(38), 46022–46032 (2021). https://doi.org/10.1021/acsami.1c15052
J. Yin, C. Lu, C. Li, Z. Yu, C. Shen et al., A UV-filtering, environmentally stable, healable and recyclable ionic hydrogel towards multifunctional flexible strain sensor. Compos. Part B Eng. 230, 109528 (2022). https://doi.org/10.1016/j.compositesb.2021.109528
T. Zhu, Y. Cheng, C. Cao, J. Mao, L. Li et al., A semi-interpenetrating network ionic hydrogel for strain sensing with high sensitivity, large strain range, and stable cycle performance. Chem. Eng. J. 385, 123912 (2020). https://doi.org/10.1016/j.cej.2019.123912
L. Guan, H. Liu, X. Ren, T. Wang, W. Zhu et al., Balloon inspired conductive hydrogel strain sensor for reducing radiation damage in peritumoral organs during brachytherapy. Adv. Funct. Mater. 32(22), 2112281 (2022). https://doi.org/10.1002/adfm.202112281
S. Xia, Q. Zhang, S. Song, L. Duan, G. Gao, Bioinspired dynamic cross-linking hydrogel sensors with skin-like strain and pressure sensing behaviors. Chem. Mater. 31(22), 9522–9531 (2019). https://doi.org/10.1021/acs.chemmater.9b03919
S. Xia, S. Song, F. Jia, G. Gao, A flexible, adhesive and self-healable hydrogel-based wearable strain sensor for human motion and physiological signal monitoring. J. Mater. Chem. B 7(30), 4638–4648 (2019). https://doi.org/10.1039/C9TB01039D
Y. Li, C. Liu, X. Lv, S. Sun, A highly sensitive strain sensor based on a silica@polyaniline core–shell p reinforced hydrogel with excellent flexibility, stretchability, toughness and conductivity. Soft Matter 17(8), 2142–2150 (2021). https://doi.org/10.1039/D0SM01998D
L.M. Zhang, Y. He, S. Cheng, H. Sheng, K. Dai et al., Self-healing, adhesive, and highly stretchable ionogel as a strain sensor for extremely large deformation. Small 15(21), 1804651 (2019). https://doi.org/10.1002/smll.201804651