Flexible Graphene Field-Effect Transistors and Their Application in Flexible Biomedical Sensing
Corresponding Author: Lin Han
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 34
Abstract
Flexible electronics are transforming our lives by making daily activities more convenient. Central to this innovation are field-effect transistors (FETs), valued for their efficient signal processing, nanoscale fabrication, low-power consumption, fast response times, and versatility. Graphene, known for its exceptional mechanical properties, high electron mobility, and biocompatibility, is an ideal material for FET channels and sensors. The combination of graphene and FETs has given rise to flexible graphene field-effect transistors (FGFETs), driving significant advances in flexible electronics and sparked a strong interest in flexible biomedical sensors. Here, we first provide a brief overview of the basic structure, operating mechanism, and evaluation parameters of FGFETs, and delve into their material selection and patterning techniques. The ability of FGFETs to sense strains and biomolecular charges opens up diverse application possibilities. We specifically analyze the latest strategies for integrating FGFETs into wearable and implantable flexible biomedical sensors, focusing on the key aspects of constructing high-quality flexible biomedical sensors. Finally, we discuss the current challenges and prospects of FGFETs and their applications in biomedical sensors. This review will provide valuable insights and inspiration for ongoing research to improve the quality of FGFETs and broaden their application prospects in flexible biomedical sensing.
Highlights:
1 The review provides a brief overview of the basic structure, operating mechanism, and key performance indicators of flexible graphene field-effect transistors.
2 The review details the preparation strategy of flexible graphene field-effect transistors focusing on material selection and patterning techniques.
3 The review analyzes the latest strategies for developing wearable and implantable flexible biomedical sensors based on flexible graphene field-effect transistors.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- X. Xiao, B. Mu, G. Cao, Y. Yang, M. Wang, Flexible battery-free wireless electronic system for food monitoring. J. Sci. Adv. Mater. Devices 7, 100430 (2022). https://doi.org/10.1016/j.jsamd.2022.100430
- R. Mondal, M. Al Mahadi Hasan, R. Zhang, H. Olin, Y. Yang, Nanogenerators-based self-powered sensors. Adv. Mater. Technol. 7, 2200282 (2022). https://doi.org/10.1002/admt.202200282
- K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron. 6, 1 (2022). https://doi.org/10.1038/s41528-022-00133-3
- K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
- Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
- Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
- T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16, 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
- J. Wen, Y. Wu, Y. Gao, Q. Su, Y. Liu et al., Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics. Nano-Micro Lett. 15, 174 (2023). https://doi.org/10.1007/s40820-023-01148-9
- S.R. Madhvapathy, J.-J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023). https://doi.org/10.1126/science.adh7726
- A. Zhang, E.T. Mandeville, L. Xu, C.M. Stary, E.H. Lo et al., Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023). https://doi.org/10.1126/science.adh3916
- H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim et al., Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
- H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: from printing to devices and signals. Adv. Mater. 33, e2004782 (2021). https://doi.org/10.1002/adma.202004782
- S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021). https://doi.org/10.1002/adma.202005902
- W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
- Y.S. Rim, S.H. Bae, H. Chen, N. De Marco, Y. Yang, Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016). https://doi.org/10.1002/adma.201505118
- T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27, 3349–3376 (2015). https://doi.org/10.1002/adma.201405864
- S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
- A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
- X. Wang, Y. Liu, Q. Chen, Y. Yan, Z. Rao et al., Recent advances in stretchable field-effect transistors. J. Mater. Chem. C 9, 7796–7828 (2021). https://doi.org/10.1039/d1tc01082d
- M.-Z. Li, S.-T. Han, Y. Zhou, Recent advances in flexible field-effect transistors toward wearable sensors. Adv. Intell. Syst. 2, 2000113 (2020). https://doi.org/10.1002/aisy.202000113
- M. Sedki, Y. Chen, A. Mulchandani, Non-carbon 2D materials-based field-effect transistor biosensors: recent advances, challenges, and future perspectives. Sensors (Basel) 20, 4811 (2020). https://doi.org/10.3390/s20174811
- J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Adaptive interfacial contact between copper nanops and triazine functionalized graphdiyne substrate for improved lithium/sodium storage. Adv. Funct. Mater. 33, 2305254 (2023). https://doi.org/10.1002/adfm.202305254
- Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31, 2106151 (2021). https://doi.org/10.1002/adfm.202106151
- Y. Yan, Y. Zhao, Y. Liu, Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 60, 311–327 (2022). https://doi.org/10.1002/pol.20210457
- S. Tiwari, A.K. Singh, L. Joshi, P. Chakrabarti, W. Takashima et al., Poly-3-hexylthiophene based organic field-effect transistor: detection of low concentration of ammonia. Sens. Actuat. B Chem. 171, 962–968 (2012). https://doi.org/10.1016/j.snb.2012.06.010
- L. Vijayan, A. Thomas, K.S. Kumar, K.B. Jinesh, Low power organic field effect transistors with copper phthalocyanine as active layer. J. Sci. Adv. Mater. Devices 3, 348–352 (2018). https://doi.org/10.1016/j.jsamd.2018.08.002
- B.S. Bhardwaj, T. Sugiyama, N. Namba, T. Umakoshi, T. Uemura et al., Orientation analysis of pentacene molecules in organic field-effect transistor devices using polarization-dependent Raman spectroscopy. Sci. Rep. 9, 15149 (2019). https://doi.org/10.1038/s41598-019-51647-2
- P. Hu, X. He, H. Jiang, Greater than 10 cm2 V−1 s−1: a breakthrough of organic semiconductors for field-effect transistors. InfoMat 3, 613–630 (2021). https://doi.org/10.1002/inf2.12188
- X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang et al., A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015). https://doi.org/10.1038/ncomms8408
- Q. Burlingame, M. Ball, Y.-L. Loo, It’s time to focus on organic solar cell stability. Nat. Energy 5, 947–949 (2020). https://doi.org/10.1038/s41560-020-00732-2
- S. Qin, S. Xiang, B. Eberle, K. Xie, J.C. Grunlan, High moisture barrier with synergistic combination of SiOx and polyelectrolyte nanolayers. Adv. Mater. Interfaces 6, 1900740 (2019). https://doi.org/10.1002/admi.201900740
- A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/revmodphys.81.109
- T. Ando, The electronic properties of graphene and carbon nanotubes. npg Asia Mater. 1, 17–21 (2009). https://doi.org/10.1038/asiamat.2009.1
- F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
- B.V. Krsihna, S. Ravi, M.D. Prakash, Recent developments in graphene based field effect transistors. Mater. Today Proc. 45, 1524–1528 (2021). https://doi.org/10.1016/j.matpr.2020.07.678
- T. Sattar, Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 377, 10 (2019). https://doi.org/10.1007/s41061-019-0235-6
- A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: a review. Colloids Surf. B Biointerfaces 111, 188–202 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.022
- Z. Gao, G. Wu, Y. Song, H. Li, Y. Zhang et al., Multiplexed monitoring of neurochemicals via electrografting-enabled site-selective functionalization of aptamers on field-effect transistors. Anal. Chem. 94, 8605–8617 (2022). https://doi.org/10.1021/acs.analchem.1c05531
- A. Edgar Jimenez-Cervantes, L.B. Juventino, M.H. Ana Laura, V.S. Carlos, in Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules. ed. by N. Pramoda Kumar (Rijeka, IntechOpen, 2016), p.257
- A. Šolajić, J. Pešić, R. Gajić, Optical and mechanical properties and electron–phonon interaction in graphene doped with metal atoms. Opt. Quantum Electron. 52, 182 (2020). https://doi.org/10.1007/s11082-020-02300-0
- D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
- S. Sreejith, J. Ajayan, J.M. Radhika, B. Sivasankari, S. Tayal et al., A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 206, 112202 (2023). https://doi.org/10.1016/j.measurement.2022.112202
- S. Wang, X. Qi, D. Hao, R. Moro, Y. Ma et al., Review—recent advances in graphene-based field-effect-transistor biosensors: a review on biosensor designing strategy. J. Electrochem. Soc. 169, 027509 (2022). https://doi.org/10.1149/1945-7111/ac4f24
- Y. Wang, A. Keinonen, S. Koskenmies, S. Pitkänen, N. Fyhrquist et al., Occurrence of newly discovered human polyomaviruses in skin of liver transplant recipients and their relation with squamous cell carcinoma in situ and actinic keratosis - a single-center cohort study. Transpl. Int. 32, 516–522 (2019). https://doi.org/10.1111/tri.13397
- A. Bhardwaj, J. Kaur, M. Wuest, F. Wuest, In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat. Commun. 8, 1 (2017). https://doi.org/10.1038/s41467-016-0009-6
- L. Zuccaro, C. Tesauro, T. Kurkina, P. Fiorani, H.K. Yu et al., Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano 9, 11166–11176 (2015). https://doi.org/10.1021/acsnano.5b05709
- M. Gobbi, A. Galanti, M.-A. Stoeckel, B. Zyska, S. Bonacchi et al., Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nat. Commun. 11, 4731 (2020). https://doi.org/10.1038/s41467-020-18604-4
- A.G. Santos, G.O. da Rocha, J.B. de Andrade, Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne ps. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-018-37186-2
- R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019). https://doi.org/10.1038/s41551-019-0371-x
- Z. Gao, H. Xia, J. Zauberman, M. Tomaiuolo, J. Ping et al., Detection of sub-fM DNA with target recycling and self-assembly amplification on graphene field-effect biosensors. Nano Lett. 18, 3509–3515 (2018). https://doi.org/10.1021/acs.nanolett.8b00572
- M.T. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem et al., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11, 1543 (2020). https://doi.org/10.1038/s41467-020-15330-9
- X. Wang, Z. Hao, T.R. Olsen, W. Zhang, Q. Lin, Measurements of aptamer-protein binding kinetics using graphene field-effect transistors. Nanoscale 11, 12573–12581 (2019). https://doi.org/10.1039/c9nr02797a
- C. Chan, J. Shi, Y. Fan, M. Yang, A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sens. Actuat. B Chem. 251, 927–933 (2017). https://doi.org/10.1016/j.snb.2017.05.147
- N.I. Khan, M. Mousazadehkasin, S. Ghosh, J.G. Tsavalas, E. Song, An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst 145, 4494–4503 (2020). https://doi.org/10.1039/d0an00251h
- W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the Internet of Things. Adv. Mater. 32, e1901493 (2020). https://doi.org/10.1002/adma.201901493
- D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013). https://doi.org/10.1002/smll.201203154
- B.K. Sharma, J.-H. Ahn, Graphene based field effect transistors: efforts made towards flexible electronics. Solid State Electron. 89, 177–188 (2013). https://doi.org/10.1016/j.sse.2013.08.007
- J. Ning, Y. Wang, X. Feng, B. Wang, J. Dong et al., Flexible field-effect transistors with a high on/off current ratio based on large-area single-crystal graphene. Carbon 163, 417–424 (2020). https://doi.org/10.1016/j.carbon.2020.03.040
- R. Furlan de Oliveira, P.A. Livio, V. Montes-García, S. Ippolito, M. Eredia et al., Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics. Adv. Funct. Mater. 29, 1905375 (2019). https://doi.org/10.1002/adfm.201905375
- B.J. Kim, H. Jang, S.-K. Lee, B.H. Hong, J.-H. Ahn et al., High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010). https://doi.org/10.1021/nl101559n
- S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011). https://doi.org/10.1021/nl202134z
- L.-W. Tsai, N.-H. Tai, Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth. ACS Appl. Mater. Interfaces 6, 10489–10496 (2014). https://doi.org/10.1021/am502020s
- Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li et al., Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4, 3201–3208 (2010). https://doi.org/10.1021/nn100780v
- B.J. Kim, S.-K. Lee, M.S. Kang, J.-H. Ahn, J.H. Cho, Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6, 8646–8651 (2012). https://doi.org/10.1021/nn3020486
- Q. Sun, W. Seung, B.J. Kim, S. Seo, S.W. Kim et al., Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27, 3411–3417 (2015). https://doi.org/10.1002/adma.201500582
- T.Q. Trung, S. Ramasundaram, B.U. Hwang, N.E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016). https://doi.org/10.1002/adma.201504441
- A. Paul, N. Yogeswaran, R. Dahiya, Ultra-flexible biodegradable pressure sensitive field effect transistors for hands-free control of robot movements. Adv. Intell. Syst. 4, 2200183 (2022). https://doi.org/10.1002/aisy.202200183
- Z. Hao, Y. Luo, C. Huang, Z. Wang, G. Song et al., An intelligent graphene-based biosensing device for cytokine storm syndrome biomarkers detection in human biofluids. Small 17, e2101508 (2021). https://doi.org/10.1002/smll.202101508
- J. Jang, J. Kim, H. Shin, Y.G. Park, B.J. Joo et al., Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Sci. Adv. 7, eabf7194 (2021). https://doi.org/10.1126/sciadv.abf7194
- B.M. Blaschke, N. Tort-Colet, A. Guimerà-Brunet, J. Weinert, L. Rousseau et al., Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4, 025040 (2017). https://doi.org/10.1088/2053-1583/aa5eff
- M. Du, X. Xu, L. Yang, Y. Guo, S. Guan et al., Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosens. Bioelectron. 105, 109–115 (2018). https://doi.org/10.1016/j.bios.2018.01.027
- A. Ganguli, V. Faramarzi, A. Mostafa, M.T. Hwang, S. You et al., High sensitivity graphene field effect transistor-based detection of DNA amplification. Adv. Funct. Mater. 30, 2001031 (2020). https://doi.org/10.1002/adfm.202001031
- X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649–1653 (2010). https://doi.org/10.1002/adma.200903645
- B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Gold nanops-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection. Biosens. Bioelectron. 74, 329–334 (2015). https://doi.org/10.1016/j.bios.2015.06.068
- P. Heremans, A.K. Tripathi, A. de Jamblinne, E.C. de Meux, B.H. Smits et al., Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266–4282 (2016). https://doi.org/10.1002/adma.201504360
- G. Ding, H. Chen, Z. Yu, N. Liu, M. Wang, Fabricating ultra-flexible photodetectors at the neutral mechanical plane by encapsulation. J. Mater. Chem. C 9, 4070–4076 (2021). https://doi.org/10.1039/D0TC05042C
- K.S.V.I. NovoselovFal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458
- S.B. Jo, J. Park, W.H. Lee, K. Cho, B.H. Hong, Large-area graphene synthesis and its application to interface-engineered field effect transistors. Solid State Commun. 152, 1350–1358 (2012). https://doi.org/10.1016/j.ssc.2012.04.056
- M. Dankerl, M.V. Hauf, A. Lippert, L.H. Hess, S. Birner et al., Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 20, 3117–3124 (2010). https://doi.org/10.1002/adfm.201000724
- J.-B. Wang, Z. Ren, Y. Hou, X.-L. Yan, P.-Z. Liu et al., A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater. 35, 193–208 (2020). https://doi.org/10.1016/S1872-5805(20)60484-X
- M. Saeed, Y. Alshammari, S.A. Majeed, E. Al-Nasrallah, Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules 25, 3856 (2020). https://doi.org/10.3390/molecules25173856
- M.H. Ani, M.A. Kamarudin, A.H. Ramlan, E. Ismail, M.S. Sirat et al., A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. J. Mater. Sci. 53, 7095–7111 (2018). https://doi.org/10.1007/s10853-018-1994-0
- X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). https://doi.org/10.1126/science.1171245
- N. Petrone, I. Meric, J. Hone, K.L. Shepard, Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121–125 (2013). https://doi.org/10.1021/nl303666m
- S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
- A. Brakat, H. Zhu, Nanocellulose-graphene hybrids: advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 13, 94 (2021). https://doi.org/10.1007/s40820-021-00627-1
- F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo et al., Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012). https://doi.org/10.1016/S1369-7021(13)70014-2
- V.H. Pham, T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim et al., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48, 1945–1951 (2010). https://doi.org/10.1016/j.carbon.2010.01.062
- D.-Y. Kim, S. Sinha-Ray, J.-J. Park, J.-G. Lee, Y.-H. Cha et al., Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv. Funct. Mater. 24, 4986–4995 (2014). https://doi.org/10.1002/adfm.201400732
- S. Wang, P.K. Ang, Z. Wang, A.L. Tang, J.T. Thong et al., High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2010). https://doi.org/10.1021/nl9028736
- Q. He, S. Wu, S. Gao, X. Cao, Z. Yin et al., Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5, 5038–5044 (2011). https://doi.org/10.1021/nn201118c
- T.Q. Trung, N.T. Tien, D. Kim, M. Jang, O.J. Yoon et al., A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv. Funct. Mater. 24, 117–124 (2014). https://doi.org/10.1002/adfm.201301845
- R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22, 5297–5300 (2010). https://doi.org/10.1002/adma.201002121
- S.-K. Lee, K. Rana, J.-H. Ahn, Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett. 4, 831–841 (2013). https://doi.org/10.1021/jz400005k
- D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett et al., Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). https://doi.org/10.1038/nature06016
- Z.-D. Huang, B. Zhang, R. Liang, Q.-B. Zheng, S.W. Oh et al., Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50, 4239–4251 (2012). https://doi.org/10.1016/j.carbon.2012.05.006
- X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012). https://doi.org/10.1088/0957-4484/23/45/455705
- J.-I. Fujita, R. Ueki, T. Nishijima, Y. Miyazawa, Characteristics of graphene FET directly transformed from a resist pattern through interfacial graphitization of liquid Gallium. Microelectron. Eng. 88, 2524–2526 (2011). https://doi.org/10.1016/j.mee.2011.01.014
- Y. Huang, S. Yin, Y. Huang, X. Zhang, W. Zhang et al., Graphene oxide/hexylamine superlattice field-effect biochemical sensors. Adv. Funct. Mater. 31, 2010563 (2021). https://doi.org/10.1002/adfm.202010563
- R. Zhang, Y. Jia, A disposable printed liquid gate graphene field effect transistor for a salivary cortisol test. ACS Sens. 6, 3024–3031 (2021). https://doi.org/10.1021/acssensors.1c00949
- M.A. Monne, P.M. Grubb, H. Stern, H. Subbaraman, R.T. Chen et al., Inkjet-printed graphene-based 1 × 2 phased array antenna. Micromachines 11, 863 (2020). https://doi.org/10.3390/mi11090863
- K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014). https://doi.org/10.1038/nmat3944
- E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013). https://doi.org/10.1021/jz400644c
- L. Nayak, S. Mohanty, A. Ramadoss, A green approach to water-based graphene ink with reverse coffee ring effect. J. Mater. Sci. Mater. Electron. 32, 7431–7442 (2021). https://doi.org/10.1007/s10854-021-05456-x
- F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
- S.K. Ameri, P.K. Singh, A.J. D’Angelo, M.J. Panzer, S.R. Sonkusale, Flexible 3D graphene transistors with ionogel dielectric for low-voltage operation and high current carrying capacity. Adv. Electron. Mater. 2, 1500355 (2016). https://doi.org/10.1002/aelm.201500355
- S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37, 512–515 (2016). https://doi.org/10.1109/LED.2016.2535484
- S Park, W. Zhu, H.-Y. Chang, M.N. Yogeesh, R. Ghosh et al., High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices. 2015 IEEE International Electron Devices Meeting (IEDM). December 7-9, 2015, Washington, DC, USA. IEEE, (2015). 32.1.1–32.1.4
- D. Kireev, I. Zadorozhnyi, T. Qiu, D. Sarik, F. Brings et al., Graphene field effect transistors for in vitro and ex vivo recordings. IEEE Trans. Nanotechnol. (2016). https://doi.org/10.1109/tnano.2016.2639028
- Z. Hao, C. Huang, C. Zhao, A. Kospan, Z. Wang et al., Ultrasensitive graphene-based nanobiosensor for rapid detection of hemoglobin in undiluted biofluids. ACS Appl. Bio Mater. 5, 1624–1632 (2022). https://doi.org/10.1021/acsabm.2c00031
- N. Schaefer, R. Garcia-Cortadella, J. Martínez-Aguilar, G. Schwesig, X. Illa et al., Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Mater. 7, 025046 (2020). https://doi.org/10.1088/2053-1583/ab7976
- S. Kanaparthi, S. Badhulika, Solvent-free fabrication of a biodegradable all-carbon paper based field effect transistor for human motion detection through strain sensing. Green Chem. 18, 3640–3646 (2016). https://doi.org/10.1039/C6GC00368K
- X. You, J.J. Pak, Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuat. B Chem. 202, 1357–1365 (2014). https://doi.org/10.1016/j.snb.2014.04.079
- X. You, J.J. Pak, Silk stabilized graphene FET enzymatic glucose biosensor. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). June 16–20, 2013, Barcelona, Spain. IEEE, (2013)., 2443–2446.
- C.A. Tseng, C.C. Chen, R.K. Ulaganathan, C.P. Lee, H.C. Chiang et al., One-step synthesis of antioxidative graphene-wrapped copper nanops on flexible substrates for electronic and electrocatalytic applications. ACS Appl. Mater. Interfaces 9, 25067–25072 (2017). https://doi.org/10.1021/acsami.7b06490
- Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau et al., Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012). https://doi.org/10.1002/adma.201202220
- C.H. Yeh, Y.W. Lain, Y.C. Chiu, C.H. Liao, D.R. Moyano et al., Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8, 7663–7670 (2014). https://doi.org/10.1021/nn5036087
- Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu et al., Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate. Nanotechnology 28, 315501 (2017). https://doi.org/10.1088/1361-6528/aa78bc
- G. Fisichella, S.L. Verso, S. Di Marco, V. Vinciguerra, E. Schilirò et al., Advances in the fabrication of graphene transistors on flexible substrates. Beilstein J. Nanotechnol. 8, 467–474 (2017). https://doi.org/10.3762/bjnano.8.50
- J. Liu, G. Zong, L. He, Y. Zhang, C. Liu et al., Effects of fumed and mesoporous silica nanops on the properties of sylgard 184 polydimethylsiloxane. Micromachines 6, 855–864 (2015). https://doi.org/10.3390/mi6070855
- Y. Su, C. Ma, J. Chen, H. Wu, W. Luo et al., Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res. Lett. 15, 200 (2020). https://doi.org/10.1186/s11671-020-03428-4
- I. Klammer, M.C. Hofmann, A. Buchenauer, W. Mokwa, U. Schnakenberg, Long-term stability of PDMS-based microfluidic systems used for biocatalytic reactions. J. Micromech. Microeng. 16, 2425–2428 (2006). https://doi.org/10.1088/0960-1317/16/11/025
- J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003). https://doi.org/10.1021/ac0346712
- J.-E. Lim, S.-M. Lee, S.-S. Kim, T.-W. Kim, H.-W. Koo et al., Brush-paintable and highly stretchable Ag nanowire and PEDOT: PSS hybrid electrodes. Sci. Rep. 7, 14685 (2017). https://doi.org/10.1038/s41598-017-14951-3
- Y. Moser, M.A.M. Gijs, Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16, 1349–1354 (2007). https://doi.org/10.1109/JMEMS.2007.908437
- B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31, 3449–3458 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.053
- D. Zhang, C. Jiang, J. Tong, X. Zong, W. Hu, Flexible strain sensor based on layer-by-layer self-assembled graphene/polymer nanocomposite membrane and its sensing properties. J. Electron. Mater. 47, 2263–2270 (2018). https://doi.org/10.1007/s11664-017-6052-1
- H. Choi, J.S. Choi, J.S. Kim, J.H. Choe, K.H. Chung et al., Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10, 3685–3691 (2014). https://doi.org/10.1002/smll.201400434
- W.-K. Lee, K.E. Whitener Jr., J.T. Robinson, T.J. O’Shaughnessy, P.E. Sheehan, Transferring electronic devices with hydrogenated graphene. Adv. Mater. Interfaces 6, 1801974 (2019). https://doi.org/10.1002/admi.201801974
- P. Sahatiya, S. Badhulika, Wireless, smart, human motion monitoring using solution processed fabrication of graphene–MoS2 transistors on paper. Adv. Electron. Mater. 4, 1700388 (2018). https://doi.org/10.1002/aelm.201700388
- K.-A. Son, B. Yang, H.-C. Seo, D. Wong, J.S. Moon et al., High-speed graphene field effect transistors on microbial cellulose biomembrane. IEEE Trans. Nanotechnol. 16, 239–244 (2017). https://doi.org/10.1109/TNANO.2017.2658443
- L. Lan, J. Ping, J. Xiong, Y. Ying, Sustainable natural bio-origin materials for future flexible devices. Adv. Sci. 9, e2200560 (2022). https://doi.org/10.1002/advs.202200560
- T.Q. Trung, S. Ramasundaram, S.W. Hong, N.-E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 24, 3438–3445 (2014). https://doi.org/10.1002/adfm.201304224
- X. Yang, A. Vorobiev, J. Yang, K. Jeppson, J. Stake, A linear-array of 300-GHz antenna integrated GFET detectors on a flexible substrate. IEEE Trans. Terahertz Sci. Technol. 10, 554–557 (2020). https://doi.org/10.1109/TTHZ.2020.2997599
- J.W. Shin, M.H. Kang, S. Oh, B.C. Yang, K. Seong et al., Atomic layer deposited high-k dielectric on graphene by functionalization through atmospheric plasma treatment. Nanotechnology 29, 195602 (2018). https://doi.org/10.1088/1361-6528/aab0fb
- Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo et al., High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale 7, 10954–10962 (2015). https://doi.org/10.1039/C5NR02292D
- H.-Y. Chang, S. Yang, J. Lee, L. Tao, W.-S. Hwang et al., High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013). https://doi.org/10.1021/nn401429w
- S.-H. Jen, J.A. Bertrand, S.M. George, Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J. Appl. Phys. 109, 084305 (2011). https://doi.org/10.1063/1.3567912
- B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks et al., High- k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018). https://doi.org/10.1021/acs.chemrev.8b00045
- Q.-K. Feng, S.-L. Zhong, J.-Y. Pei, Y. Zhao, D.-L. Zhang et al., Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022). https://doi.org/10.1021/acs.chemrev.1c00793
- S. Wang, C. Yang, X. Li, H. Jia, S. Liu et al., Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J. Mater. Chem. C 10, 6196–6221 (2022). https://doi.org/10.1039/D2TC00193D
- A. Sanne, H.C.P. Movva, S. Kang, C. McClellan, C.M. Corbet et al., Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors. Appl. Phys. Lett. 104, 083106 (2014). https://doi.org/10.1063/1.4866338
- S. Park, H.-Y. Chang, S. Rahimi, A.L. Lee, L. Tao et al., Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv. Electron. Mater. 4, 1700043 (2018). https://doi.org/10.1002/aelm.201700043
- I.-Y. Lee, H.-Y. Park, J.-H. Park, G. Yoo, M.-H. Lim et al., Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics. Nanoscale 6, 3830–3836 (2014). https://doi.org/10.1039/c3nr06517k
- J.G. Oh, K. Pak, C.S. Kim, J.H. Bong, W.S. Hwang et al., A high-performance top-gated graphene field-effect transistor with excellent flexibility enabled by an iCVD copolymer gate dielectric. Small 14, 1703035 (2018). https://doi.org/10.1002/smll.201703035
- F. Chen, J. Xia, D.K. Ferry, N. Tao, Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009). https://doi.org/10.1021/nl900725u
- P.A. Flores-Silva, C. Borja-Hernández, C. Magaña, D.R. Acosta, A.R. Botello-Méndez et al., Graphene field effect transistors using TiO2 as the dielectric layer. Phys. E Low Dimension. Syst. Nanostruct. 124, 114282 (2020). https://doi.org/10.1016/j.physe.2020.114282
- I. Alam, S. Subudhi, S. Das, M. Mandal, S. Patra et al., Graphene-based field-effect transistor using gated highest-k ferroelectric thin film. Solid State Commun. 371, 115258 (2023). https://doi.org/10.1016/j.ssc.2023.115258
- J. Wen, C. Yan, Z. Sun, 2D electronics: the application of a high-κ polymer dielectric in graphene transistors. Adv. Electron. Mater. 6, 2070031 (2020). https://doi.org/10.1002/aelm.202070031
- C. Jang, S. Adam, J.H. Chen, E.D. Williams, S. Das Sarma et al., Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 101, 146805 (2008). https://doi.org/10.1103/PhysRevLett.101.146805
- V.Q. Dang, T.Q. Trung, L. Duy, B.Y. Kim, S. Siddiqui et al., High-performance flexible ultraviolet (UV) phototransistor using hybrid channel of vertical ZnO nanorods and graphene. ACS Appl. Mater. Interfaces 7, 11032–11040 (2015). https://doi.org/10.1021/acsami.5b02834
- A. Dathbun, S. Kim, S. Lee, D.K. Hwang, J.H. Cho, Flexible and transparent graphene complementary logic gates. Mol. Syst. Des. Eng. 4, 484–490 (2019). https://doi.org/10.1039/c8me00100f
- S. Kim, S.B. Jo, J. Kim, D. Rhee, Y.Y. Choi et al., Gate-deterministic remote doping enables highly retentive graphene-MXene hybrid memory devices on plastic. Adv. Funct. Mater. 32, 2111956 (2022). https://doi.org/10.1002/adfm.202111956
- J. Cho, J. Lee, Y. He, B. Kim, T. Lodge et al., High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008). https://doi.org/10.1002/adma.200701069
- J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He et al., Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistorsonplastic. Nat. Mater. 7, 900–906 (2008). https://doi.org/10.1038/nmat2291
- Q. Sun, D.H. Kim, S.S. Park, N.Y. Lee, Y. Zhang et al., Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 26, 4735–4740 (2014). https://doi.org/10.1002/adma.201400918
- A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). https://doi.org/10.1038/nnano.2008.67
- F. Chen, J. Xia, N. Tao, Ionic screening of charged-impurity scatt ering in graphene. Nano Lett. 9, 1621–1625 (2009). https://doi.org/10.1021/nl803922m
- S. Mansouri Majd, A. Salimi, Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal. Chim. Acta 1000, 273–282 (2018). https://doi.org/10.1016/j.aca.2017.11.008
- W. Fu, L. Jiang, E.P. van Geest, L.M.C. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017). https://doi.org/10.1002/adma.201603610
- L.T. Duy, T.Q. Trung, V.Q. Dang, B.-U. Hwang, S. Siddiqui et al., Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Funct. Mater. 26, 4329–4338 (2016). https://doi.org/10.1002/adfm.201505477
- U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29, 1603544 (2017). https://doi.org/10.1002/adma.201603544
- S. Huang, Y. Liu, Y. Zhao, Z. Ren, C.F. Guo, Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 29, 1805924 (2019). https://doi.org/10.1002/adfm.201805924
- G. Hu, J. Wu, C. Ma, Z. Liang, W. Liu et al., Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor. Mater. Horiz. 6, 302–310 (2019). https://doi.org/10.1039/c8mh01499j
- E.B. Secor, A.B. Cook, C.E. Tabor, M.C. Hersam, Wiring up liquid metal: stable and robust electrical contacts enabled by printable graphene inks. Adv. Electron. Mater. 4, 1700483 (2018). https://doi.org/10.1002/aelm.201700483
- F. Giubileo, A. Di, Bartolomeo the role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 92, 143–175 (2017). https://doi.org/10.1016/j.progsurf.2017.05.002
- A. Tabatabai, A. Fassler, C. Usiak, C. Majidi, Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194–6200 (2013). https://doi.org/10.1021/la401245d
- Z. Zhou, Y. Yao, C. Zhang, Z. Deng, Q. Li et al., Liquid metal printed optoelectronics toward fast fabrication of customized and erasable patterned displays. Adv. Mater. Technol. 7, 2101010 (2022). https://doi.org/10.1002/admt.202101010
- N. Ochirkhuyag, R. Matsuda, Z. Song, F. Nakamura, T. Endo et al., Liquid metal-based nanocomposite materials: fabrication technology and applications. Nanoscale 13, 2113–2135 (2021). https://doi.org/10.1039/d0nr07479a
- R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23, 5292–5296 (2013). https://doi.org/10.1002/adfm.201203589
- J.L. Melcher, K.S. Elassy, R.C. Ordonez, C. Hayashi, A.T. Ohta et al., Spray-on liquid-metal electrodes for graphene field-effect transistors. Micromachines 10, 54 (2019). https://doi.org/10.3390/mi10010054
- L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31, e1806133 (2019). https://doi.org/10.1002/adma.201806133
- L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E.S. Hosseini, R. Dahiya, A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte. Adv. Mater. 32, e1907254 (2020). https://doi.org/10.1002/adma.201907254
- W. Luo, Y. Ma, T. Li, H.K. Thabet, C. Hou et al., Overview of MXene/conducting polymer composites for supercapacitors. J. Energy Storage 52, 105008 (2022). https://doi.org/10.1016/j.est.2022.105008
- K. Namsheer, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659–5697 (2021). https://doi.org/10.1039/d0ra07800j
- S. Ramanavicius, A. Ramanavicius, Conducting polymers in the design of biosensors and biofuel cells. Polymers 13, 49 (2020). https://doi.org/10.3390/polym13010049
- R. Ma, M. Zeng, Y. Li, T. Liu, Z. Luo et al., Rational anode engineering enables progresses for different types of organic solar cells. Adv. Energy Mater. 11, 2100492 (2021). https://doi.org/10.1002/aenm.202100492
- B. Zhou, J. Song, B. Wang, Y. Feng, C. Liu et al., Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 15, 9520–9530 (2022). https://doi.org/10.1007/s12274-022-4756-x
- H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
- S. Raman, R.S. Arunagirinathan, Silver nanowires in stretchable resistive strain sensors. Nanomaterials 12, 1932 (2022). https://doi.org/10.3390/nano12111932
- W. Li, S. Yang, A. Shamim, Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flex. Electron. 3, 13 (2019). https://doi.org/10.1038/s41528-019-0057-1
- K.E. Laliberte, P. Scott, N.I. Khan, M.S. Mahmud, E. Song, A wearable graphene transistor-based biosensor for monitoring IL-6 biomarker. Microelectron. Eng. 262, 111835 (2022). https://doi.org/10.1016/j.mee.2022.111835
- C. Wu, S. Xu, W. Wang, Synthesis and applications of silver nanocomposites: a review. J. Phys. Conf. Ser. 1948, 012216 (2021). https://doi.org/10.1088/1742-6596/1948/1/012216
- N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Graphene-stabilized copper nanops as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19, 445201 (2008). https://doi.org/10.1088/0957-4484/19/44/445201
- S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009). https://doi.org/10.1021/nn900348c
- K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
- P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
- J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242
- S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152–160 (2022). https://doi.org/10.1016/j.jmst.2022.03.012
- R. Kawabata, T. Araki, M. Akiyama, T. Uemura, T. Wu et al., Stretchable printed circuit board integrated with Ag-nanowire-based electrodes and organic transistors toward imperceptible electrophysiological sensing. Flex. Print. Electron. 7, 044002 (2022). https://doi.org/10.1088/2058-8585/ac968c
- L. Hu, H. Wu, Y. Cui, Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011). https://doi.org/10.1557/mrs.2011.234
- L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley et al., Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3, 4075–4084 (2011). https://doi.org/10.1021/am2009585
- J.H. Park, G.T. Hwang, S. Kim, J. Seo, H.J. Park et al., Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 29, 1603473 (2017). https://doi.org/10.1002/adma.201603473
- M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park et al., High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814–2821 (2013). https://doi.org/10.1021/nl401070p
- I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang et al., Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012). https://doi.org/10.1021/nl302870x
- C. Jeong, P. Nair, M. Khan, M. Lundstrom, M.A. Alam, Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 11, 5020–5025 (2011). https://doi.org/10.1021/nl203041n
- J. Kim, M.S. Lee, S. Jeon, M. Kim, S. Kim et al., Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27, 3292–3297 (2015). https://doi.org/10.1002/adma.201500710
- J. Sheng, Z. Han, G. Jia, S. Zhu, Y. Xu et al., Covalently bonded graphene sheets on carbon nanotubes: direct growth and outstanding properties. Adv. Funct. Mater. 33, 2306785 (2023). https://doi.org/10.1002/adfm.202306785
- C. Zhang, S. Cheng, K. Si, N. Wang, Y. Wang et al., All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. J. Mater. Chem. C 8, 7436–7446 (2020). https://doi.org/10.1039/D0TC01385D
- X. Zhang, Y. Hu, H. Gu, P. Zhu, W. Jiang et al., A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics. Adv. Mater. Technol. 4, 1900367 (2019). https://doi.org/10.1002/admt.201900367
- K. Kang, Y. Cho, K.J. Yu, Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines 9, 263 (2018). https://doi.org/10.3390/mi9060263
- Z. Gao, H. Kang, C.H. Naylor, F. Streller, P. Ducos et al., Scalable production of sensor arrays based on high-mobility hybrid graphene field effect transistors. ACS Appl. Mater. Interfaces 8, 27546–27552 (2016). https://doi.org/10.1021/acsami.6b09238
- M. Banik, M. Oded, R. Shenhar, Coupling the chemistry and topography of block copolymer films patterned by soft lithography for nanop organization. Soft Matter 18, 5302–5311 (2022). https://doi.org/10.1039/D2SM00389A
- J. Kajtez, S. Buchmann, S. Vasudevan, M. Birtele, S. Rocchetti et al., 3D-printed soft lithography for complex compartmentalized microfluidic neural devices. Adv. Sci. 8, e2101787 (2021). https://doi.org/10.1002/advs.202101787
- X. Han, B. Su, B. Zhou, Y. Wu, J. Meng, Soft lithographic fabrication of free-standing ceramic microparts using moisture-sensitive PDMS molds. J. Micromech. Microeng. 29, 035002 (2019). https://doi.org/10.1088/1361-6439/aaf7de
- M.W. Park, D.Y. Kim, U. An, J. Jang, J.H. Bae et al., Organizing reliable polymer electrode lines in flexible neural networks via coffee ring-free micromolding in capillaries. ACS Appl. Mater. Interfaces 14, 46819–46826 (2022). https://doi.org/10.1021/acsami.2c13780
- J. Deng, L. Jiang, B. Si, H. Zhou, J. Dong et al., AFM-Based nanofabrication and quality inspection of three-dimensional nanotemplates for soft lithography. J. Manuf. Process. 66, 565–573 (2021). https://doi.org/10.1016/j.jmapro.2021.04.051
- H. Li, H. Zhang, W. Luo, R. Yuan, Y. Zhao et al., Microcontact printing of gold nanop at three-phase interface as flexible substrate for SERS detection of microRNA. Anal. Chim. Acta 1229, 340380 (2022). https://doi.org/10.1016/j.aca.2022.340380
- N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016). https://doi.org/10.1039/c6lc00163g
- S. Zhu, Y. Tang, C. Lin, X.Y. Liu, Y. Lin, Recent advances in patterning natural polymers: from nanofabrication techniques to applications. Small Meth. 5, 2001060 (2021). https://doi.org/10.1002/smtd.202001060
- M.W. Jung, S. Myung, K.W. Kim, W. Song, Y.Y. Jo et al., Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Nanotechnology 25, 285302 (2014). https://doi.org/10.1088/0957-4484/25/28/285302
- M.J. Lima, V.M. Correlo, R.L. Reis, Micro/nano replication and 3D assembling techniques for scaffold fabrication. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 615–621 (2014). https://doi.org/10.1016/j.msec.2014.05.064
- T. Hong Tham Phan, S.-J. Kim, Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chem. Eng. Sci. 258, 117768 (2022). https://doi.org/10.1016/j.ces.2022.117768
- X. Sui, H. Pu, A. Maity, J. Chang, B. Jin et al., Field-effect transistor based on percolation network of reduced graphene oxide for real-time ppb-level detection of lead ions in water. ECS J. Solid State Sci. Technol. 9, 115012 (2020). https://doi.org/10.1149/2162-8777/abaaf4
- T. Kim, H. Kim, S.W. Kwon, Y. Kim, W.K. Park et al., Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano Lett. 12, 743–748 (2012). https://doi.org/10.1021/nl203691d
- P. Xiao, J. Gu, J. Chen, J. Zhang, R. Xing et al., Micro-contact printing of graphene oxide nanosheets for fabricating patterned polymer brushes. Chem. Commun. 50, 7103–7106 (2014). https://doi.org/10.1039/C4CC01467G
- D. Tian, Y. Song, L. Jiang, Patterning of controllable surface wettability for printing techniques. Chem. Soc. Rev. 42, 5184–5209 (2013). https://doi.org/10.1039/C3CS35501B
- H. Ravanbakhsh, G. Bao, Z. Luo, L.G. Mongeau, Y.S. Zhang, Composite inks for extrusion printing of biological and biomedical constructs. ACS Biomater. Sci. Eng. 7, 4009–4026 (2021). https://doi.org/10.1021/acsbiomaterials.0c01158
- S. Majee, W. Zhao, A. Sugunan, T. Gillgren, J.A. Larsson et al., Highly conductive films by rapid photonic annealing of inkjet printable starch–graphene ink. Adv. Mater. Interfaces 9, 2101884 (2022). https://doi.org/10.1002/admi.202101884
- C. Buga, J.C. Viana, Optimization of print quality of inkjet printed PEDOT: PSS patterns. Flex. Print. Electron. 7, 045004 (2022). https://doi.org/10.1088/2058-8585/ac931e
- P. Lin, X. Ji, L. Yin, J. Zhang, Inkjet-printed patterned quantum dots film for high-efficiency displays. IEEE Photonics J. 14, 8259606 (2022). https://doi.org/10.1109/JPHOT.2022.3221777
- T. Kraus, Soft electronics by inkjet printing metal inks on porous substrates. Flex. Print. Electron. 7, 033001 (2022). https://doi.org/10.1088/2058-8585/ac8360
- Z. Yin, Y. Huang, N. Bu, X. Wang, Y. Xiong, Inkjet printing for flexible electronics: materials, processes and equipments. Chin. Sci. Bull. 55, 3383–3407 (2010). https://doi.org/10.1007/s11434-010-3251-y
- L. Xiang, Z. Wang, Z. Liu, S.E. Weigum, Q. Yu et al., Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens. J. 16, 8359–8364 (2016). https://doi.org/10.1109/JSEN.2016.2608719
- J.M. Hoey, A. Lutfurakhmanov, D.L. Schulz, I.S. Akhatov, A review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012, 324380 (2012). https://doi.org/10.1155/2012/324380
- T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner et al., Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769–779 (2015). https://doi.org/10.1021/ie503636c
- D. Jahn, R. Eckstein, L.M. Schneider, N. Born, G. Hernandez-Sosa et al., Digital aerosol jet printing for the fabrication of terahertz metamaterials. Adv. Mater. Technol. 3, 1700236 (2018). https://doi.org/10.1002/admt.201700236
- W. Yu, P.J. Cai, R. Liu, F.P. Shen, T. Zhang, A flexible ultrasensitive IgG-modified rGO-based FET biosensor fabricated by aerosol jet printing. Appl. Mech. Mater. 748, 157–161 (2015). https://doi.org/10.4028/www.scientific.net/amm.748.157
- D. Wu, Q.-D. Chen, L.-G. Niu, J. Jiao, H. Xia et al., 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technol. Lett. 21, 1535–1537 (2009). https://doi.org/10.1109/LPT.2009.2029346
- J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan et al., High curvature concave–convex microlens. IEEE Photonics Technol. Lett. 27, 2465–2468 (2015). https://doi.org/10.1109/LPT.2015.2470195
- D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa et al., In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light. Sci. Appl. 4, e228 (2015). https://doi.org/10.1038/lsa.2015.1
- X.-P. Zhan, J.-F. Ku, Y.-X. Xu, X.-L. Zhang, J. Zhao et al., Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers. IEEE Photonics Technol. Lett. 27, 311–314 (2015). https://doi.org/10.1109/LPT.2014.2370641
- Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu et al., Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light. Sci. Appl. 3, e129 (2014). https://doi.org/10.1038/lsa.2014.10
- A. Johansson, H.-C. Tsai, J. Aumanen, J. Koivistoinen, P. Myllyperkiö et al., Chemical composition of two-photon oxidized graphene. Carbon 115, 77–82 (2017). https://doi.org/10.1016/j.carbon.2016.12.091
- Y. He, L. Zhu, Y. Liu, J.-N. Ma, D.-D. Han et al., Femtosecond laser direct writing of flexible all-reduced graphene oxide FET. IEEE Photonics Technol. Lett. 28, 1996–1999 (2016). https://doi.org/10.1109/LPT.2016.2574746
- M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13, 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
- A. Samouco, A.C. Marques, A. Pimentel, R. Martins, E. Fortunato, Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flex. Print. Electron. 3, 044002 (2018). https://doi.org/10.1088/2058-8585/aaed77
- T.-R. Cui, Y.-C. Qiao, J.-W. Gao, C.-H. Wang, Y. Zhang et al., Ultrasensitive detection of COVID-19 causative virus (SARS-CoV-2) spike protein using laser induced graphene field-effect transistor. Molecules 26, 6947 (2021). https://doi.org/10.3390/molecules26226947
- C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
- S.-M. Choi, S.-H. Jhi, Y.-W. Son, Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010). https://doi.org/10.1021/nl101617x
- G. Cocco, E. Cadelano, L. Colombo, Gap opening in graphene by shear strain. Phys. Rev. B 81, 241412 (2010). https://doi.org/10.1103/physrevb.81.241412
- G. Gui, J. Li, J. Zhong, Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B 78, 075435 (2008). https://doi.org/10.1103/physrevb.78.075435
- S. Quan, Y. Zhang, W. Chen, Strain effects in the electron orbital coupling and electric structure of graphene. Phys. Chem. Chem. Phys. 24, 23929–23935 (2022). https://doi.org/10.1039/d2cp02428d
- Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi et al., Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter 405, 1301–1306 (2010). https://doi.org/10.1016/j.physb.2009.11.071
- Z. Hao, Z. Wang, Y. Li, Y. Zhu, X. Wang et al., Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 10, 21681–21688 (2018). https://doi.org/10.1039/c8nr04315a
- Y. Yang, X. Yang, X. Zou, S. Wu, D. Wan et al., Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 27, 1604096 (2017). https://doi.org/10.1002/adfm.201604096
- T.Q. Trung, N.T. Tien, D. Kim, J.H. Jung, O.J. Yoon et al., High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 24, 5254–5260 (2012). https://doi.org/10.1002/adma.201201724
- A. Singh, S. Lee, H. Watanabe, H. Lee, Graphene-based ultrasensitive strain sensors. ACS Appl. Electron. Mater. 2, 523–528 (2020). https://doi.org/10.1021/acsaelm.9b00778
- S.B. Kumar, J. Guo, Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 12, 1362–1366 (2012). https://doi.org/10.1021/nl203968j
- V. Hung Nguyen, T.X. Hoang, P. Dollfus, J.C. Charlier, Transport properties through graphene grain boundaries: strain effects versus lattice symmetry. Nanoscale 8, 11658–11673 (2016). https://doi.org/10.1039/c6nr01359g
- I.Y. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene. Europhys. Lett. 132, 48002 (2020). https://doi.org/10.1209/0295-5075/132/48002
- X. Yang, W. Chen, Q. Fan, J. Chen, Y. Chen et al., Electronic skin for health monitoring systems: properties, functions, and applications. Adv. Mater. 36, e2402542 (2024). https://doi.org/10.1002/adma.202402542
- Y. Chen, X. Wan, G. Li, J. Ye, J. Gao et al., Metal hydrogel-based integrated wearable biofuel cell for self-powered epidermal sweat biomarker monitoring. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202404329
- A.J. Bandodkar, W.J. Jeang, R. Ghaffari, J.A. Rogers, Wearable sensors for biochemical sweat analysis. Annual Rev. Anal. Chem. 12, 1–22 (2019). https://doi.org/10.1146/annurev-anchem-061318-114910
- Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research (Wash D C) 2020, 8710686 (2020). https://doi.org/10.34133/2020/8710686
- N. Li, J. Peng, W.-J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4, 377–407 (2021). https://doi.org/10.1016/j.matt.2020.10.024
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- Y. Yang, H. Zhang, Z.H. Lin, Y.S. Zhou, Q. Jing et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7, 9213–9222 (2013). https://doi.org/10.1021/nn403838y
- S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013). https://doi.org/10.1039/c3ee42571a
- W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
- D.-S. Liu, H. Ryu, U. Khan, C. Wu, J.-H. Jung et al., Piezoionic-powered graphene strain sensor based on solid polymer electrolyte. Nano Energy 81, 105610 (2021). https://doi.org/10.1016/j.nanoen.2020.105610
- J.B. Park, M.S. Song, R. Ghosh, R.K. Saroj, Y. Hwang et al., Highly sensitive and flexible pressure sensors using position- and dimension-controlled ZnO nanotube arrays grown on graphene films. NPG Asia Mater. 13, 57 (2021). https://doi.org/10.1038/s41427-021-00324-w
- T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
- S. Mondal, B.K. Min, Y. Yi, V.-T. Nguyen, C.-G. Choi, Gamma-ray tolerant flexible pressure–temperature sensor for nuclear radiation environment. Adv. Mater. Technol. 6, 2001039 (2021). https://doi.org/10.1002/admt.202001039
- J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
- M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y
- Y. Liu, L. Zhong, S. Zhang, J. Wang, Z. Liu, An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sens. Actuat. B Chem. 354, 131204 (2022). https://doi.org/10.1016/j.snb.2021.131204
- L. Qiao, M.R. Benzigar, J.A. Subramony, N.H. Lovell, G. Liu, Advances in sweat wearables: sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interfaces 12, 34337–34361 (2020). https://doi.org/10.1021/acsami.0c07614
- M. Elsherif, M.U. Hassan, A.K. Yetisen, H. Butt, Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018). https://doi.org/10.1021/acsnano.8b00829
- Y. Chen, S. Lu, S. Zhang, Y. Li, Z. Qu et al., Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, e1701629 (2017). https://doi.org/10.1126/sciadv.1701629
- J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
- A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024). https://doi.org/10.1002/adma.202404225
- S. Murphy, M. Zweyer, R.R. Mundegar, D. Swandulla, K. Ohlendieck, Proteomic serum biomarkers for neuromuscular diseases. Expert Rev. Proteom. 15, 277–291 (2018). https://doi.org/10.1080/14789450.2018.1429923
- L. Wang, J.A. Jackman, W.B. Ng, N.-J. Cho, Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv. Funct. Mater. 26, 8623–8630 (2016). https://doi.org/10.1002/adfm.201603550
- O.S. Kwon, S.J. Park, J.Y. Hong, A.R. Han, J.S. Lee et al., Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6, 1486–1493 (2012). https://doi.org/10.1021/nn204395n
- S. Farid, X. Meshik, M. Choi, S. Mukherjee, Y. Lan et al., Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens. Bioelectron. 71, 294–299 (2015). https://doi.org/10.1016/j.bios.2015.04.047
- Z. Wang, Z. Hao, S. Yu, C.G. De Moraes, L.H. Suh et al., An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 29, 1905202 (2019). https://doi.org/10.1002/adfm.201905202
- Z. Wang, Z. Hao, X. Wang, C. Huang, Q. Lin et al., A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2005958 (2021). https://doi.org/10.1002/adfm.202005958
- J. Bai, D. Liu, X. Tian, Y. Wang, B. Cui et al., Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. Sci. Adv. 10, eadl1856 (2024). https://doi.org/10.1126/sciadv.adl1856
- M. Sang, M. Cho, S. Lim, I.S. Min, Y. Han et al., Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. Sci. Adv. 9, eadl1765 (2023). https://doi.org/10.1126/sciadv.adh1765
- Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon et al., Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37, 82–87 (2012). https://doi.org/10.1016/j.bios.2012.04.042
- C. Huang, Z. Hao, T. Qi, Y. Pan, X. Zhao, An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose. J. Materiomics 6, 308–314 (2020). https://doi.org/10.1016/j.jmat.2020.02.002
- Y. Zhi, J. Jian, Y. Qiao, Y. Tian, Y. Yang et al., An ultrathin flexible affinity-based graphene field-effect transistor for glucose monitoring. 2020 21st International Conference on Electronic Packaging Technology (ICEPT). August 12–15, 2020, Guangzhou, China. IEEE, (2020), pp. 1–6.
- H.C. Lee, E.Y. Hsieh, K. Yong, S. Nam, Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 13, 1406–1412 (2020). https://doi.org/10.1007/s12274-020-2662-7
- N. Gao, R. Zhou, B. Tu, T. Tao, Y. Song et al., Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring. Anal. Chim. Acta 1239, 340719 (2023). https://doi.org/10.1016/j.aca.2022.340719
- S.A. Hashemi, S.M. Mousavi, S. Bahrani, N. Omidifar, M. Arjmand et al., Decorated graphene oxide flakes with integrated complex of 8-hydroxyquinoline/NiO toward accurate detection of glucose at physiological conditions. J. Electroanal. Chem. 893, 115303 (2021). https://doi.org/10.1016/j.jelechem.2021.115303
- J. Yi, X. Han, F. Gao, L. Cai, Y. Chen et al., A novel metal-organic framework of Ba-hemin with enhanced cascade activity for sensitive glucose detection. RSC Adv. 12, 20544–20549 (2022). https://doi.org/10.1039/d2ra02778j
- C. Zhang, C. Wei, D. Chen, Z. Xu, X. Huang, Construction of inorganic-organic cascade enzymes biosensor based on gradient polysulfone hollow fiber membrane for glucose detection. Sens. Actuat. B Chem. 385, 133630 (2023). https://doi.org/10.1016/j.snb.2023.133630
- R. Bi, X. Ma, K. Miao, P. Ma, Q. Wang, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb. Technol. 162, 110132 (2023). https://doi.org/10.1016/j.enzmictec.2022.110132
- J. Gao, Y. Gao, Y. Han, J. Pang, C. Wang et al., Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2, 1090–1098 (2020). https://doi.org/10.1021/acsaelm.0c00095
- M. Ku, J. Kim, J.E. Won, W. Kang, Y.G. Park et al., Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020). https://doi.org/10.1126/sciadv.abb2891
- C. Huang, Z. Hao, Z. Wang, H. Wang, X. Zhao et al., An ultraflexible and transparent graphene-based wearable sensor for biofluid biomarkers detection. Adv. Mater. Technol. 7, 2101131 (2022). https://doi.org/10.100
References
X. Xiao, B. Mu, G. Cao, Y. Yang, M. Wang, Flexible battery-free wireless electronic system for food monitoring. J. Sci. Adv. Mater. Devices 7, 100430 (2022). https://doi.org/10.1016/j.jsamd.2022.100430
R. Mondal, M. Al Mahadi Hasan, R. Zhang, H. Olin, Y. Yang, Nanogenerators-based self-powered sensors. Adv. Mater. Technol. 7, 2200282 (2022). https://doi.org/10.1002/admt.202200282
K. Liu, B. Ouyang, X. Guo, Y. Guo, Y. Liu, Advances in flexible organic field-effect transistors and their applications for flexible electronics. npj Flex. Electron. 6, 1 (2022). https://doi.org/10.1038/s41528-022-00133-3
K. Meng, X. Xiao, W. Wei, G. Chen, A. Nashalian et al., Wearable pressure sensors for pulse wave monitoring. Adv. Mater. 34, 2109357 (2022). https://doi.org/10.1002/adma.202109357
Z. Shi, L. Meng, X. Shi, H. Li, J. Zhang et al., Morphological engineering of sensing materials for flexible pressure sensors and artificial intelligence applications. Nano-Micro Lett. 14, 141 (2022). https://doi.org/10.1007/s40820-022-00874-w
Z. Ma, X. Xiang, L. Shao, Y. Zhang, J. Gu, Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem. Int. Ed. 61, e202200705 (2022). https://doi.org/10.1002/anie.202200705
T. Sun, B. Feng, J. Huo, Y. Xiao, W. Wang et al., Artificial intelligence meets flexible sensors: emerging smart flexible sensing systems driven by machine learning and artificial synapses. Nano-Micro Lett. 16, 14 (2023). https://doi.org/10.1007/s40820-023-01235-x
J. Wen, Y. Wu, Y. Gao, Q. Su, Y. Liu et al., Nanofiber composite reinforced organohydrogels for multifunctional and wearable electronics. Nano-Micro Lett. 15, 174 (2023). https://doi.org/10.1007/s40820-023-01148-9
S.R. Madhvapathy, J.-J. Wang, H. Wang, M. Patel, A. Chang et al., Implantable bioelectronic systems for early detection of kidney transplant rejection. Science 381, 1105–1112 (2023). https://doi.org/10.1126/science.adh7726
A. Zhang, E.T. Mandeville, L. Xu, C.M. Stary, E.H. Lo et al., Ultraflexible endovascular probes for brain recording through micrometer-scale vasculature. Science 381, 306–312 (2023). https://doi.org/10.1126/science.adh3916
H. Jang, Y.J. Park, X. Chen, T. Das, M.-S. Kim et al., Graphene-based flexible and stretchable electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245
H. Liu, H. Zhang, W. Han, H. Lin, R. Li et al., 3D printed flexible strain sensors: from printing to devices and signals. Adv. Mater. 33, e2004782 (2021). https://doi.org/10.1002/adma.202004782
S. Pyo, J. Lee, K. Bae, S. Sim, J. Kim, Recent progress in flexible tactile sensors for human-interactive systems: from sensors to advanced applications. Adv. Mater. 33, e2005902 (2021). https://doi.org/10.1002/adma.202005902
W. Zhao, H. Zhou, W. Li, M. Chen, M. Zhou et al., An environment-tolerant ion-conducting double-network composite hydrogel for high-performance flexible electronic devices. Nano-Micro Lett. 16, 99 (2024). https://doi.org/10.1007/s40820-023-01311-2
Y.S. Rim, S.H. Bae, H. Chen, N. De Marco, Y. Yang, Recent progress in materials and devices toward printable and flexible sensors. Adv. Mater. 28, 4415–4440 (2016). https://doi.org/10.1002/adma.201505118
T. Cheng, Y. Zhang, W.-Y. Lai, W. Huang, Stretchable thin-film electrodes for flexible electronics with high deformability and stretchability. Adv. Mater. 27, 3349–3376 (2015). https://doi.org/10.1002/adma.201405864
S. Das, A. Sebastian, E. Pop, C.J. McClellan, A.D. Franklin et al., Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021). https://doi.org/10.1038/s41928-021-00670-1
A. Daus, S. Vaziri, V. Chen, Ç. Köroğlu, R.W. Grady et al., High-performance flexible nanoscale transistors based on transition metal dichalcogenides. Nat. Electron. 4, 495–501 (2021). https://doi.org/10.1038/s41928-021-00598-6
X. Wang, Y. Liu, Q. Chen, Y. Yan, Z. Rao et al., Recent advances in stretchable field-effect transistors. J. Mater. Chem. C 9, 7796–7828 (2021). https://doi.org/10.1039/d1tc01082d
M.-Z. Li, S.-T. Han, Y. Zhou, Recent advances in flexible field-effect transistors toward wearable sensors. Adv. Intell. Syst. 2, 2000113 (2020). https://doi.org/10.1002/aisy.202000113
M. Sedki, Y. Chen, A. Mulchandani, Non-carbon 2D materials-based field-effect transistor biosensors: recent advances, challenges, and future perspectives. Sensors (Basel) 20, 4811 (2020). https://doi.org/10.3390/s20174811
J. Liu, L. Zhang, K. Wang, C. Jiang, C. Zhang et al., Adaptive interfacial contact between copper nanops and triazine functionalized graphdiyne substrate for improved lithium/sodium storage. Adv. Funct. Mater. 33, 2305254 (2023). https://doi.org/10.1002/adfm.202305254
Q. Zhang, T. Jin, X. Ye, D. Geng, W. Chen et al., Organic field effect transistor-based photonic synapses: materials, devices, and applications. Adv. Funct. Mater. 31, 2106151 (2021). https://doi.org/10.1002/adfm.202106151
Y. Yan, Y. Zhao, Y. Liu, Recent progress in organic field-effect transistor-based integrated circuits. J. Polym. Sci. 60, 311–327 (2022). https://doi.org/10.1002/pol.20210457
S. Tiwari, A.K. Singh, L. Joshi, P. Chakrabarti, W. Takashima et al., Poly-3-hexylthiophene based organic field-effect transistor: detection of low concentration of ammonia. Sens. Actuat. B Chem. 171, 962–968 (2012). https://doi.org/10.1016/j.snb.2012.06.010
L. Vijayan, A. Thomas, K.S. Kumar, K.B. Jinesh, Low power organic field effect transistors with copper phthalocyanine as active layer. J. Sci. Adv. Mater. Devices 3, 348–352 (2018). https://doi.org/10.1016/j.jsamd.2018.08.002
B.S. Bhardwaj, T. Sugiyama, N. Namba, T. Umakoshi, T. Uemura et al., Orientation analysis of pentacene molecules in organic field-effect transistor devices using polarization-dependent Raman spectroscopy. Sci. Rep. 9, 15149 (2019). https://doi.org/10.1038/s41598-019-51647-2
P. Hu, X. He, H. Jiang, Greater than 10 cm2 V−1 s−1: a breakthrough of organic semiconductors for field-effect transistors. InfoMat 3, 613–630 (2021). https://doi.org/10.1002/inf2.12188
X. Huang, P. Sheng, Z. Tu, F. Zhang, J. Wang et al., A two-dimensional π-d conjugated coordination polymer with extremely high electrical conductivity and ambipolar transport behaviour. Nat. Commun. 6, 7408 (2015). https://doi.org/10.1038/ncomms8408
Q. Burlingame, M. Ball, Y.-L. Loo, It’s time to focus on organic solar cell stability. Nat. Energy 5, 947–949 (2020). https://doi.org/10.1038/s41560-020-00732-2
S. Qin, S. Xiang, B. Eberle, K. Xie, J.C. Grunlan, High moisture barrier with synergistic combination of SiOx and polyelectrolyte nanolayers. Adv. Mater. Interfaces 6, 1900740 (2019). https://doi.org/10.1002/admi.201900740
A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/revmodphys.81.109
T. Ando, The electronic properties of graphene and carbon nanotubes. npg Asia Mater. 1, 17–21 (2009). https://doi.org/10.1038/asiamat.2009.1
F. Schwierz, Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010). https://doi.org/10.1038/nnano.2010.89
B.V. Krsihna, S. Ravi, M.D. Prakash, Recent developments in graphene based field effect transistors. Mater. Today Proc. 45, 1524–1528 (2021). https://doi.org/10.1016/j.matpr.2020.07.678
T. Sattar, Current review on synthesis, composites and multifunctional properties of graphene. Top. Curr. Chem. 377, 10 (2019). https://doi.org/10.1007/s41061-019-0235-6
A.M. Pinto, I.C. Gonçalves, F.D. Magalhães, Graphene-based materials biocompatibility: a review. Colloids Surf. B Biointerfaces 111, 188–202 (2013). https://doi.org/10.1016/j.colsurfb.2013.05.022
Z. Gao, G. Wu, Y. Song, H. Li, Y. Zhang et al., Multiplexed monitoring of neurochemicals via electrografting-enabled site-selective functionalization of aptamers on field-effect transistors. Anal. Chem. 94, 8605–8617 (2022). https://doi.org/10.1021/acs.analchem.1c05531
A. Edgar Jimenez-Cervantes, L.B. Juventino, M.H. Ana Laura, V.S. Carlos, in Graphene-Based Materials Functionalization with Natural Polymeric Biomolecules. ed. by N. Pramoda Kumar (Rijeka, IntechOpen, 2016), p.257
A. Šolajić, J. Pešić, R. Gajić, Optical and mechanical properties and electron–phonon interaction in graphene doped with metal atoms. Opt. Quantum Electron. 52, 182 (2020). https://doi.org/10.1007/s11082-020-02300-0
D.G. Papageorgiou, I.A. Kinloch, R.J. Young, Mechanical properties of graphene and graphene-based nanocomposites. Prog. Mater. Sci. 90, 75–127 (2017). https://doi.org/10.1016/j.pmatsci.2017.07.004
S. Sreejith, J. Ajayan, J.M. Radhika, B. Sivasankari, S. Tayal et al., A comprehensive review on graphene FET bio-sensors and their emerging application in DNA/RNA sensing & rapid Covid-19 detection. Measurement 206, 112202 (2023). https://doi.org/10.1016/j.measurement.2022.112202
S. Wang, X. Qi, D. Hao, R. Moro, Y. Ma et al., Review—recent advances in graphene-based field-effect-transistor biosensors: a review on biosensor designing strategy. J. Electrochem. Soc. 169, 027509 (2022). https://doi.org/10.1149/1945-7111/ac4f24
Y. Wang, A. Keinonen, S. Koskenmies, S. Pitkänen, N. Fyhrquist et al., Occurrence of newly discovered human polyomaviruses in skin of liver transplant recipients and their relation with squamous cell carcinoma in situ and actinic keratosis - a single-center cohort study. Transpl. Int. 32, 516–522 (2019). https://doi.org/10.1111/tri.13397
A. Bhardwaj, J. Kaur, M. Wuest, F. Wuest, In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nat. Commun. 8, 1 (2017). https://doi.org/10.1038/s41467-016-0009-6
L. Zuccaro, C. Tesauro, T. Kurkina, P. Fiorani, H.K. Yu et al., Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano 9, 11166–11176 (2015). https://doi.org/10.1021/acsnano.5b05709
M. Gobbi, A. Galanti, M.-A. Stoeckel, B. Zyska, S. Bonacchi et al., Graphene transistors for real-time monitoring molecular self-assembly dynamics. Nat. Commun. 11, 4731 (2020). https://doi.org/10.1038/s41467-020-18604-4
A.G. Santos, G.O. da Rocha, J.B. de Andrade, Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne ps. Sci. Rep. 9, 1 (2019). https://doi.org/10.1038/s41598-018-37186-2
R. Hajian, S. Balderston, T. Tran, T. DeBoer, J. Etienne et al., Detection of unamplified target genes via CRISPR-Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019). https://doi.org/10.1038/s41551-019-0371-x
Z. Gao, H. Xia, J. Zauberman, M. Tomaiuolo, J. Ping et al., Detection of sub-fM DNA with target recycling and self-assembly amplification on graphene field-effect biosensors. Nano Lett. 18, 3509–3515 (2018). https://doi.org/10.1021/acs.nanolett.8b00572
M.T. Hwang, M. Heiranian, Y. Kim, S. You, J. Leem et al., Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 11, 1543 (2020). https://doi.org/10.1038/s41467-020-15330-9
X. Wang, Z. Hao, T.R. Olsen, W. Zhang, Q. Lin, Measurements of aptamer-protein binding kinetics using graphene field-effect transistors. Nanoscale 11, 12573–12581 (2019). https://doi.org/10.1039/c9nr02797a
C. Chan, J. Shi, Y. Fan, M. Yang, A microfluidic flow-through chip integrated with reduced graphene oxide transistor for influenza virus gene detection. Sens. Actuat. B Chem. 251, 927–933 (2017). https://doi.org/10.1016/j.snb.2017.05.147
N.I. Khan, M. Mousazadehkasin, S. Ghosh, J.G. Tsavalas, E. Song, An integrated microfluidic platform for selective and real-time detection of thrombin biomarkers using a graphene FET. Analyst 145, 4494–4503 (2020). https://doi.org/10.1039/d0an00251h
W. Shi, Y. Guo, Y. Liu, When flexible organic field-effect transistors meet biomimetics: a prospective view of the Internet of Things. Adv. Mater. 32, e1901493 (2020). https://doi.org/10.1002/adma.201901493
D.-M. Sun, C. Liu, W.-C. Ren, H.-M. Cheng, A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 9, 1188–1205 (2013). https://doi.org/10.1002/smll.201203154
B.K. Sharma, J.-H. Ahn, Graphene based field effect transistors: efforts made towards flexible electronics. Solid State Electron. 89, 177–188 (2013). https://doi.org/10.1016/j.sse.2013.08.007
J. Ning, Y. Wang, X. Feng, B. Wang, J. Dong et al., Flexible field-effect transistors with a high on/off current ratio based on large-area single-crystal graphene. Carbon 163, 417–424 (2020). https://doi.org/10.1016/j.carbon.2020.03.040
R. Furlan de Oliveira, P.A. Livio, V. Montes-García, S. Ippolito, M. Eredia et al., Liquid-gated transistors based on reduced graphene oxide for flexible and wearable electronics. Adv. Funct. Mater. 29, 1905375 (2019). https://doi.org/10.1002/adfm.201905375
B.J. Kim, H. Jang, S.-K. Lee, B.H. Hong, J.-H. Ahn et al., High-performance flexible graphene field effect transistors with ion gel gate dielectrics. Nano Lett. 10, 3464–3466 (2010). https://doi.org/10.1021/nl101559n
S.-K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C. Lee et al., Stretchable graphene transistors with printed dielectrics and gate electrodes. Nano Lett. 11, 4642–4646 (2011). https://doi.org/10.1021/nl202134z
L.-W. Tsai, N.-H. Tai, Enhancing the electrical properties of a flexible transparent graphene-based field-effect transistor using electropolished copper foil for graphene growth. ACS Appl. Mater. Interfaces 6, 10489–10496 (2014). https://doi.org/10.1021/am502020s
Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li et al., Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4, 3201–3208 (2010). https://doi.org/10.1021/nn100780v
B.J. Kim, S.-K. Lee, M.S. Kang, J.-H. Ahn, J.H. Cho, Coplanar-gate transparent graphene transistors and inverters on plastic. ACS Nano 6, 8646–8651 (2012). https://doi.org/10.1021/nn3020486
Q. Sun, W. Seung, B.J. Kim, S. Seo, S.W. Kim et al., Active matrix electronic skin strain sensor based on piezopotential-powered graphene transistors. Adv. Mater. 27, 3411–3417 (2015). https://doi.org/10.1002/adma.201500582
T.Q. Trung, S. Ramasundaram, B.U. Hwang, N.E. Lee, An all-elastomeric transparent and stretchable temperature sensor for body-attachable wearable electronics. Adv. Mater. 28, 502–509 (2016). https://doi.org/10.1002/adma.201504441
A. Paul, N. Yogeswaran, R. Dahiya, Ultra-flexible biodegradable pressure sensitive field effect transistors for hands-free control of robot movements. Adv. Intell. Syst. 4, 2200183 (2022). https://doi.org/10.1002/aisy.202200183
Z. Hao, Y. Luo, C. Huang, Z. Wang, G. Song et al., An intelligent graphene-based biosensing device for cytokine storm syndrome biomarkers detection in human biofluids. Small 17, e2101508 (2021). https://doi.org/10.1002/smll.202101508
J. Jang, J. Kim, H. Shin, Y.G. Park, B.J. Joo et al., Smart contact lens and transparent heat patch for remote monitoring and therapy of chronic ocular surface inflammation using mobiles. Sci. Adv. 7, eabf7194 (2021). https://doi.org/10.1126/sciadv.abf7194
B.M. Blaschke, N. Tort-Colet, A. Guimerà-Brunet, J. Weinert, L. Rousseau et al., Mapping brain activity with flexible graphene micro-transistors. 2D Mater. 4, 025040 (2017). https://doi.org/10.1088/2053-1583/aa5eff
M. Du, X. Xu, L. Yang, Y. Guo, S. Guan et al., Simultaneous surface and depth neural activity recording with graphene transistor-based dual-modality probes. Biosens. Bioelectron. 105, 109–115 (2018). https://doi.org/10.1016/j.bios.2018.01.027
A. Ganguli, V. Faramarzi, A. Mostafa, M.T. Hwang, S. You et al., High sensitivity graphene field effect transistor-based detection of DNA amplification. Adv. Funct. Mater. 30, 2001031 (2020). https://doi.org/10.1002/adfm.202001031
X. Dong, Y. Shi, W. Huang, P. Chen, L.-J. Li, Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 22, 1649–1653 (2010). https://doi.org/10.1002/adma.200903645
B. Cai, L. Huang, H. Zhang, Z. Sun, Z. Zhang et al., Gold nanops-decorated graphene field-effect transistor biosensor for femtomolar microRNA detection. Biosens. Bioelectron. 74, 329–334 (2015). https://doi.org/10.1016/j.bios.2015.06.068
P. Heremans, A.K. Tripathi, A. de Jamblinne, E.C. de Meux, B.H. Smits et al., Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 28, 4266–4282 (2016). https://doi.org/10.1002/adma.201504360
G. Ding, H. Chen, Z. Yu, N. Liu, M. Wang, Fabricating ultra-flexible photodetectors at the neutral mechanical plane by encapsulation. J. Mater. Chem. C 9, 4070–4076 (2021). https://doi.org/10.1039/D0TC05042C
K.S.V.I. NovoselovFal’ko, L. Colombo, P.R. Gellert, M.G. Schwab et al., A roadmap for graphene. Nature 490, 192–200 (2012). https://doi.org/10.1038/nature11458
S.B. Jo, J. Park, W.H. Lee, K. Cho, B.H. Hong, Large-area graphene synthesis and its application to interface-engineered field effect transistors. Solid State Commun. 152, 1350–1358 (2012). https://doi.org/10.1016/j.ssc.2012.04.056
M. Dankerl, M.V. Hauf, A. Lippert, L.H. Hess, S. Birner et al., Graphene solution-gated field-effect transistor array for sensing applications. Adv. Funct. Mater. 20, 3117–3124 (2010). https://doi.org/10.1002/adfm.201000724
J.-B. Wang, Z. Ren, Y. Hou, X.-L. Yan, P.-Z. Liu et al., A review of graphene synthesisatlow temperatures by CVD methods. New Carbon Mater. 35, 193–208 (2020). https://doi.org/10.1016/S1872-5805(20)60484-X
M. Saeed, Y. Alshammari, S.A. Majeed, E. Al-Nasrallah, Chemical vapour deposition of graphene-synthesis, characterisation, and applications: a review. Molecules 25, 3856 (2020). https://doi.org/10.3390/molecules25173856
M.H. Ani, M.A. Kamarudin, A.H. Ramlan, E. Ismail, M.S. Sirat et al., A critical review on the contributions of chemical and physical factors toward the nucleation and growth of large-area graphene. J. Mater. Sci. 53, 7095–7111 (2018). https://doi.org/10.1007/s10853-018-1994-0
X. Li, W. Cai, J. An, S. Kim, J. Nah et al., Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009). https://doi.org/10.1126/science.1171245
N. Petrone, I. Meric, J. Hone, K.L. Shepard, Graphene field-effect transistors with gigahertz-frequency power gain on flexible substrates. Nano Lett. 13, 121–125 (2013). https://doi.org/10.1021/nl303666m
S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 5, 574–578 (2010). https://doi.org/10.1038/nnano.2010.132
A. Brakat, H. Zhu, Nanocellulose-graphene hybrids: advanced functional materials as multifunctional sensing platform. Nano-Micro Lett. 13, 94 (2021). https://doi.org/10.1007/s40820-021-00627-1
F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo et al., Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012). https://doi.org/10.1016/S1369-7021(13)70014-2
V.H. Pham, T.V. Cuong, S.H. Hur, E.W. Shin, J.S. Kim et al., Fast and simple fabrication of a large transparent chemically-converted graphene film by spray-coating. Carbon 48, 1945–1951 (2010). https://doi.org/10.1016/j.carbon.2010.01.062
D.-Y. Kim, S. Sinha-Ray, J.-J. Park, J.-G. Lee, Y.-H. Cha et al., Self-healing reduced graphene oxide films by supersonic kinetic spraying. Adv. Funct. Mater. 24, 4986–4995 (2014). https://doi.org/10.1002/adfm.201400732
S. Wang, P.K. Ang, Z. Wang, A.L. Tang, J.T. Thong et al., High mobility, printable, and solution-processed graphene electronics. Nano Lett. 10, 92–98 (2010). https://doi.org/10.1021/nl9028736
Q. He, S. Wu, S. Gao, X. Cao, Z. Yin et al., Transparent, flexible, all-reduced graphene oxide thin film transistors. ACS Nano 5, 5038–5044 (2011). https://doi.org/10.1021/nn201118c
T.Q. Trung, N.T. Tien, D. Kim, M. Jang, O.J. Yoon et al., A flexible reduced graphene oxide field-effect transistor for ultrasensitive strain sensing. Adv. Funct. Mater. 24, 117–124 (2014). https://doi.org/10.1002/adfm.201301845
R. Stine, J.T. Robinson, P.E. Sheehan, C.R. Tamanaha, Real-time DNA detection using reduced graphene oxide field effect transistors. Adv. Mater. 22, 5297–5300 (2010). https://doi.org/10.1002/adma.201002121
S.-K. Lee, K. Rana, J.-H. Ahn, Graphene films for flexible organic and energy storage devices. J. Phys. Chem. Lett. 4, 831–841 (2013). https://doi.org/10.1021/jz400005k
D.A. Dikin, S. Stankovich, E.J. Zimney, R.D. Piner, G.H.B. Dommett et al., Preparation and characterization of graphene oxide paper. Nature 448, 457–460 (2007). https://doi.org/10.1038/nature06016
Z.-D. Huang, B. Zhang, R. Liang, Q.-B. Zheng, S.W. Oh et al., Effects of reduction process and carbon nanotube content on the supercapacitive performance of flexible graphene oxide papers. Carbon 50, 4239–4251 (2012). https://doi.org/10.1016/j.carbon.2012.05.006
X. Huang, C. Zhi, P. Jiang, D. Golberg, Y. Bando et al., Temperature-dependent electrical property transition of graphene oxide paper. Nanotechnology 23, 455705 (2012). https://doi.org/10.1088/0957-4484/23/45/455705
J.-I. Fujita, R. Ueki, T. Nishijima, Y. Miyazawa, Characteristics of graphene FET directly transformed from a resist pattern through interfacial graphitization of liquid Gallium. Microelectron. Eng. 88, 2524–2526 (2011). https://doi.org/10.1016/j.mee.2011.01.014
Y. Huang, S. Yin, Y. Huang, X. Zhang, W. Zhang et al., Graphene oxide/hexylamine superlattice field-effect biochemical sensors. Adv. Funct. Mater. 31, 2010563 (2021). https://doi.org/10.1002/adfm.202010563
R. Zhang, Y. Jia, A disposable printed liquid gate graphene field effect transistor for a salivary cortisol test. ACS Sens. 6, 3024–3031 (2021). https://doi.org/10.1021/acssensors.1c00949
M.A. Monne, P.M. Grubb, H. Stern, H. Subbaraman, R.T. Chen et al., Inkjet-printed graphene-based 1 × 2 phased array antenna. Micromachines 11, 863 (2020). https://doi.org/10.3390/mi11090863
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014). https://doi.org/10.1038/nmat3944
E.B. Secor, P.L. Prabhumirashi, K. Puntambekar, M.L. Geier, M.C. Hersam, Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 4, 1347–1351 (2013). https://doi.org/10.1021/jz400644c
L. Nayak, S. Mohanty, A. Ramadoss, A green approach to water-based graphene ink with reverse coffee ring effect. J. Mater. Sci. Mater. Electron. 32, 7431–7442 (2021). https://doi.org/10.1007/s10854-021-05456-x
F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
S.K. Ameri, P.K. Singh, A.J. D’Angelo, M.J. Panzer, S.R. Sonkusale, Flexible 3D graphene transistors with ionogel dielectric for low-voltage operation and high current carrying capacity. Adv. Electron. Mater. 2, 1500355 (2016). https://doi.org/10.1002/aelm.201500355
S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi et al., Extremely high-frequency flexible graphene thin-film transistors. IEEE Electron Device Lett. 37, 512–515 (2016). https://doi.org/10.1109/LED.2016.2535484
S Park, W. Zhu, H.-Y. Chang, M.N. Yogeesh, R. Ghosh et al., High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices. 2015 IEEE International Electron Devices Meeting (IEDM). December 7-9, 2015, Washington, DC, USA. IEEE, (2015). 32.1.1–32.1.4
D. Kireev, I. Zadorozhnyi, T. Qiu, D. Sarik, F. Brings et al., Graphene field effect transistors for in vitro and ex vivo recordings. IEEE Trans. Nanotechnol. (2016). https://doi.org/10.1109/tnano.2016.2639028
Z. Hao, C. Huang, C. Zhao, A. Kospan, Z. Wang et al., Ultrasensitive graphene-based nanobiosensor for rapid detection of hemoglobin in undiluted biofluids. ACS Appl. Bio Mater. 5, 1624–1632 (2022). https://doi.org/10.1021/acsabm.2c00031
N. Schaefer, R. Garcia-Cortadella, J. Martínez-Aguilar, G. Schwesig, X. Illa et al., Multiplexed neural sensor array of graphene solution-gated field-effect transistors. 2D Mater. 7, 025046 (2020). https://doi.org/10.1088/2053-1583/ab7976
S. Kanaparthi, S. Badhulika, Solvent-free fabrication of a biodegradable all-carbon paper based field effect transistor for human motion detection through strain sensing. Green Chem. 18, 3640–3646 (2016). https://doi.org/10.1039/C6GC00368K
X. You, J.J. Pak, Graphene-based field effect transistor enzymatic glucose biosensor using silk protein for enzyme immobilization and device substrate. Sens. Actuat. B Chem. 202, 1357–1365 (2014). https://doi.org/10.1016/j.snb.2014.04.079
X. You, J.J. Pak, Silk stabilized graphene FET enzymatic glucose biosensor. 2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII). June 16–20, 2013, Barcelona, Spain. IEEE, (2013)., 2443–2446.
C.A. Tseng, C.C. Chen, R.K. Ulaganathan, C.P. Lee, H.C. Chiang et al., One-step synthesis of antioxidative graphene-wrapped copper nanops on flexible substrates for electronic and electrocatalytic applications. ACS Appl. Mater. Interfaces 9, 25067–25072 (2017). https://doi.org/10.1021/acsami.7b06490
Z. Sun, Z. Liu, J. Li, G.-A. Tai, S.-P. Lau et al., Infrared photodetectors based on CVD-grown graphene and PbS quantum dots with ultrahigh responsivity. Adv. Mater. 24, 5878–5883 (2012). https://doi.org/10.1002/adma.201202220
C.H. Yeh, Y.W. Lain, Y.C. Chiu, C.H. Liao, D.R. Moyano et al., Gigahertz flexible graphene transistors for microwave integrated circuits. ACS Nano 8, 7663–7670 (2014). https://doi.org/10.1021/nn5036087
Q. Chen, T. Sun, X. Song, Q. Ran, C. Yu et al., Flexible electrochemical biosensors based on graphene nanowalls for the real-time measurement of lactate. Nanotechnology 28, 315501 (2017). https://doi.org/10.1088/1361-6528/aa78bc
G. Fisichella, S.L. Verso, S. Di Marco, V. Vinciguerra, E. Schilirò et al., Advances in the fabrication of graphene transistors on flexible substrates. Beilstein J. Nanotechnol. 8, 467–474 (2017). https://doi.org/10.3762/bjnano.8.50
J. Liu, G. Zong, L. He, Y. Zhang, C. Liu et al., Effects of fumed and mesoporous silica nanops on the properties of sylgard 184 polydimethylsiloxane. Micromachines 6, 855–864 (2015). https://doi.org/10.3390/mi6070855
Y. Su, C. Ma, J. Chen, H. Wu, W. Luo et al., Printable, highly sensitive flexible temperature sensors for human body temperature monitoring: a review. Nanoscale Res. Lett. 15, 200 (2020). https://doi.org/10.1186/s11671-020-03428-4
I. Klammer, M.C. Hofmann, A. Buchenauer, W. Mokwa, U. Schnakenberg, Long-term stability of PDMS-based microfluidic systems used for biocatalytic reactions. J. Micromech. Microeng. 16, 2425–2428 (2006). https://doi.org/10.1088/0960-1317/16/11/025
J.N. Lee, C. Park, G.M. Whitesides, Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices. Anal. Chem. 75, 6544–6554 (2003). https://doi.org/10.1021/ac0346712
J.-E. Lim, S.-M. Lee, S.-S. Kim, T.-W. Kim, H.-W. Koo et al., Brush-paintable and highly stretchable Ag nanowire and PEDOT: PSS hybrid electrodes. Sci. Rep. 7, 14685 (2017). https://doi.org/10.1038/s41598-017-14951-3
Y. Moser, M.A.M. Gijs, Miniaturized flexible temperature sensor. J. Microelectromech. Syst. 16, 1349–1354 (2007). https://doi.org/10.1109/JMEMS.2007.908437
B. Rubehn, T. Stieglitz, In vitro evaluation of the long-term stability of polyimide as a material for neural implants. Biomaterials 31, 3449–3458 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.053
D. Zhang, C. Jiang, J. Tong, X. Zong, W. Hu, Flexible strain sensor based on layer-by-layer self-assembled graphene/polymer nanocomposite membrane and its sensing properties. J. Electron. Mater. 47, 2263–2270 (2018). https://doi.org/10.1007/s11664-017-6052-1
H. Choi, J.S. Choi, J.S. Kim, J.H. Choe, K.H. Chung et al., Flexible and transparent gas molecule sensor integrated with sensing and heating graphene layers. Small 10, 3685–3691 (2014). https://doi.org/10.1002/smll.201400434
W.-K. Lee, K.E. Whitener Jr., J.T. Robinson, T.J. O’Shaughnessy, P.E. Sheehan, Transferring electronic devices with hydrogenated graphene. Adv. Mater. Interfaces 6, 1801974 (2019). https://doi.org/10.1002/admi.201801974
P. Sahatiya, S. Badhulika, Wireless, smart, human motion monitoring using solution processed fabrication of graphene–MoS2 transistors on paper. Adv. Electron. Mater. 4, 1700388 (2018). https://doi.org/10.1002/aelm.201700388
K.-A. Son, B. Yang, H.-C. Seo, D. Wong, J.S. Moon et al., High-speed graphene field effect transistors on microbial cellulose biomembrane. IEEE Trans. Nanotechnol. 16, 239–244 (2017). https://doi.org/10.1109/TNANO.2017.2658443
L. Lan, J. Ping, J. Xiong, Y. Ying, Sustainable natural bio-origin materials for future flexible devices. Adv. Sci. 9, e2200560 (2022). https://doi.org/10.1002/advs.202200560
T.Q. Trung, S. Ramasundaram, S.W. Hong, N.-E. Lee, Flexible and transparent nanocomposite of reduced graphene oxide and P(VDF-TrFE) copolymer for high thermal responsivity in a field-effect transistor. Adv. Funct. Mater. 24, 3438–3445 (2014). https://doi.org/10.1002/adfm.201304224
X. Yang, A. Vorobiev, J. Yang, K. Jeppson, J. Stake, A linear-array of 300-GHz antenna integrated GFET detectors on a flexible substrate. IEEE Trans. Terahertz Sci. Technol. 10, 554–557 (2020). https://doi.org/10.1109/TTHZ.2020.2997599
J.W. Shin, M.H. Kang, S. Oh, B.C. Yang, K. Seong et al., Atomic layer deposited high-k dielectric on graphene by functionalization through atmospheric plasma treatment. Nanotechnology 29, 195602 (2018). https://doi.org/10.1088/1361-6528/aab0fb
Y. Liang, X. Liang, Z. Zhang, W. Li, X. Huo et al., High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale 7, 10954–10962 (2015). https://doi.org/10.1039/C5NR02292D
H.-Y. Chang, S. Yang, J. Lee, L. Tao, W.-S. Hwang et al., High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7, 5446–5452 (2013). https://doi.org/10.1021/nn401429w
S.-H. Jen, J.A. Bertrand, S.M. George, Critical tensile and compressive strains for cracking of Al2O3 films grown by atomic layer deposition. J. Appl. Phys. 109, 084305 (2011). https://doi.org/10.1063/1.3567912
B. Wang, W. Huang, L. Chi, M. Al-Hashimi, T.J. Marks et al., High- k gate dielectrics for emerging flexible and stretchable electronics. Chem. Rev. 118, 5690–5754 (2018). https://doi.org/10.1021/acs.chemrev.8b00045
Q.-K. Feng, S.-L. Zhong, J.-Y. Pei, Y. Zhao, D.-L. Zhang et al., Recent progress and future prospects on all-organic polymer dielectrics for energy storage capacitors. Chem. Rev. 122, 3820–3878 (2022). https://doi.org/10.1021/acs.chemrev.1c00793
S. Wang, C. Yang, X. Li, H. Jia, S. Liu et al., Polymer-based dielectrics with high permittivity and low dielectric loss for flexible electronics. J. Mater. Chem. C 10, 6196–6221 (2022). https://doi.org/10.1039/D2TC00193D
A. Sanne, H.C.P. Movva, S. Kang, C. McClellan, C.M. Corbet et al., Poly(methyl methacrylate) as a self-assembled gate dielectric for graphene field-effect transistors. Appl. Phys. Lett. 104, 083106 (2014). https://doi.org/10.1063/1.4866338
S. Park, H.-Y. Chang, S. Rahimi, A.L. Lee, L. Tao et al., Transparent nanoscale polyimide gate dielectric for highly flexible electronics. Adv. Electron. Mater. 4, 1700043 (2018). https://doi.org/10.1002/aelm.201700043
I.-Y. Lee, H.-Y. Park, J.-H. Park, G. Yoo, M.-H. Lim et al., Poly-4-vinylphenol and poly(melamine-co-formaldehyde)-based graphene passivation method for flexible, wearable and transparent electronics. Nanoscale 6, 3830–3836 (2014). https://doi.org/10.1039/c3nr06517k
J.G. Oh, K. Pak, C.S. Kim, J.H. Bong, W.S. Hwang et al., A high-performance top-gated graphene field-effect transistor with excellent flexibility enabled by an iCVD copolymer gate dielectric. Small 14, 1703035 (2018). https://doi.org/10.1002/smll.201703035
F. Chen, J. Xia, D.K. Ferry, N. Tao, Dielectric screening enhanced performance in graphene FET. Nano Lett. 9, 2571–2574 (2009). https://doi.org/10.1021/nl900725u
P.A. Flores-Silva, C. Borja-Hernández, C. Magaña, D.R. Acosta, A.R. Botello-Méndez et al., Graphene field effect transistors using TiO2 as the dielectric layer. Phys. E Low Dimension. Syst. Nanostruct. 124, 114282 (2020). https://doi.org/10.1016/j.physe.2020.114282
I. Alam, S. Subudhi, S. Das, M. Mandal, S. Patra et al., Graphene-based field-effect transistor using gated highest-k ferroelectric thin film. Solid State Commun. 371, 115258 (2023). https://doi.org/10.1016/j.ssc.2023.115258
J. Wen, C. Yan, Z. Sun, 2D electronics: the application of a high-κ polymer dielectric in graphene transistors. Adv. Electron. Mater. 6, 2070031 (2020). https://doi.org/10.1002/aelm.202070031
C. Jang, S. Adam, J.H. Chen, E.D. Williams, S. Das Sarma et al., Tuning the effective fine structure constant in graphene: opposing effects of dielectric screening on short- and long-range potential scattering. Phys. Rev. Lett. 101, 146805 (2008). https://doi.org/10.1103/PhysRevLett.101.146805
V.Q. Dang, T.Q. Trung, L. Duy, B.Y. Kim, S. Siddiqui et al., High-performance flexible ultraviolet (UV) phototransistor using hybrid channel of vertical ZnO nanorods and graphene. ACS Appl. Mater. Interfaces 7, 11032–11040 (2015). https://doi.org/10.1021/acsami.5b02834
A. Dathbun, S. Kim, S. Lee, D.K. Hwang, J.H. Cho, Flexible and transparent graphene complementary logic gates. Mol. Syst. Des. Eng. 4, 484–490 (2019). https://doi.org/10.1039/c8me00100f
S. Kim, S.B. Jo, J. Kim, D. Rhee, Y.Y. Choi et al., Gate-deterministic remote doping enables highly retentive graphene-MXene hybrid memory devices on plastic. Adv. Funct. Mater. 32, 2111956 (2022). https://doi.org/10.1002/adfm.202111956
J. Cho, J. Lee, Y. He, B. Kim, T. Lodge et al., High-capacitance ion gel gate dielectrics with faster polarization response times for organic thin film transistors. Adv. Mater. 20, 686–690 (2008). https://doi.org/10.1002/adma.200701069
J.H. Cho, J. Lee, Y. Xia, B. Kim, Y. He et al., Printable ion-gel gate dielectrics for low-voltage polymer thin-film transistorsonplastic. Nat. Mater. 7, 900–906 (2008). https://doi.org/10.1038/nmat2291
Q. Sun, D.H. Kim, S.S. Park, N.Y. Lee, Y. Zhang et al., Transparent, low-power pressure sensor matrix based on coplanar-gate graphene transistors. Adv. Mater. 26, 4735–4740 (2014). https://doi.org/10.1002/adma.201400918
A. Das, S. Pisana, B. Chakraborty, S. Piscanec, S.K. Saha et al., Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 3, 210–215 (2008). https://doi.org/10.1038/nnano.2008.67
F. Chen, J. Xia, N. Tao, Ionic screening of charged-impurity scatt ering in graphene. Nano Lett. 9, 1621–1625 (2009). https://doi.org/10.1021/nl803922m
S. Mansouri Majd, A. Salimi, Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Anal. Chim. Acta 1000, 273–282 (2018). https://doi.org/10.1016/j.aca.2017.11.008
W. Fu, L. Jiang, E.P. van Geest, L.M.C. Lima, G.F. Schneider, Sensing at the surface of graphene field-effect transistors. Adv. Mater. 29, 1603610 (2017). https://doi.org/10.1002/adma.201603610
L.T. Duy, T.Q. Trung, V.Q. Dang, B.-U. Hwang, S. Siddiqui et al., Flexible transparent reduced graphene oxide sensor coupled with organic dye molecules for rapid dual-mode ammonia gas detection. Adv. Funct. Mater. 26, 4329–4338 (2016). https://doi.org/10.1002/adfm.201505477
U. Khan, T.-H. Kim, H. Ryu, W. Seung, S.-W. Kim, Graphene tribotronics for electronic skin and touch screen applications. Adv. Mater. 29, 1603544 (2017). https://doi.org/10.1002/adma.201603544
S. Huang, Y. Liu, Y. Zhao, Z. Ren, C.F. Guo, Flexible electronics: stretchable electrodes and their future. Adv. Funct. Mater. 29, 1805924 (2019). https://doi.org/10.1002/adfm.201805924
G. Hu, J. Wu, C. Ma, Z. Liang, W. Liu et al., Controlling the Dirac point voltage of graphene by mechanically bending the ferroelectric gate of a graphene field effect transistor. Mater. Horiz. 6, 302–310 (2019). https://doi.org/10.1039/c8mh01499j
E.B. Secor, A.B. Cook, C.E. Tabor, M.C. Hersam, Wiring up liquid metal: stable and robust electrical contacts enabled by printable graphene inks. Adv. Electron. Mater. 4, 1700483 (2018). https://doi.org/10.1002/aelm.201700483
F. Giubileo, A. Di, Bartolomeo the role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 92, 143–175 (2017). https://doi.org/10.1016/j.progsurf.2017.05.002
A. Tabatabai, A. Fassler, C. Usiak, C. Majidi, Liquid-phase gallium–indium alloy electronics with microcontact printing. Langmuir 29, 6194–6200 (2013). https://doi.org/10.1021/la401245d
Z. Zhou, Y. Yao, C. Zhang, Z. Deng, Q. Li et al., Liquid metal printed optoelectronics toward fast fabrication of customized and erasable patterned displays. Adv. Mater. Technol. 7, 2101010 (2022). https://doi.org/10.1002/admt.202101010
N. Ochirkhuyag, R. Matsuda, Z. Song, F. Nakamura, T. Endo et al., Liquid metal-based nanocomposite materials: fabrication technology and applications. Nanoscale 13, 2113–2135 (2021). https://doi.org/10.1039/d0nr07479a
R.K. Kramer, C. Majidi, R.J. Wood, Masked deposition of gallium-indium alloys for liquid-embedded elastomer conductors. Adv. Funct. Mater. 23, 5292–5296 (2013). https://doi.org/10.1002/adfm.201203589
J.L. Melcher, K.S. Elassy, R.C. Ordonez, C. Hayashi, A.T. Ohta et al., Spray-on liquid-metal electrodes for graphene field-effect transistors. Micromachines 10, 54 (2019). https://doi.org/10.3390/mi10010054
L.V. Kayser, D.J. Lipomi, Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 31, e1806133 (2019). https://doi.org/10.1002/adma.201806133
L. Manjakkal, A. Pullanchiyodan, N. Yogeswaran, E.S. Hosseini, R. Dahiya, A wearable supercapacitor based on conductive PEDOT: PSS-coated cloth and a sweat electrolyte. Adv. Mater. 32, e1907254 (2020). https://doi.org/10.1002/adma.201907254
W. Luo, Y. Ma, T. Li, H.K. Thabet, C. Hou et al., Overview of MXene/conducting polymer composites for supercapacitors. J. Energy Storage 52, 105008 (2022). https://doi.org/10.1016/j.est.2022.105008
K. Namsheer, C.S. Rout, Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv. 11, 5659–5697 (2021). https://doi.org/10.1039/d0ra07800j
S. Ramanavicius, A. Ramanavicius, Conducting polymers in the design of biosensors and biofuel cells. Polymers 13, 49 (2020). https://doi.org/10.3390/polym13010049
R. Ma, M. Zeng, Y. Li, T. Liu, Z. Luo et al., Rational anode engineering enables progresses for different types of organic solar cells. Adv. Energy Mater. 11, 2100492 (2021). https://doi.org/10.1002/aenm.202100492
B. Zhou, J. Song, B. Wang, Y. Feng, C. Liu et al., Robust double-layered ANF/MXene-PEDOT: PSS Janus films with excellent multi-source driven heating and electromagnetic interference shielding properties. Nano Res. 15, 9520–9530 (2022). https://doi.org/10.1007/s12274-022-4756-x
H. Du, M. Zhang, K. Liu, M. Parit, Z. Jiang et al., Conductive PEDOT: PSS/cellulose nanofibril paper electrodes for flexible supercapacitors with superior areal capacitance and cycling stability. Chem. Eng. J. 428, 131994 (2022). https://doi.org/10.1016/j.cej.2021.131994
S. Raman, R.S. Arunagirinathan, Silver nanowires in stretchable resistive strain sensors. Nanomaterials 12, 1932 (2022). https://doi.org/10.3390/nano12111932
W. Li, S. Yang, A. Shamim, Screen printing of silver nanowires: balancing conductivity with transparency while maintaining flexibility and stretchability. npj Flex. Electron. 3, 13 (2019). https://doi.org/10.1038/s41528-019-0057-1
K.E. Laliberte, P. Scott, N.I. Khan, M.S. Mahmud, E. Song, A wearable graphene transistor-based biosensor for monitoring IL-6 biomarker. Microelectron. Eng. 262, 111835 (2022). https://doi.org/10.1016/j.mee.2022.111835
C. Wu, S. Xu, W. Wang, Synthesis and applications of silver nanocomposites: a review. J. Phys. Conf. Ser. 1948, 012216 (2021). https://doi.org/10.1088/1742-6596/1948/1/012216
N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Graphene-stabilized copper nanops as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics. Nanotechnology 19, 445201 (2008). https://doi.org/10.1088/0957-4484/19/44/445201
S. De, T.M. Higgins, P.E. Lyons, E.M. Doherty, P.N. Nirmalraj et al., Silver nanowire networks as flexible, transparent, conducting films: extremely high DC to optical conductivity ratios. ACS Nano 3, 1767–1774 (2009). https://doi.org/10.1021/nn900348c
K. Liu, W. Liu, W. Li, Y. Duan, K. Zhou et al., Strong and highly conductive cellulose nanofibril/silver nanowires nanopaper for high performance electromagnetic interference shielding. Adv. Compos. Hybrid Mater. 5, 1078–1089 (2022). https://doi.org/10.1007/s42114-022-00425-2
P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong et al., Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 24, 3326–3332 (2012). https://doi.org/10.1002/adma.201200359
J. Liang, L. Li, X. Niu, Z. Yu, Q. Pei, Elastomeric polymer light-emitting devices and displays. Nat. Photonics 7, 817–824 (2013). https://doi.org/10.1038/nphoton.2013.242
S. Gao, X. Zhao, Q. Fu, T. Zhang, J. Zhu et al., Highly transmitted silver nanowires-SWCNTs conductive flexible film by nested density structure and aluminum-doped zinc oxide capping layer for flexible amorphous silicon solar cells. J. Mater. Sci. Technol. 126, 152–160 (2022). https://doi.org/10.1016/j.jmst.2022.03.012
R. Kawabata, T. Araki, M. Akiyama, T. Uemura, T. Wu et al., Stretchable printed circuit board integrated with Ag-nanowire-based electrodes and organic transistors toward imperceptible electrophysiological sensing. Flex. Print. Electron. 7, 044002 (2022). https://doi.org/10.1088/2058-8585/ac968c
L. Hu, H. Wu, Y. Cui, Metal nanogrids, nanowires, and nanofibers for transparent electrodes. MRS Bull. 36, 760–765 (2011). https://doi.org/10.1557/mrs.2011.234
L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley et al., Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 3, 4075–4084 (2011). https://doi.org/10.1021/am2009585
J.H. Park, G.T. Hwang, S. Kim, J. Seo, H.J. Park et al., Flash-induced self-limited plasmonic welding of silver nanowire network for transparent flexible energy harvester. Adv. Mater. 29, 1603473 (2017). https://doi.org/10.1002/adma.201603473
M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park et al., High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures. Nano Lett. 13, 2814–2821 (2013). https://doi.org/10.1021/nl401070p
I.N. Kholmanov, C.W. Magnuson, A.E. Aliev, H. Li, B. Zhang et al., Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett. 12, 5679–5683 (2012). https://doi.org/10.1021/nl302870x
C. Jeong, P. Nair, M. Khan, M. Lundstrom, M.A. Alam, Prospects for nanowire-doped polycrystalline graphene films for ultratransparent, highly conductive electrodes. Nano Lett. 11, 5020–5025 (2011). https://doi.org/10.1021/nl203041n
J. Kim, M.S. Lee, S. Jeon, M. Kim, S. Kim et al., Highly transparent and stretchable field-effect transistor sensors using graphene-nanowire hybrid nanostructures. Adv. Mater. 27, 3292–3297 (2015). https://doi.org/10.1002/adma.201500710
J. Sheng, Z. Han, G. Jia, S. Zhu, Y. Xu et al., Covalently bonded graphene sheets on carbon nanotubes: direct growth and outstanding properties. Adv. Funct. Mater. 33, 2306785 (2023). https://doi.org/10.1002/adfm.202306785
C. Zhang, S. Cheng, K. Si, N. Wang, Y. Wang et al., All-covalently-implanted FETs with ultrahigh solvent resistibility and exceptional electrical stability, and their applications for liver cancer biomarker detection. J. Mater. Chem. C 8, 7436–7446 (2020). https://doi.org/10.1039/D0TC01385D
X. Zhang, Y. Hu, H. Gu, P. Zhu, W. Jiang et al., A highly sensitive and cost-effective flexible pressure sensor with micropillar arrays fabricated by novel metal-assisted chemical etching for wearable electronics. Adv. Mater. Technol. 4, 1900367 (2019). https://doi.org/10.1002/admt.201900367
K. Kang, Y. Cho, K.J. Yu, Novel nano-materials and nano-fabrication techniques for flexible electronic systems. Micromachines 9, 263 (2018). https://doi.org/10.3390/mi9060263
Z. Gao, H. Kang, C.H. Naylor, F. Streller, P. Ducos et al., Scalable production of sensor arrays based on high-mobility hybrid graphene field effect transistors. ACS Appl. Mater. Interfaces 8, 27546–27552 (2016). https://doi.org/10.1021/acsami.6b09238
M. Banik, M. Oded, R. Shenhar, Coupling the chemistry and topography of block copolymer films patterned by soft lithography for nanop organization. Soft Matter 18, 5302–5311 (2022). https://doi.org/10.1039/D2SM00389A
J. Kajtez, S. Buchmann, S. Vasudevan, M. Birtele, S. Rocchetti et al., 3D-printed soft lithography for complex compartmentalized microfluidic neural devices. Adv. Sci. 8, e2101787 (2021). https://doi.org/10.1002/advs.202101787
X. Han, B. Su, B. Zhou, Y. Wu, J. Meng, Soft lithographic fabrication of free-standing ceramic microparts using moisture-sensitive PDMS molds. J. Micromech. Microeng. 29, 035002 (2019). https://doi.org/10.1088/1361-6439/aaf7de
M.W. Park, D.Y. Kim, U. An, J. Jang, J.H. Bae et al., Organizing reliable polymer electrode lines in flexible neural networks via coffee ring-free micromolding in capillaries. ACS Appl. Mater. Interfaces 14, 46819–46826 (2022). https://doi.org/10.1021/acsami.2c13780
J. Deng, L. Jiang, B. Si, H. Zhou, J. Dong et al., AFM-Based nanofabrication and quality inspection of three-dimensional nanotemplates for soft lithography. J. Manuf. Process. 66, 565–573 (2021). https://doi.org/10.1016/j.jmapro.2021.04.051
H. Li, H. Zhang, W. Luo, R. Yuan, Y. Zhao et al., Microcontact printing of gold nanop at three-phase interface as flexible substrate for SERS detection of microRNA. Anal. Chim. Acta 1229, 340380 (2022). https://doi.org/10.1016/j.aca.2022.340380
N. Bhattacharjee, A. Urrios, S. Kang, A. Folch, The upcoming 3D-printing revolution in microfluidics. Lab Chip 16, 1720–1742 (2016). https://doi.org/10.1039/c6lc00163g
S. Zhu, Y. Tang, C. Lin, X.Y. Liu, Y. Lin, Recent advances in patterning natural polymers: from nanofabrication techniques to applications. Small Meth. 5, 2001060 (2021). https://doi.org/10.1002/smtd.202001060
M.W. Jung, S. Myung, K.W. Kim, W. Song, Y.Y. Jo et al., Fabrication of graphene-based flexible devices utilizing a soft lithographic patterning method. Nanotechnology 25, 285302 (2014). https://doi.org/10.1088/0957-4484/25/28/285302
M.J. Lima, V.M. Correlo, R.L. Reis, Micro/nano replication and 3D assembling techniques for scaffold fabrication. Mater. Sci. Eng. C Mater. Biol. Appl. 42, 615–621 (2014). https://doi.org/10.1016/j.msec.2014.05.064
T. Hong Tham Phan, S.-J. Kim, Super-hydrophobic microfluidic channels fabricated via xurography-based polydimethylsiloxane (PDMS) micromolding. Chem. Eng. Sci. 258, 117768 (2022). https://doi.org/10.1016/j.ces.2022.117768
X. Sui, H. Pu, A. Maity, J. Chang, B. Jin et al., Field-effect transistor based on percolation network of reduced graphene oxide for real-time ppb-level detection of lead ions in water. ECS J. Solid State Sci. Technol. 9, 115012 (2020). https://doi.org/10.1149/2162-8777/abaaf4
T. Kim, H. Kim, S.W. Kwon, Y. Kim, W.K. Park et al., Large-scale graphene micropatterns via self-assembly-mediated process for flexible device application. Nano Lett. 12, 743–748 (2012). https://doi.org/10.1021/nl203691d
P. Xiao, J. Gu, J. Chen, J. Zhang, R. Xing et al., Micro-contact printing of graphene oxide nanosheets for fabricating patterned polymer brushes. Chem. Commun. 50, 7103–7106 (2014). https://doi.org/10.1039/C4CC01467G
D. Tian, Y. Song, L. Jiang, Patterning of controllable surface wettability for printing techniques. Chem. Soc. Rev. 42, 5184–5209 (2013). https://doi.org/10.1039/C3CS35501B
H. Ravanbakhsh, G. Bao, Z. Luo, L.G. Mongeau, Y.S. Zhang, Composite inks for extrusion printing of biological and biomedical constructs. ACS Biomater. Sci. Eng. 7, 4009–4026 (2021). https://doi.org/10.1021/acsbiomaterials.0c01158
S. Majee, W. Zhao, A. Sugunan, T. Gillgren, J.A. Larsson et al., Highly conductive films by rapid photonic annealing of inkjet printable starch–graphene ink. Adv. Mater. Interfaces 9, 2101884 (2022). https://doi.org/10.1002/admi.202101884
C. Buga, J.C. Viana, Optimization of print quality of inkjet printed PEDOT: PSS patterns. Flex. Print. Electron. 7, 045004 (2022). https://doi.org/10.1088/2058-8585/ac931e
P. Lin, X. Ji, L. Yin, J. Zhang, Inkjet-printed patterned quantum dots film for high-efficiency displays. IEEE Photonics J. 14, 8259606 (2022). https://doi.org/10.1109/JPHOT.2022.3221777
T. Kraus, Soft electronics by inkjet printing metal inks on porous substrates. Flex. Print. Electron. 7, 033001 (2022). https://doi.org/10.1088/2058-8585/ac8360
Z. Yin, Y. Huang, N. Bu, X. Wang, Y. Xiong, Inkjet printing for flexible electronics: materials, processes and equipments. Chin. Sci. Bull. 55, 3383–3407 (2010). https://doi.org/10.1007/s11434-010-3251-y
L. Xiang, Z. Wang, Z. Liu, S.E. Weigum, Q. Yu et al., Inkjet-printed flexible biosensor based on graphene field effect transistor. IEEE Sens. J. 16, 8359–8364 (2016). https://doi.org/10.1109/JSEN.2016.2608719
J.M. Hoey, A. Lutfurakhmanov, D.L. Schulz, I.S. Akhatov, A review on aerosol-based direct-write and its applications for microelectronics. J. Nanotechnol. 2012, 324380 (2012). https://doi.org/10.1155/2012/324380
T. Seifert, E. Sowade, F. Roscher, M. Wiemer, T. Gessner et al., Additive manufacturing technologies compared: morphology of deposits of silver ink using inkjet and aerosol jet printing. Ind. Eng. Chem. Res. 54, 769–779 (2015). https://doi.org/10.1021/ie503636c
D. Jahn, R. Eckstein, L.M. Schneider, N. Born, G. Hernandez-Sosa et al., Digital aerosol jet printing for the fabrication of terahertz metamaterials. Adv. Mater. Technol. 3, 1700236 (2018). https://doi.org/10.1002/admt.201700236
W. Yu, P.J. Cai, R. Liu, F.P. Shen, T. Zhang, A flexible ultrasensitive IgG-modified rGO-based FET biosensor fabricated by aerosol jet printing. Appl. Mech. Mater. 748, 157–161 (2015). https://doi.org/10.4028/www.scientific.net/amm.748.157
D. Wu, Q.-D. Chen, L.-G. Niu, J. Jiao, H. Xia et al., 100% fill-factor aspheric microlens arrays (AMLA) with sub-20-nm precision. IEEE Photonics Technol. Lett. 21, 1535–1537 (2009). https://doi.org/10.1109/LPT.2009.2029346
J.-J. Xu, W.-G. Yao, Z.-N. Tian, L. Wang, K.-M. Guan et al., High curvature concave–convex microlens. IEEE Photonics Technol. Lett. 27, 2465–2468 (2015). https://doi.org/10.1109/LPT.2015.2470195
D. Wu, J. Xu, L.-G. Niu, S.-Z. Wu, K. Midorikawa et al., In-channel integration of designable microoptical devices using flat scaffold-supported femtosecond-laser microfabrication for coupling-free optofluidic cell counting. Light. Sci. Appl. 4, e228 (2015). https://doi.org/10.1038/lsa.2015.1
X.-P. Zhan, J.-F. Ku, Y.-X. Xu, X.-L. Zhang, J. Zhao et al., Unidirectional lasing from a spiral-shaped microcavity of dye-doped polymers. IEEE Photonics Technol. Lett. 27, 311–314 (2015). https://doi.org/10.1109/LPT.2014.2370641
Y.-L. Sun, W.-F. Dong, L.-G. Niu, T. Jiang, D.-X. Liu et al., Protein-based soft micro-optics fabricated by femtosecond laser direct writing. Light. Sci. Appl. 3, e129 (2014). https://doi.org/10.1038/lsa.2014.10
A. Johansson, H.-C. Tsai, J. Aumanen, J. Koivistoinen, P. Myllyperkiö et al., Chemical composition of two-photon oxidized graphene. Carbon 115, 77–82 (2017). https://doi.org/10.1016/j.carbon.2016.12.091
Y. He, L. Zhu, Y. Liu, J.-N. Ma, D.-D. Han et al., Femtosecond laser direct writing of flexible all-reduced graphene oxide FET. IEEE Photonics Technol. Lett. 28, 1996–1999 (2016). https://doi.org/10.1109/LPT.2016.2574746
M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13, 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
A. Samouco, A.C. Marques, A. Pimentel, R. Martins, E. Fortunato, Laser-induced electrodes towards low-cost flexible UV ZnO sensors. Flex. Print. Electron. 3, 044002 (2018). https://doi.org/10.1088/2058-8585/aaed77
T.-R. Cui, Y.-C. Qiao, J.-W. Gao, C.-H. Wang, Y. Zhang et al., Ultrasensitive detection of COVID-19 causative virus (SARS-CoV-2) spike protein using laser induced graphene field-effect transistor. Molecules 26, 6947 (2021). https://doi.org/10.3390/molecules26226947
C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008). https://doi.org/10.1126/science.1157996
S.-M. Choi, S.-H. Jhi, Y.-W. Son, Controlling energy gap of bilayer graphene by strain. Nano Lett. 10, 3486–3489 (2010). https://doi.org/10.1021/nl101617x
G. Cocco, E. Cadelano, L. Colombo, Gap opening in graphene by shear strain. Phys. Rev. B 81, 241412 (2010). https://doi.org/10.1103/physrevb.81.241412
G. Gui, J. Li, J. Zhong, Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B 78, 075435 (2008). https://doi.org/10.1103/physrevb.78.075435
S. Quan, Y. Zhang, W. Chen, Strain effects in the electron orbital coupling and electric structure of graphene. Phys. Chem. Chem. Phys. 24, 23929–23935 (2022). https://doi.org/10.1039/d2cp02428d
Z. Ni, H. Bu, M. Zou, H. Yi, K. Bi et al., Anisotropic mechanical properties of graphene sheets from molecular dynamics. Phys. B Condens. Matter 405, 1301–1306 (2010). https://doi.org/10.1016/j.physb.2009.11.071
Z. Hao, Z. Wang, Y. Li, Y. Zhu, X. Wang et al., Measurement of cytokine biomarkers using an aptamer-based affinity graphene nanosensor on a flexible substrate toward wearable applications. Nanoscale 10, 21681–21688 (2018). https://doi.org/10.1039/c8nr04315a
Y. Yang, X. Yang, X. Zou, S. Wu, D. Wan et al., Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 27, 1604096 (2017). https://doi.org/10.1002/adfm.201604096
T.Q. Trung, N.T. Tien, D. Kim, J.H. Jung, O.J. Yoon et al., High thermal responsiveness of a reduced graphene oxide field-effect transistor. Adv. Mater. 24, 5254–5260 (2012). https://doi.org/10.1002/adma.201201724
A. Singh, S. Lee, H. Watanabe, H. Lee, Graphene-based ultrasensitive strain sensors. ACS Appl. Electron. Mater. 2, 523–528 (2020). https://doi.org/10.1021/acsaelm.9b00778
S.B. Kumar, J. Guo, Strain-induced conductance modulation in graphene grain boundary. Nano Lett. 12, 1362–1366 (2012). https://doi.org/10.1021/nl203968j
V. Hung Nguyen, T.X. Hoang, P. Dollfus, J.C. Charlier, Transport properties through graphene grain boundaries: strain effects versus lattice symmetry. Nanoscale 8, 11658–11673 (2016). https://doi.org/10.1039/c6nr01359g
I.Y. Sahalianov, T.M. Radchenko, V.A. Tatarenko, G. Cuniberti, Sensitivity to strains and defects for manipulating the conductivity of graphene. Europhys. Lett. 132, 48002 (2020). https://doi.org/10.1209/0295-5075/132/48002
X. Yang, W. Chen, Q. Fan, J. Chen, Y. Chen et al., Electronic skin for health monitoring systems: properties, functions, and applications. Adv. Mater. 36, e2402542 (2024). https://doi.org/10.1002/adma.202402542
Y. Chen, X. Wan, G. Li, J. Ye, J. Gao et al., Metal hydrogel-based integrated wearable biofuel cell for self-powered epidermal sweat biomarker monitoring. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202404329
A.J. Bandodkar, W.J. Jeang, R. Ghaffari, J.A. Rogers, Wearable sensors for biochemical sweat analysis. Annual Rev. Anal. Chem. 12, 1–22 (2019). https://doi.org/10.1146/annurev-anchem-061318-114910
Z. Li, Q. Zheng, Z.L. Wang, Z. Li, Nanogenerator-based self-powered sensors for wearable and implantable electronics. Research (Wash D C) 2020, 8710686 (2020). https://doi.org/10.34133/2020/8710686
N. Li, J. Peng, W.-J. Ong, T. Ma, Arramel et al., MXenes: an emerging platform for wearable electronics and looking beyond. Matter 4, 377–407 (2021). https://doi.org/10.1016/j.matt.2020.10.024
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
Y. Yang, H. Zhang, Z.H. Lin, Y.S. Zhou, Q. Jing et al., Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system. ACS Nano 7, 9213–9222 (2013). https://doi.org/10.1021/nn403838y
S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou et al., Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013). https://doi.org/10.1039/c3ee42571a
W. He, W. Liu, J. Chen, Z. Wang, Y. Liu et al., Boosting output performance of sliding mode triboelectric nanogenerator by charge space-accumulation effect. Nat. Commun. 11, 4277 (2020). https://doi.org/10.1038/s41467-020-18086-4
D.-S. Liu, H. Ryu, U. Khan, C. Wu, J.-H. Jung et al., Piezoionic-powered graphene strain sensor based on solid polymer electrolyte. Nano Energy 81, 105610 (2021). https://doi.org/10.1016/j.nanoen.2020.105610
J.B. Park, M.S. Song, R. Ghosh, R.K. Saroj, Y. Hwang et al., Highly sensitive and flexible pressure sensors using position- and dimension-controlled ZnO nanotube arrays grown on graphene films. NPG Asia Mater. 13, 57 (2021). https://doi.org/10.1038/s41427-021-00324-w
T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016). https://doi.org/10.1002/adma.201504244
S. Mondal, B.K. Min, Y. Yi, V.-T. Nguyen, C.-G. Choi, Gamma-ray tolerant flexible pressure–temperature sensor for nuclear radiation environment. Adv. Mater. Technol. 6, 2001039 (2021). https://doi.org/10.1002/admt.202001039
J. Min, J. Tu, C. Xu, H. Lukas, S. Shin et al., Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023). https://doi.org/10.1021/acs.chemrev.2c00823
M. Bariya, H.Y.Y. Nyein, A. Javey, Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018). https://doi.org/10.1038/s41928-018-0043-y
Y. Liu, L. Zhong, S. Zhang, J. Wang, Z. Liu, An ultrasensitive and wearable photoelectrochemical sensor for unbiased and accurate monitoring of sweat glucose. Sens. Actuat. B Chem. 354, 131204 (2022). https://doi.org/10.1016/j.snb.2021.131204
L. Qiao, M.R. Benzigar, J.A. Subramony, N.H. Lovell, G. Liu, Advances in sweat wearables: sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interfaces 12, 34337–34361 (2020). https://doi.org/10.1021/acsami.0c07614
M. Elsherif, M.U. Hassan, A.K. Yetisen, H. Butt, Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018). https://doi.org/10.1021/acsnano.8b00829
Y. Chen, S. Lu, S. Zhang, Y. Li, Z. Qu et al., Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring. Sci. Adv. 3, e1701629 (2017). https://doi.org/10.1126/sciadv.1701629
J. Heikenfeld, A. Jajack, B. Feldman, S.W. Granger, S. Gaitonde et al., Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019). https://doi.org/10.1038/s41587-019-0040-3
A. Roy, S. Zenker, S. Jain, R. Afshari, Y. Oz et al., A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024). https://doi.org/10.1002/adma.202404225
S. Murphy, M. Zweyer, R.R. Mundegar, D. Swandulla, K. Ohlendieck, Proteomic serum biomarkers for neuromuscular diseases. Expert Rev. Proteom. 15, 277–291 (2018). https://doi.org/10.1080/14789450.2018.1429923
L. Wang, J.A. Jackman, W.B. Ng, N.-J. Cho, Flexible, graphene-coated biocomposite for highly sensitive, real-time molecular detection. Adv. Funct. Mater. 26, 8623–8630 (2016). https://doi.org/10.1002/adfm.201603550
O.S. Kwon, S.J. Park, J.Y. Hong, A.R. Han, J.S. Lee et al., Flexible FET-type VEGF aptasensor based on nitrogen-doped graphene converted from conducting polymer. ACS Nano 6, 1486–1493 (2012). https://doi.org/10.1021/nn204395n
S. Farid, X. Meshik, M. Choi, S. Mukherjee, Y. Lan et al., Detection of Interferon gamma using graphene and aptamer based FET-like electrochemical biosensor. Biosens. Bioelectron. 71, 294–299 (2015). https://doi.org/10.1016/j.bios.2015.04.047
Z. Wang, Z. Hao, S. Yu, C.G. De Moraes, L.H. Suh et al., An ultraflexible and stretchable aptameric graphene nanosensor for biomarker detection and monitoring. Adv. Funct. Mater. 29, 1905202 (2019). https://doi.org/10.1002/adfm.201905202
Z. Wang, Z. Hao, X. Wang, C. Huang, Q. Lin et al., A flexible and regenerative aptameric graphene–nafion biosensor for cytokine storm biomarker monitoring in undiluted biofluids toward wearable applications. Adv. Funct. Mater. 31, 2005958 (2021). https://doi.org/10.1002/adfm.202005958
J. Bai, D. Liu, X. Tian, Y. Wang, B. Cui et al., Coin-sized, fully integrated, and minimally invasive continuous glucose monitoring system based on organic electrochemical transistors. Sci. Adv. 10, eadl1856 (2024). https://doi.org/10.1126/sciadv.adl1856
M. Sang, M. Cho, S. Lim, I.S. Min, Y. Han et al., Fluorescent-based biodegradable microneedle sensor array for tether-free continuous glucose monitoring with smartphone application. Sci. Adv. 9, eadl1765 (2023). https://doi.org/10.1126/sciadv.adh1765
Y.H. Kwak, D.S. Choi, Y.N. Kim, H. Kim, D.H. Yoon et al., Flexible glucose sensor using CVD-grown graphene-based field effect transistor. Biosens. Bioelectron. 37, 82–87 (2012). https://doi.org/10.1016/j.bios.2012.04.042
C. Huang, Z. Hao, T. Qi, Y. Pan, X. Zhao, An integrated flexible and reusable graphene field effect transistor nanosensor for monitoring glucose. J. Materiomics 6, 308–314 (2020). https://doi.org/10.1016/j.jmat.2020.02.002
Y. Zhi, J. Jian, Y. Qiao, Y. Tian, Y. Yang et al., An ultrathin flexible affinity-based graphene field-effect transistor for glucose monitoring. 2020 21st International Conference on Electronic Packaging Technology (ICEPT). August 12–15, 2020, Guangzhou, China. IEEE, (2020), pp. 1–6.
H.C. Lee, E.Y. Hsieh, K. Yong, S. Nam, Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 13, 1406–1412 (2020). https://doi.org/10.1007/s12274-020-2662-7
N. Gao, R. Zhou, B. Tu, T. Tao, Y. Song et al., Graphene electrochemical transistor incorporated with gel electrolyte for wearable and non-invasive glucose monitoring. Anal. Chim. Acta 1239, 340719 (2023). https://doi.org/10.1016/j.aca.2022.340719
S.A. Hashemi, S.M. Mousavi, S. Bahrani, N. Omidifar, M. Arjmand et al., Decorated graphene oxide flakes with integrated complex of 8-hydroxyquinoline/NiO toward accurate detection of glucose at physiological conditions. J. Electroanal. Chem. 893, 115303 (2021). https://doi.org/10.1016/j.jelechem.2021.115303
J. Yi, X. Han, F. Gao, L. Cai, Y. Chen et al., A novel metal-organic framework of Ba-hemin with enhanced cascade activity for sensitive glucose detection. RSC Adv. 12, 20544–20549 (2022). https://doi.org/10.1039/d2ra02778j
C. Zhang, C. Wei, D. Chen, Z. Xu, X. Huang, Construction of inorganic-organic cascade enzymes biosensor based on gradient polysulfone hollow fiber membrane for glucose detection. Sens. Actuat. B Chem. 385, 133630 (2023). https://doi.org/10.1016/j.snb.2023.133630
R. Bi, X. Ma, K. Miao, P. Ma, Q. Wang, Enzymatic biosensor based on dendritic gold nanostructure and enzyme precipitation coating for glucose sensing and detection. Enzyme Microb. Technol. 162, 110132 (2023). https://doi.org/10.1016/j.enzmictec.2022.110132
J. Gao, Y. Gao, Y. Han, J. Pang, C. Wang et al., Ultrasensitive label-free MiRNA sensing based on a flexible graphene field-effect transistor without functionalization. ACS Appl. Electron. Mater. 2, 1090–1098 (2020). https://doi.org/10.1021/acsaelm.0c00095
M. Ku, J. Kim, J.E. Won, W. Kang, Y.G. Park et al., Smart, soft contact lens for wireless immunosensing of cortisol. Sci. Adv. 6, eabb2891 (2020). https://doi.org/10.1126/sciadv.abb2891
C. Huang, Z. Hao, Z. Wang, H. Wang, X. Zhao et al., An ultraflexible and transparent graphene-based wearable sensor for biofluid biomarkers detection. Adv. Mater. Technol. 7, 2101131 (2022). https://doi.org/10.100