Advances in Graphene-Based Electrode for Triboelectric Nanogenerator
Corresponding Author: Yun Chen
Nano-Micro Letters,
Vol. 17 (2025), Article Number: 17
Abstract
With the continuous development of wearable electronics, wireless sensor networks and other micro-electronic devices, there is an increasingly urgent need for miniature, flexible and efficient nanopower generation technology. Triboelectric nanogenerator (TENG) technology can convert small mechanical energy into electricity, which is expected to address this problem. As the core component of TENG, the choice of electrode materials significantly affects its performance. Traditional metal electrode materials often suffer from problems such as durability, which limits the further application of TENG. Graphene, as a novel electrode material, shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties. This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes. Various precision processing methods of graphene electrodes are introduced, and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed. In addition, the future development of graphene electrode-based TENGs is also prospectively discussed, aiming to promote the continuous advancement of graphene electrode-based TENGs.
Highlights:
1 Comprehensively reviewed the progress in research on graphene electrode-based triboelectric nanogenerators (TENGs) from two dimensions, including precision processing methods of graphene electrodes and applications of TENGs.
2 Discussed the various applications of graphene electrode-based TENGs in different scenarios, as well as the ways in which graphene electrodes enhance the performance of TENGs.
3 Offered a prospective discussion on the future development of graphene electrode-based TENGs, with the aim of promoting continuous advancements in this field.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628, 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
- X. Cui, J. Nie, Y. Zhang, Recent advances in high charge density triboelectric nanogenerators. Int. J. Extrem. Manuf. (2024). https://doi.org/10.1088/2631-7990/ad39ba
- P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16, 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
- X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15, 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
- J. Zhang, C. Boyer, Y.X. Zhang, Enhancing the humidity resistance of triboelectric nanogenerators: a review. Small (2024). https://doi.org/10.1002/smll.202401846
- C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15, 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
- S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14, 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
- Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong et al., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7, 9461–9468 (2013). https://doi.org/10.1021/nn4043157
- L. He, C. Zhang, B. Zhang, O. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16, 6244–6254 (2022). https://doi.org/10.1021/acsnano.1c11658
- Y. Wang, H. Guo, J. Liao, Y. Qin, A. Ali et al., Solid-Liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy. Chem. Eng. J. 476, 146571 (2023). https://doi.org/10.1016/j.cej.2023.146571
- S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai et al., Fluid oscillation-driven bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 14, 2304184 (2024). https://doi.org/10.1002/aenm.202304184
- D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14, 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
- W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
- Y. Chen, B. Xie, J. Long, Y. Kuang, X. Chen et al., Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator. Adv. Mater. 33, e2104290 (2021). https://doi.org/10.1002/adma.202104290
- Y. Chen, Y. Kuang, D. Shi, M. Hou, X. Chen et al., A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist. Nano Energy 73, 104765 (2020). https://doi.org/10.1016/j.nanoen.2020.104765
- S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818–2824 (2014). https://doi.org/10.1002/adma.201305303
- T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang et al., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015). https://doi.org/10.1016/j.nanoen.2015.01.038
- F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
- R. Cao, Y. Liu, H. Li, Z. Shen, F. Li et al., Advances in high-temperature operatable triboelectric nanogenerator. SusMat 4, e196 (2024). https://doi.org/10.1002/sus2.223
- J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16, 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
- F.F. Hatta, M.A.S. Mohammad Haniff, M.A. Mohamed, A review on applications of graphene in triboelectric nanogenerators. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7245
- G. Khandelwal, N.P. Maria Joseph Raj, S.J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202101170
- L. Wang, M. Wu, H. Chen, W. Hang, X. Wang et al., Damage evolution and plastic deformation mechanism of passivation layer during shear rheological polishing of polycrystalline tungsten. J. Mater. Res. Technol. 28, 1584–1596 (2024). https://doi.org/10.1016/j.jmrt.2023.12.122
- H. Chen, L. Wang, F. Peng, Q. Xu, Y. Xiong et al., Hydrogen retention and affecting factors in rolled tungsten: thermal desorption spectra and molecular dynamics simulations. Int. J. Hydrog. Energy 48, 30522–30531 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.151
- S. Kim, M.K. Gupta, K.Y. Lee, A. Sohn, T.Y. Kim et al., Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 26, 3918–3925 (2014). https://doi.org/10.1002/adma.201400172
- B. Kumar, K.Y. Lee, H.K. Park, S.J. Chae, Y.H. Lee et al., Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5, 4197–4204 (2011). https://doi.org/10.1021/nn200942s
- J.-H. Lee, K.Y. Lee, B. Kumar, N.T. Tien, N.-E. Lee et al., Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci. 6, 169–175 (2013). https://doi.org/10.1039/c2ee23530g
- L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N-doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14, 30 (2021). https://doi.org/10.1007/s40820-021-00779-0
- J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen et al., Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008). https://doi.org/10.1063/1.2924771
- Y. Chen, Y. Guo, B. Xie, F. Jin, L. Ma et al., Lightweight and drift-free magnetically actuated millirobots via asymmetric laser-induced graphene. Nat. Commun. 15, 4334 (2024). https://doi.org/10.1038/s41467-024-48751-x
- H. Liu, Y. Zheng, K.-S. Moon, Y. Chen, D. Shi et al., Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy 94, 106902 (2022). https://doi.org/10.1016/j.nanoen.2021.106902
- T. Lin, X. Ren, X. Wen, A. Karton, V. Quintano et al., Membrane based in situ reduction of graphene oxide for electrochemical supercapacitor application. Carbon 224, 119053 (2024). https://doi.org/10.1016/j.carbon.2024.119053
- B. Xie, Y. Guo, Y. Chen, X. Luo, H. Zhang et al., Dual-indicators machine learning assisted processing high-quality laser-induced fluorine-doped graphene and its application on droplet velocity monitoring sensor. Carbon 226, 119231 (2024). https://doi.org/10.1016/j.carbon.2024.119231
- M. Hou, G. Wen, J. Chen, B. Xie, L. Yan et al., Laser induced graphene based high-accurate temperature sensor with thermal meta-shell encirclement. Int. J. Heat Mass Transf. 217, 124719 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124719
- Y. Li, J. Long, Y. Chen, Y. Huang, N. Zhao, Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing. Adv. Mater. 34, e2200517 (2022). https://doi.org/10.1002/adma.202200517
- Z. Wang, R.W. Scharstein, Electrostatics of graphene: charge distribution and capacitance. Chem. Phys. Lett. 489, 229–236 (2010). https://doi.org/10.1016/j.cplett.2010.02.063
- C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q
- B.N. Chandrashekar, B. Deng, A.S. Smitha, Y. Chen, C. Tan et al., Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27, 5210–5216 (2015). https://doi.org/10.1002/adma.201502560
- H. Chu, H. Jang, Y. Lee, Y. Chae, J.H. Ahn Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy (2016). https://doi.org/10.1016/j.nanoen.2016.07.009
- D. Zhang, Z. Xu, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 67, 104251 (2020). https://doi.org/10.1016/j.nanoen.2019.104251
- E. Keel, A. Ejaz, M. McKinlay, M.P. Garcia, M. Caffio et al., Three-dimensional graphene foam based triboelectric nanogenerators for energy systems and autonomous sensors. Nano Energy 112, 108475 (2023). https://doi.org/10.1016/j.nanoen.2023.108475
- Y. Wang, X. Lin, G. Gao, J. Yu, Y. Wei et al., Tribotronic vertical field-effect transistor based on van der Waals heterostructures. Adv. Funct. Mater. 34, 2313210 (2024). https://doi.org/10.1002/adfm.202313210
- A. Srivastava, S. Badatya, A.K. Chaturvedi, D.K. Kashyap, A.K. Srivastava et al., Paddy-straw-derived graphene quantum dots reinforced vertical aligned zinc oxide nanosheet-based flexible triboelectric nanogenerator for self-powered UV sensors and tribotronics application. ACS Appl. Mater. Interfaces 15, 24724–24735 (2023). https://doi.org/10.1021/acsami.3c02036
- L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80, 105599 (2021). https://doi.org/10.1016/j.nanoen.2020.105599
- D.W. Shin, M.D. Barnes, K. Walsh, D. Dimov, P. Tian et al., A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Adv. Mater. 30, e1802953 (2018). https://doi.org/10.1002/adma.201802953
- V. Harnchana, H.V. Ngoc, W. He, A. Rasheed, H. Park et al., Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl. Mater. Interfaces 10, 25263–25272 (2018). https://doi.org/10.1021/acsami.8b02495
- S.A. Han, W. Seung, J.H. Kim, S.-W. Kim, Ultrathin noncontact-mode triboelectric nanogenerator triggered by giant dielectric material adaption. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.0c02434
- Q. Zhang, Q. Liang, Q. Liao, M. Ma, F. Gao et al., An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv. Funct. Mater. 28, 1803117 (2018). https://doi.org/10.1002/adfm.201803117
- K. Shrestha, S. Sharma, G.B. Pradhan, T. Bhatta, P. Maharjan et al., A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Adv. Funct. Mater. 32, 2113005 (2022). https://doi.org/10.1002/adfm.202113005
- K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng et al., Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70, 104546 (2020). https://doi.org/10.1016/j.nanoen.2020.104546
- C.-R. Yang, C.-T. Ko, S.-F. Chang, M.-J. Huang, Study on fabric-based triboelectric nanogenerator using graphene oxide/porous PDMS as a compound friction layer. Nano Energy 92, 106791 (2022). https://doi.org/10.1016/j.nanoen.2021.106791
- W. Liu, X. Wang, Y. Song, R. Cao, L. Wang et al., Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73, 104843 (2020). https://doi.org/10.1016/j.nanoen.2020.104843
- Y. Wang, J. Chen, L. Gong, J. Tang, X. Wang et al., P-doped W2C nanops for hydrogen evolution reaction powered by a wind-driven triboelectric nanogenerator. Nano Energy 121, 109242 (2024). https://doi.org/10.1016/j.nanoen.2023.109242
- N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi et al., Top-down synthesis of graphene: a comprehensive review. FlatChem (2021). https://doi.org/10.1016/j.flatc.2021.100224
- K. Edward, K. Mamun, S. Narayan, M. Assaf, D. Rohindra et al., State-of-the-art graphene synthesis methods and environmental concerns. Appl. Environ. Soil Sci. 2023, 8475504 (2023). https://doi.org/10.1155/2023/8475504
- P. Tian, L. Tang, K.-S. Teng, S.-P. Lau, Graphene quantum dots: preparations, properties, functionalizations and applications. Mater. Futures 3, 022301 (2024). https://doi.org/10.1088/2752-5724/ad08cb
- Z. Li, Z. Cheng, Y. Wang, Z. Zhang, J. Wu, Single-layer graphene based resistive humidity sensor enhanced by graphene quantum dots. Nanotechnology 35, 185503 (2024). https://doi.org/10.1088/1361-6528/ad22ad
- Z. Xu, C. Wu, F. Li, W. Chen, T. Guo et al., Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy 49, 274–282 (2018). https://doi.org/10.1016/j.nanoen.2018.04.059
- F.F. Hatta, M.A.S. Mohammad Haniff, M. Ambri Mohamed, Enhanced-performance triboelectric nanogenerator based on polydimethylsiloxane/barium titanate/graphene quantum dot nanocomposites for energy harvesting. ACS Omega (2024). https://doi.org/10.1021/acsomega.3c07952
- X. Yang, P. Li, B. Wu, H. Li, G. Zhou, A flexible piezoelectric-triboelectric hybrid nanogenerator in one structure with dual doping enhancement effects. Curr. Appl. Phys. 32, 50–58 (2021). https://doi.org/10.1016/j.cap.2021.09.003
- G.-J. Choi, S.-H. Baek, S.-S. Lee, F. Khan, J.H. Kim et al., Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers. J. Alloys Compd. 797, 945–951 (2019). https://doi.org/10.1016/j.jallcom.2019.05.202
- K. Yee, M.H. Ghayesh, A review on the mechanics of graphene nanoplatelets reinforced structures. Int. J. Eng. Sci. 186, 103831 (2023). https://doi.org/10.1016/j.ijengsci.2023.103831
- F. Wang, L.T. Drzal, Y. Qin, Z. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 50, 1082–1093 (2015). https://doi.org/10.1007/s10853-014-8665-6
- I. Shabbir, D.-M. Lee, D.C. Choo, Y.H. Lee, K.K. Park et al., A graphene nanoplatelets-based high-performance, durable triboelectric nanogenerator for harvesting the energy of human motion. Energy Rep. 8, 1026–1033 (2022). https://doi.org/10.1016/j.egyr.2021.12.020
- Y. Dai, X. Zhong, T. Xu, Y. Li, Y. Xiong et al., High-performance triboelectric nanogenerator based on electrospun polyvinylidene fluoride-graphene oxide nanosheet composite nanofibers. Energy Technol. 11, 2300426 (2023). https://doi.org/10.1002/ente.202300426
- Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang et al., A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017). https://doi.org/10.1002/adma.201700017
- I. Domingos, A.I.S. Neves, M.F. Craciun, H. Alves, Graphene based triboelectric nanogenerators using water based solution process. Front. Phys. 9, 742563 (2021). https://doi.org/10.3389/fphy.2021.742563
- R. Ruoff, Calling all chemists. Nat. Nanotechnol. 3, 10–11 (2008). https://doi.org/10.1038/nnano.2007.432
- N. Kaur, J. Bahadur, V. Panwar, P. Singh, K. Rathi et al., Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci. Rep. 6, 38835 (2016). https://doi.org/10.1038/srep38835
- H. Guo, T. Li, X. Cao, J. Xiong, Y. Jie et al., Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11, 856–864 (2017). https://doi.org/10.1021/acsnano.6b07389
- C. Wu, T.W. Kim, H.Y. Choi, Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 32, 542–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.035
- M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
- X. Yang, M. Yan, Removing contaminants from transferred CVD graphene. Nano Res. 13, 599–610 (2020). https://doi.org/10.1007/s12274-020-2671-6
- S.A. Shankaregowda, C.B. Nanjegowda, X. Cheng, M. Shi, Z. Liu et al., A flexible and transparent graphene based triboelectric nanogenerator. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). July 27–30, 2015, Rome, Italy. IEEE, 1477–1480 2015
- J. Yang, P. Liu, X. Wei, W. Luo, J. Yang et al., Surface engineering of graphene composite transparent electrodes for high-performance flexible triboelectric nanogenerators and self-powered sensors. ACS Appl. Mater. Interfaces 9, 36017–36025 (2017). https://doi.org/10.1021/acsami.7b10373
- Y. Chen, J. Long, S. Zhou, D. Shi, Y. Huang et al., UV laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Meth. 3, 1900208 (2019). https://doi.org/10.1002/smtd.201900208
- Y. Chen, J. Long, B. Xie, Y. Kuang, X. Chen et al., One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing. ACS Appl. Mater. Interfaces 14, 4647–4655 (2022). https://doi.org/10.1021/acsami.1c18559
- L. Huang, J. Su, Y. Song, R. Ye, Laser-induced graphene: en route to smart sensing. Nano-Micro Lett. 12, 157 (2020). https://doi.org/10.1007/s40820-020-00496-0
- H. Wang, Z. Zhao, P. Liu, X. Guo, Laser-induced graphene based flexible electronic devices. Biosensors 12, 55 (2022). https://doi.org/10.3390/bios12020055
- M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13, 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
- C. Jiang, X. Li, Y. Yao, L. Lan, Y. Shao et al., A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode. Nano Energy 66, 104121 (2019). https://doi.org/10.1016/j.nanoen.2019.104121
- S. Xia, Y. Long, Z. Huang, Y. Zi, L. Tao et al., Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system. Nano Energy 96, 107099 (2022). https://doi.org/10.1016/j.nanoen.2022.107099
- W. Guo, Y. Xia, Y. Zhu, S. Han, Q. Li et al., Laser-induced graphene based triboelectric nanogenerator for accurate wireless control and tactile pattern recognition. Nano Energy 108, 108229 (2023). https://doi.org/10.1016/j.nanoen.2023.108229
- K. Shrestha, G.B. Pradhan, M. Asaduzzaman, M.S. Reza, T. Bhatta et al., A breathable, reliable, and flexible siloxene incorporated porous SEBS-based triboelectric nanogenerator for human–machine interactions. Adv. Energy Mater. 14, 2470025 (2024). https://doi.org/10.1002/aenm.202470025
- S.S.K. Mallineni, Y. Dong, H. Behlow, A.M. Rao, R. Podila, A wireless triboelectric nanogenerator. Adv. Energy Mater. 8, 1702736 (2018). https://doi.org/10.1002/aenm.201702736
- X. Li, C. Jiang, F. Zhao, Y. Shao, Y. Ying et al., A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy 73, 104738 (2020). https://doi.org/10.1016/j.nanoen.2020.104738
- Y. Li, J. Yu, Y. Wei, Y. Wang, Z. Feng et al., Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 23, 1329 (2023). https://doi.org/10.3390/s23031329
- L. Kong, W. Li, T. Zhang, H. Ma, Y. Cao et al., Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, e2400333 (2024). https://doi.org/10.1002/adma.202400333
- B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
- J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. (2022). https://doi.org/10.1007/s40820-022-00831-7
- Z. Zhao, Z. Quan, H. Tang, Q. Xu, H. Zhao et al., A broad range triboelectric stiffness sensor for variable inclusions recognition. Nano-Micro Lett. 15, 233 (2023). https://doi.org/10.1007/s40820-023-01201-7
- Z. Yan, L. Wang, Y. Xia, R. Qiu, W. Liu et al., Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 31, 2100709 (2021). https://doi.org/10.1002/adfm.202100709
- H. Luo, Y. Lu, Y. Xu, G. Yang, S. Cui et al., A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 103, 107803 (2022). https://doi.org/10.1016/j.nanoen.2022.107803
- K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10, 12092–12103 (2022). https://doi.org/10.1039/D2TA01503J
- X. Dai, Y. Long, B. Jiang, W. Guo, W. Sha et al., Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 15, 5461–5468 (2022). https://doi.org/10.1007/s12274-022-4153-5
- S. Mudhulu, M. Channegowda, S. Balaji, A. Khosla, P. Sekhar, Trends in graphene-based e-skin and artificial intelligence for biomedical applications—a review. IEEE Sens. J. 23, 18963–18976 (2023). https://doi.org/10.1109/JSEN.2023.3294297
- H. Sun, X. Gao, L.-Y. Guo, L.-Q. Tao, Z.H. Guo et al., Graphene-based dual-function acoustic transducers for machine learning-assisted human–robot interfaces. InfoMat 5, e12385 (2023). https://doi.org/10.1002/inf2.12385
- L. Wang, H. Xu, F. Huang, X. Tao, Y. Ouyang et al., High-output Lotus-leaf-bionic triboelectric nanogenerators based on 2D MXene for health monitoring of human feet. Nanomaterials 12, 3217 (2022). https://doi.org/10.3390/nano12183217
- H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15, 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
- H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14, 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
- A. Maitra, S. Paria, S.K. Karan, R. Bera, A. Bera et al., Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation. ACS Appl. Mater. Interfaces 11, 5022–5036 (2019). https://doi.org/10.1021/acsami.8b19044
- X. Zhao, Z. Wang, Z. Liu, S. Yao, J. Zhang et al., Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 96, 107067 (2022). https://doi.org/10.1016/j.nanoen.2022.107067
- H. Liu, Q. Shu, H. Xiang, H. Wu, Z. Li et al., Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy 108, 108223 (2023). https://doi.org/10.1016/j.nanoen.2023.108223
- Y. Xiong, L. Luo, J. Yang, J. Han, Y. Liu et al., Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition. Nano Energy 107, 108137 (2023). https://doi.org/10.1016/j.nanoen.2022.108137
- L. Yang, C. Liu, W. Yuan, C. Meng, A. Dutta et al., Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 103, 107807 (2022). https://doi.org/10.1016/j.nanoen.2022.107807
- E. He, Y. Sun, X. Wang, H. Chen, B. Sun et al., 3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Compos. Part B Eng. 200, 108244 (2020). https://doi.org/10.1016/j.compositesb.2020.108244
- S. Yu, H. Zhang, J. Zhang, Z. Hu, High-sensitivity rGO-TiO2 humidity sensor driven by triboelectric nanogenerators for non-contact monitoring of human respiration. J. Alloys Compd. 935, 168006 (2023). https://doi.org/10.1016/j.jallcom.2022.168006
- W. Wang, J. Zhou, S. Wang, F. Yuan, S. Liu et al., Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy 91, 106657 (2022). https://doi.org/10.1016/j.nanoen.2021.106657
- Y. Luo, X. Cao, Z.L. Wang, Self-powered smart agriculture sensing using triboelectric nanogenerators based on living plant leaves. Nano Energy 107, 108097 (2023). https://doi.org/10.1016/j.nanoen.2022.108097
- W. Zhang, D. Diao, K. Sun, X. Fan, P. Wang, Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 48, 456–463 (2018). https://doi.org/10.1016/j.nanoen.2018.04.007
- F. Moradi, F. Karimzadeh, M. Kharaziha, Rational micro/nano-structuring for high-performance triboelectric nanogenerator. J. Alloys Compd. 960, 170693 (2023). https://doi.org/10.1016/j.jallcom.2023.170693
- H. Chen, Y. Xu, J. Zhang, W. Wu, G. Song, Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58, 304–311 (2019). https://doi.org/10.1016/j.nanoen.2019.01.029
- H. Chen, S. Zhang, Y. Zou, C. Zhang, B. Zheng et al., Performance-enhanced flexible triboelectric nanogenerator based on gold chloride-doped graphene. ACS Appl. Electron. Mater. 2, 1106–1112 (2020). https://doi.org/10.1021/acsaelm.0c00100
- T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang et al., Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep. 5, 13942 (2015). https://doi.org/10.1038/srep13942
- Z. Kınas, A. Karabiber, A. Yar, A. Ozen, F. Ozel et al., High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers. Energy 239, 122369 (2022). https://doi.org/10.1016/j.energy.2021.122369
- S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
- M. Jannesari, E. Asadian, F. Ejehi, N.J. English, R. Mohammadpour et al., Boosting on-demand antibacterial activity using electrical stimulations from polypyrrole-graphene oxide triboelectric nanogenerator. Nano Energy 112, 108463 (2023). https://doi.org/10.1016/j.nanoen.2023.108463
- R.F.S. Muktar Ahmed, S.B. Mohan, S.M. Ankanathappa, M. Shivanna, S.A. Basith et al., Sucrose assisted chemical-free synthesis of rGO for triboelectric nanogenerator: green energy source for smart-water dispenser. Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2022.108085
- K. Shrestha, S. Sharma, G.B. Pradhan, T. Bhatta, S.S. Rana et al., A triboelectric driven rectification free self-charging supercapacitor for smart IoT applications. Nano Energy 102, 107713 (2022). https://doi.org/10.1016/j.nanoen.2022.107713
References
B. Zhang, J. Li, J. Zhou, L. Chow, G. Zhao et al., A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 628, 84–92 (2024). https://doi.org/10.1038/s41586-024-07161-1
X. Cui, J. Nie, Y. Zhang, Recent advances in high charge density triboelectric nanogenerators. Int. J. Extrem. Manuf. (2024). https://doi.org/10.1088/2631-7990/ad39ba
P. Lu, X. Liao, X. Guo, C. Cai, Y. Liu et al., Gel-based triboelectric nanogenerators for flexible sensing: principles, properties, and applications. Nano-Micro Lett. 16, 206 (2024). https://doi.org/10.1007/s40820-024-01432-2
X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun et al., Multidiscipline applications of triboelectric nanogenerators for the intelligent era of Internet of Things. Nano-Micro Lett. 15, 14 (2022). https://doi.org/10.1007/s40820-022-00981-8
J. Zhang, C. Boyer, Y.X. Zhang, Enhancing the humidity resistance of triboelectric nanogenerators: a review. Small (2024). https://doi.org/10.1002/smll.202401846
C. Shan, K. Li, Y. Cheng, C. Hu, Harvesting environment mechanical energy by direct current triboelectric nanogenerators. Nano-Micro Lett. 15, 127 (2023). https://doi.org/10.1007/s40820-023-01115-4
S. Fu, W. He, H. Wu, C. Shan, Y. Du et al., High output performance and ultra-durable DC output for triboelectric nanogenerator inspired by primary cell. Nano-Micro Lett. 14, 155 (2022). https://doi.org/10.1007/s40820-022-00898-2
Y. Yang, G. Zhu, H. Zhang, J. Chen, X. Zhong et al., Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system. ACS Nano 7, 9461–9468 (2013). https://doi.org/10.1021/nn4043157
L. He, C. Zhang, B. Zhang, O. Yang, W. Yuan et al., A dual-mode triboelectric nanogenerator for wind energy harvesting and self-powered wind speed monitoring. ACS Nano 16, 6244–6254 (2022). https://doi.org/10.1021/acsnano.1c11658
Y. Wang, H. Guo, J. Liao, Y. Qin, A. Ali et al., Solid-Liquid triboelectric nanogenerator based on curvature effect for harvesting mechanical and wave energy. Chem. Eng. J. 476, 146571 (2023). https://doi.org/10.1016/j.cej.2023.146571
S. Yang, C. Zhang, Z. Du, Y. Tu, X. Dai et al., Fluid oscillation-driven bi-directional air turbine triboelectric nanogenerator for ocean wave energy harvesting. Adv. Energy Mater. 14, 2304184 (2024). https://doi.org/10.1002/aenm.202304184
D. Tan, Q. Zeng, X. Wang, S. Yuan, Y. Luo et al., Anti-overturning fully symmetrical triboelectric nanogenerator based on an elliptic cylindrical structure for all-weather blue energy harvesting. Nano-Micro Lett. 14, 124 (2022). https://doi.org/10.1007/s40820-022-00866-w
W. Xu, H. Zheng, Y. Liu, X. Zhou, C. Zhang et al., A droplet-based electricity generator with high instantaneous power density. Nature 578, 392–396 (2020). https://doi.org/10.1038/s41586-020-1985-6
Y. Chen, B. Xie, J. Long, Y. Kuang, X. Chen et al., Interfacial laser-induced graphene enabling high-performance liquid-solid triboelectric nanogenerator. Adv. Mater. 33, e2104290 (2021). https://doi.org/10.1002/adma.202104290
Y. Chen, Y. Kuang, D. Shi, M. Hou, X. Chen et al., A triboelectric nanogenerator design for harvesting environmental mechanical energy from water mist. Nano Energy 73, 104765 (2020). https://doi.org/10.1016/j.nanoen.2020.104765
S. Wang, Y. Xie, S. Niu, L. Lin, Z.L. Wang, Freestanding triboelectric-layer-based nanogenerators for harvesting energy from a moving object or human motion in contact and non-contact modes. Adv. Mater. 26, 2818–2824 (2014). https://doi.org/10.1002/adma.201305303
T. Huang, C. Wang, H. Yu, H. Wang, Q. Zhang et al., Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers. Nano Energy 14, 226–235 (2015). https://doi.org/10.1016/j.nanoen.2015.01.038
F.-R. Fan, Z.-Q. Tian, Z.L. Wang, Flexible triboelectric generator. Nano Energy 1, 328–334 (2012). https://doi.org/10.1016/j.nanoen.2012.01.004
R. Cao, Y. Liu, H. Li, Z. Shen, F. Li et al., Advances in high-temperature operatable triboelectric nanogenerator. SusMat 4, e196 (2024). https://doi.org/10.1002/sus2.223
J. Hu, M. Iwamoto, X. Chen, A review of contact electrification at diversified interfaces and related applications on triboelectric nanogenerator. Nano-Micro Lett. 16, 7 (2023). https://doi.org/10.1007/s40820-023-01238-8
F.F. Hatta, M.A.S. Mohammad Haniff, M.A. Mohamed, A review on applications of graphene in triboelectric nanogenerators. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.7245
G. Khandelwal, N.P. Maria Joseph Raj, S.J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators. Adv. Energy Mater. (2021). https://doi.org/10.1002/aenm.202101170
L. Wang, M. Wu, H. Chen, W. Hang, X. Wang et al., Damage evolution and plastic deformation mechanism of passivation layer during shear rheological polishing of polycrystalline tungsten. J. Mater. Res. Technol. 28, 1584–1596 (2024). https://doi.org/10.1016/j.jmrt.2023.12.122
H. Chen, L. Wang, F. Peng, Q. Xu, Y. Xiong et al., Hydrogen retention and affecting factors in rolled tungsten: thermal desorption spectra and molecular dynamics simulations. Int. J. Hydrog. Energy 48, 30522–30531 (2023). https://doi.org/10.1016/j.ijhydene.2023.03.151
S. Kim, M.K. Gupta, K.Y. Lee, A. Sohn, T.Y. Kim et al., Transparent flexible graphene triboelectric nanogenerators. Adv. Mater. 26, 3918–3925 (2014). https://doi.org/10.1002/adma.201400172
B. Kumar, K.Y. Lee, H.K. Park, S.J. Chae, Y.H. Lee et al., Controlled growth of semiconducting nanowire, nanowall, and hybrid nanostructures on graphene for piezoelectric nanogenerators. ACS Nano 5, 4197–4204 (2011). https://doi.org/10.1021/nn200942s
J.-H. Lee, K.Y. Lee, B. Kumar, N.T. Tien, N.-E. Lee et al., Highly sensitive stretchable transparent piezoelectric nanogenerators. Energy Environ. Sci. 6, 169–175 (2013). https://doi.org/10.1039/c2ee23530g
L. Zhou, L. Zhu, T. Yang, X. Hou, Z. Du et al., Ultra-stable and durable piezoelectric nanogenerator with all-weather service capability based on N-doped 4H-SiC nanohole arrays. Nano-Micro Lett. 14, 30 (2021). https://doi.org/10.1007/s40820-021-00779-0
J. Wu, H.A. Becerril, Z. Bao, Z. Liu, Y. Chen et al., Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 92, 263302 (2008). https://doi.org/10.1063/1.2924771
Y. Chen, Y. Guo, B. Xie, F. Jin, L. Ma et al., Lightweight and drift-free magnetically actuated millirobots via asymmetric laser-induced graphene. Nat. Commun. 15, 4334 (2024). https://doi.org/10.1038/s41467-024-48751-x
H. Liu, Y. Zheng, K.-S. Moon, Y. Chen, D. Shi et al., Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy 94, 106902 (2022). https://doi.org/10.1016/j.nanoen.2021.106902
T. Lin, X. Ren, X. Wen, A. Karton, V. Quintano et al., Membrane based in situ reduction of graphene oxide for electrochemical supercapacitor application. Carbon 224, 119053 (2024). https://doi.org/10.1016/j.carbon.2024.119053
B. Xie, Y. Guo, Y. Chen, X. Luo, H. Zhang et al., Dual-indicators machine learning assisted processing high-quality laser-induced fluorine-doped graphene and its application on droplet velocity monitoring sensor. Carbon 226, 119231 (2024). https://doi.org/10.1016/j.carbon.2024.119231
M. Hou, G. Wen, J. Chen, B. Xie, L. Yan et al., Laser induced graphene based high-accurate temperature sensor with thermal meta-shell encirclement. Int. J. Heat Mass Transf. 217, 124719 (2023). https://doi.org/10.1016/j.ijheatmasstransfer.2023.124719
Y. Li, J. Long, Y. Chen, Y. Huang, N. Zhao, Crosstalk-free, high-resolution pressure sensor arrays enabled by high-throughput laser manufacturing. Adv. Mater. 34, e2200517 (2022). https://doi.org/10.1002/adma.202200517
Z. Wang, R.W. Scharstein, Electrostatics of graphene: charge distribution and capacitance. Chem. Phys. Lett. 489, 229–236 (2010). https://doi.org/10.1016/j.cplett.2010.02.063
C. Liu, Z. Yu, D. Neff, A. Zhamu, B.Z. Jang, Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 10, 4863–4868 (2010). https://doi.org/10.1021/nl102661q
B.N. Chandrashekar, B. Deng, A.S. Smitha, Y. Chen, C. Tan et al., Roll-to-roll green transfer of CVD graphene onto plastic for a transparent and flexible triboelectric nanogenerator. Adv. Mater. 27, 5210–5216 (2015). https://doi.org/10.1002/adma.201502560
H. Chu, H. Jang, Y. Lee, Y. Chae, J.H. Ahn Conformal, graphene-based triboelectric nanogenerator for self-powered wearable electronics. Nano Energy (2016). https://doi.org/10.1016/j.nanoen.2016.07.009
D. Zhang, Z. Xu, Z. Yang, X. Song, High-performance flexible self-powered tin disulfide nanoflowers/reduced graphene oxide nanohybrid-based humidity sensor driven by triboelectric nanogenerator. Nano Energy 67, 104251 (2020). https://doi.org/10.1016/j.nanoen.2019.104251
E. Keel, A. Ejaz, M. McKinlay, M.P. Garcia, M. Caffio et al., Three-dimensional graphene foam based triboelectric nanogenerators for energy systems and autonomous sensors. Nano Energy 112, 108475 (2023). https://doi.org/10.1016/j.nanoen.2023.108475
Y. Wang, X. Lin, G. Gao, J. Yu, Y. Wei et al., Tribotronic vertical field-effect transistor based on van der Waals heterostructures. Adv. Funct. Mater. 34, 2313210 (2024). https://doi.org/10.1002/adfm.202313210
A. Srivastava, S. Badatya, A.K. Chaturvedi, D.K. Kashyap, A.K. Srivastava et al., Paddy-straw-derived graphene quantum dots reinforced vertical aligned zinc oxide nanosheet-based flexible triboelectric nanogenerator for self-powered UV sensors and tribotronics application. ACS Appl. Mater. Interfaces 15, 24724–24735 (2023). https://doi.org/10.1021/acsami.3c02036
L. Shi, H. Jin, S. Dong, S. Huang, H. Kuang et al., High-performance triboelectric nanogenerator based on electrospun PVDF-graphene nanosheet composite nanofibers for energy harvesting. Nano Energy 80, 105599 (2021). https://doi.org/10.1016/j.nanoen.2020.105599
D.W. Shin, M.D. Barnes, K. Walsh, D. Dimov, P. Tian et al., A new facile route to flexible and semi-transparent electrodes based on water exfoliated graphene and their single-electrode triboelectric nanogenerator. Adv. Mater. 30, e1802953 (2018). https://doi.org/10.1002/adma.201802953
V. Harnchana, H.V. Ngoc, W. He, A. Rasheed, H. Park et al., Enhanced power output of a triboelectric nanogenerator using poly(dimethylsiloxane) modified with graphene oxide and sodium dodecyl sulfate. ACS Appl. Mater. Interfaces 10, 25263–25272 (2018). https://doi.org/10.1021/acsami.8b02495
S.A. Han, W. Seung, J.H. Kim, S.-W. Kim, Ultrathin noncontact-mode triboelectric nanogenerator triggered by giant dielectric material adaption. ACS Energy Lett. (2021). https://doi.org/10.1021/acsenergylett.0c02434
Q. Zhang, Q. Liang, Q. Liao, M. Ma, F. Gao et al., An amphiphobic hydraulic triboelectric nanogenerator for a self-cleaning and self-charging power system. Adv. Funct. Mater. 28, 1803117 (2018). https://doi.org/10.1002/adfm.201803117
K. Shrestha, S. Sharma, G.B. Pradhan, T. Bhatta, P. Maharjan et al., A siloxene/ecoflex nanocomposite-based triboelectric nanogenerator with enhanced charge retention by MoS2/LIG for self-powered touchless sensor applications. Adv. Funct. Mater. 32, 2113005 (2022). https://doi.org/10.1002/adfm.202113005
K. Zhou, Y. Zhao, X. Sun, Z. Yuan, G. Zheng et al., Ultra-stretchable triboelectric nanogenerator as high-sensitive and self-powered electronic skins for energy harvesting and tactile sensing. Nano Energy 70, 104546 (2020). https://doi.org/10.1016/j.nanoen.2020.104546
C.-R. Yang, C.-T. Ko, S.-F. Chang, M.-J. Huang, Study on fabric-based triboelectric nanogenerator using graphene oxide/porous PDMS as a compound friction layer. Nano Energy 92, 106791 (2022). https://doi.org/10.1016/j.nanoen.2021.106791
W. Liu, X. Wang, Y. Song, R. Cao, L. Wang et al., Self-powered forest fire alarm system based on impedance matching effect between triboelectric nanogenerator and thermosensitive sensor. Nano Energy 73, 104843 (2020). https://doi.org/10.1016/j.nanoen.2020.104843
Y. Wang, J. Chen, L. Gong, J. Tang, X. Wang et al., P-doped W2C nanops for hydrogen evolution reaction powered by a wind-driven triboelectric nanogenerator. Nano Energy 121, 109242 (2024). https://doi.org/10.1016/j.nanoen.2023.109242
N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi et al., Top-down synthesis of graphene: a comprehensive review. FlatChem (2021). https://doi.org/10.1016/j.flatc.2021.100224
K. Edward, K. Mamun, S. Narayan, M. Assaf, D. Rohindra et al., State-of-the-art graphene synthesis methods and environmental concerns. Appl. Environ. Soil Sci. 2023, 8475504 (2023). https://doi.org/10.1155/2023/8475504
P. Tian, L. Tang, K.-S. Teng, S.-P. Lau, Graphene quantum dots: preparations, properties, functionalizations and applications. Mater. Futures 3, 022301 (2024). https://doi.org/10.1088/2752-5724/ad08cb
Z. Li, Z. Cheng, Y. Wang, Z. Zhang, J. Wu, Single-layer graphene based resistive humidity sensor enhanced by graphene quantum dots. Nanotechnology 35, 185503 (2024). https://doi.org/10.1088/1361-6528/ad22ad
Z. Xu, C. Wu, F. Li, W. Chen, T. Guo et al., Triboelectric electronic-skin based on graphene quantum dots for application in self-powered, smart, artificial fingers. Nano Energy 49, 274–282 (2018). https://doi.org/10.1016/j.nanoen.2018.04.059
F.F. Hatta, M.A.S. Mohammad Haniff, M. Ambri Mohamed, Enhanced-performance triboelectric nanogenerator based on polydimethylsiloxane/barium titanate/graphene quantum dot nanocomposites for energy harvesting. ACS Omega (2024). https://doi.org/10.1021/acsomega.3c07952
X. Yang, P. Li, B. Wu, H. Li, G. Zhou, A flexible piezoelectric-triboelectric hybrid nanogenerator in one structure with dual doping enhancement effects. Curr. Appl. Phys. 32, 50–58 (2021). https://doi.org/10.1016/j.cap.2021.09.003
G.-J. Choi, S.-H. Baek, S.-S. Lee, F. Khan, J.H. Kim et al., Performance enhancement of triboelectric nanogenerators based on polyvinylidene fluoride/graphene quantum dot composite nanofibers. J. Alloys Compd. 797, 945–951 (2019). https://doi.org/10.1016/j.jallcom.2019.05.202
K. Yee, M.H. Ghayesh, A review on the mechanics of graphene nanoplatelets reinforced structures. Int. J. Eng. Sci. 186, 103831 (2023). https://doi.org/10.1016/j.ijengsci.2023.103831
F. Wang, L.T. Drzal, Y. Qin, Z. Huang, Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J. Mater. Sci. 50, 1082–1093 (2015). https://doi.org/10.1007/s10853-014-8665-6
I. Shabbir, D.-M. Lee, D.C. Choo, Y.H. Lee, K.K. Park et al., A graphene nanoplatelets-based high-performance, durable triboelectric nanogenerator for harvesting the energy of human motion. Energy Rep. 8, 1026–1033 (2022). https://doi.org/10.1016/j.egyr.2021.12.020
Y. Dai, X. Zhong, T. Xu, Y. Li, Y. Xiong et al., High-performance triboelectric nanogenerator based on electrospun polyvinylidene fluoride-graphene oxide nanosheet composite nanofibers. Energy Technol. 11, 2300426 (2023). https://doi.org/10.1002/ente.202300426
Y. Jia, L. Zhang, G. Gao, H. Chen, B. Wang et al., A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 29, 1700017 (2017). https://doi.org/10.1002/adma.201700017
I. Domingos, A.I.S. Neves, M.F. Craciun, H. Alves, Graphene based triboelectric nanogenerators using water based solution process. Front. Phys. 9, 742563 (2021). https://doi.org/10.3389/fphy.2021.742563
R. Ruoff, Calling all chemists. Nat. Nanotechnol. 3, 10–11 (2008). https://doi.org/10.1038/nnano.2007.432
N. Kaur, J. Bahadur, V. Panwar, P. Singh, K. Rathi et al., Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci. Rep. 6, 38835 (2016). https://doi.org/10.1038/srep38835
H. Guo, T. Li, X. Cao, J. Xiong, Y. Jie et al., Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11, 856–864 (2017). https://doi.org/10.1021/acsnano.6b07389
C. Wu, T.W. Kim, H.Y. Choi, Reduced graphene-oxide acting as electron-trapping sites in the friction layer for giant triboelectric enhancement. Nano Energy 32, 542–550 (2017). https://doi.org/10.1016/j.nanoen.2016.12.035
M. Chhowalla, H.S. Shin, G. Eda, L.-J. Li, K.P. Loh et al., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013). https://doi.org/10.1038/nchem.1589
X. Yang, M. Yan, Removing contaminants from transferred CVD graphene. Nano Res. 13, 599–610 (2020). https://doi.org/10.1007/s12274-020-2671-6
S.A. Shankaregowda, C.B. Nanjegowda, X. Cheng, M. Shi, Z. Liu et al., A flexible and transparent graphene based triboelectric nanogenerator. 2015 IEEE 15th International Conference on Nanotechnology (IEEE-NANO). July 27–30, 2015, Rome, Italy. IEEE, 1477–1480 2015
J. Yang, P. Liu, X. Wei, W. Luo, J. Yang et al., Surface engineering of graphene composite transparent electrodes for high-performance flexible triboelectric nanogenerators and self-powered sensors. ACS Appl. Mater. Interfaces 9, 36017–36025 (2017). https://doi.org/10.1021/acsami.7b10373
Y. Chen, J. Long, S. Zhou, D. Shi, Y. Huang et al., UV laser-induced polyimide-to-graphene conversion: modeling, fabrication, and application. Small Meth. 3, 1900208 (2019). https://doi.org/10.1002/smtd.201900208
Y. Chen, J. Long, B. Xie, Y. Kuang, X. Chen et al., One-step ultraviolet laser-induced fluorine-doped graphene achieving superhydrophobic properties and its application in deicing. ACS Appl. Mater. Interfaces 14, 4647–4655 (2022). https://doi.org/10.1021/acsami.1c18559
L. Huang, J. Su, Y. Song, R. Ye, Laser-induced graphene: en route to smart sensing. Nano-Micro Lett. 12, 157 (2020). https://doi.org/10.1007/s40820-020-00496-0
H. Wang, Z. Zhao, P. Liu, X. Guo, Laser-induced graphene based flexible electronic devices. Biosensors 12, 55 (2022). https://doi.org/10.3390/bios12020055
M.G. Stanford, J.T. Li, Y. Chyan, Z. Wang, W. Wang et al., Laser-induced graphene triboelectric nanogenerators. ACS Nano 13, 7166–7174 (2019). https://doi.org/10.1021/acsnano.9b02596
C. Jiang, X. Li, Y. Yao, L. Lan, Y. Shao et al., A multifunctional and highly flexible triboelectric nanogenerator based on MXene-enabled porous film integrated with laser-induced graphene electrode. Nano Energy 66, 104121 (2019). https://doi.org/10.1016/j.nanoen.2019.104121
S. Xia, Y. Long, Z. Huang, Y. Zi, L. Tao et al., Laser-induced graphene (LIG)-based pressure sensor and triboelectric nanogenerator towards high-performance self-powered measurement-control combined system. Nano Energy 96, 107099 (2022). https://doi.org/10.1016/j.nanoen.2022.107099
W. Guo, Y. Xia, Y. Zhu, S. Han, Q. Li et al., Laser-induced graphene based triboelectric nanogenerator for accurate wireless control and tactile pattern recognition. Nano Energy 108, 108229 (2023). https://doi.org/10.1016/j.nanoen.2023.108229
K. Shrestha, G.B. Pradhan, M. Asaduzzaman, M.S. Reza, T. Bhatta et al., A breathable, reliable, and flexible siloxene incorporated porous SEBS-based triboelectric nanogenerator for human–machine interactions. Adv. Energy Mater. 14, 2470025 (2024). https://doi.org/10.1002/aenm.202470025
S.S.K. Mallineni, Y. Dong, H. Behlow, A.M. Rao, R. Podila, A wireless triboelectric nanogenerator. Adv. Energy Mater. 8, 1702736 (2018). https://doi.org/10.1002/aenm.201702736
X. Li, C. Jiang, F. Zhao, Y. Shao, Y. Ying et al., A self-charging device with bionic self-cleaning interface for energy harvesting. Nano Energy 73, 104738 (2020). https://doi.org/10.1016/j.nanoen.2020.104738
Y. Li, J. Yu, Y. Wei, Y. Wang, Z. Feng et al., Recent progress in self-powered wireless sensors and systems based on TENG. Sensors 23, 1329 (2023). https://doi.org/10.3390/s23031329
L. Kong, W. Li, T. Zhang, H. Ma, Y. Cao et al., Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, e2400333 (2024). https://doi.org/10.1002/adma.202400333
B. Zhou, J. Liu, X. Huang, X. Qiu, X. Yang et al., Mechanoluminescent-triboelectric bimodal sensors for self-powered sensing and intelligent control. Nano-Micro Lett. 15, 72 (2023). https://doi.org/10.1007/s40820-023-01054-0
J. Liu, Z. Wen, H. Lei, Z. Gao, X. Sun, A liquid–solid interface-based triboelectric tactile sensor with ultrahigh sensitivity of 21.48 kPa−1. Nano-Micro Lett. (2022). https://doi.org/10.1007/s40820-022-00831-7
Z. Zhao, Z. Quan, H. Tang, Q. Xu, H. Zhao et al., A broad range triboelectric stiffness sensor for variable inclusions recognition. Nano-Micro Lett. 15, 233 (2023). https://doi.org/10.1007/s40820-023-01201-7
Z. Yan, L. Wang, Y. Xia, R. Qiu, W. Liu et al., Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 31, 2100709 (2021). https://doi.org/10.1002/adfm.202100709
H. Luo, Y. Lu, Y. Xu, G. Yang, S. Cui et al., A fully soft, self-powered vibration sensor by laser direct writing. Nano Energy 103, 107803 (2022). https://doi.org/10.1016/j.nanoen.2022.107803
K. Hu, Z. Zhao, Y. Wang, L. Yu, K. Liu et al., A tough organohydrogel-based multiresponsive sensor for a triboelectric nanogenerator and supercapacitor toward wearable intelligent devices. J. Mater. Chem. A 10, 12092–12103 (2022). https://doi.org/10.1039/D2TA01503J
X. Dai, Y. Long, B. Jiang, W. Guo, W. Sha et al., Ultra-antifreeze, ultra-stretchable, transparent, and conductive hydrogel for multi-functional flexible electronics as strain sensor and triboelectric nanogenerator. Nano Res. 15, 5461–5468 (2022). https://doi.org/10.1007/s12274-022-4153-5
S. Mudhulu, M. Channegowda, S. Balaji, A. Khosla, P. Sekhar, Trends in graphene-based e-skin and artificial intelligence for biomedical applications—a review. IEEE Sens. J. 23, 18963–18976 (2023). https://doi.org/10.1109/JSEN.2023.3294297
H. Sun, X. Gao, L.-Y. Guo, L.-Q. Tao, Z.H. Guo et al., Graphene-based dual-function acoustic transducers for machine learning-assisted human–robot interfaces. InfoMat 5, e12385 (2023). https://doi.org/10.1002/inf2.12385
L. Wang, H. Xu, F. Huang, X. Tao, Y. Ouyang et al., High-output Lotus-leaf-bionic triboelectric nanogenerators based on 2D MXene for health monitoring of human feet. Nanomaterials 12, 3217 (2022). https://doi.org/10.3390/nano12183217
H. Lei, H. Ji, X. Liu, B. Lu, L. Xie et al., Self-assembled porous-reinforcement microstructure-based flexible triboelectric patch for remote healthcare. Nano-Micro Lett. 15, 109 (2023). https://doi.org/10.1007/s40820-023-01081-x
H.L. Wang, Z.H. Guo, X. Pu, Z.L. Wang, Ultralight iontronic triboelectric mechanoreceptor with high specific outputs for epidermal electronics. Nano-Micro Lett. 14, 86 (2022). https://doi.org/10.1007/s40820-022-00834-4
A. Maitra, S. Paria, S.K. Karan, R. Bera, A. Bera et al., Triboelectric nanogenerator driven self-charging and self-healing flexible asymmetric supercapacitor power cell for direct power generation. ACS Appl. Mater. Interfaces 11, 5022–5036 (2019). https://doi.org/10.1021/acsami.8b19044
X. Zhao, Z. Wang, Z. Liu, S. Yao, J. Zhang et al., Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 96, 107067 (2022). https://doi.org/10.1016/j.nanoen.2022.107067
H. Liu, Q. Shu, H. Xiang, H. Wu, Z. Li et al., Fully degradable triboelectric nanogenerator using graphene composite paper to replace copper electrodes for higher output performance. Nano Energy 108, 108223 (2023). https://doi.org/10.1016/j.nanoen.2023.108223
Y. Xiong, L. Luo, J. Yang, J. Han, Y. Liu et al., Scalable spinning, winding, and knitting graphene textile TENG for energy harvesting and human motion recognition. Nano Energy 107, 108137 (2023). https://doi.org/10.1016/j.nanoen.2022.108137
L. Yang, C. Liu, W. Yuan, C. Meng, A. Dutta et al., Fully stretchable, porous MXene-graphene foam nanocomposites for energy harvesting and self-powered sensing. Nano Energy 103, 107807 (2022). https://doi.org/10.1016/j.nanoen.2022.107807
E. He, Y. Sun, X. Wang, H. Chen, B. Sun et al., 3D angle-interlock woven structural wearable triboelectric nanogenerator fabricated with silicone rubber coated graphene oxide/cotton composite yarn. Compos. Part B Eng. 200, 108244 (2020). https://doi.org/10.1016/j.compositesb.2020.108244
S. Yu, H. Zhang, J. Zhang, Z. Hu, High-sensitivity rGO-TiO2 humidity sensor driven by triboelectric nanogenerators for non-contact monitoring of human respiration. J. Alloys Compd. 935, 168006 (2023). https://doi.org/10.1016/j.jallcom.2022.168006
W. Wang, J. Zhou, S. Wang, F. Yuan, S. Liu et al., Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy 91, 106657 (2022). https://doi.org/10.1016/j.nanoen.2021.106657
Y. Luo, X. Cao, Z.L. Wang, Self-powered smart agriculture sensing using triboelectric nanogenerators based on living plant leaves. Nano Energy 107, 108097 (2023). https://doi.org/10.1016/j.nanoen.2022.108097
W. Zhang, D. Diao, K. Sun, X. Fan, P. Wang, Study on friction-electrification coupling in sliding-mode triboelectric nanogenerator. Nano Energy 48, 456–463 (2018). https://doi.org/10.1016/j.nanoen.2018.04.007
F. Moradi, F. Karimzadeh, M. Kharaziha, Rational micro/nano-structuring for high-performance triboelectric nanogenerator. J. Alloys Compd. 960, 170693 (2023). https://doi.org/10.1016/j.jallcom.2023.170693
H. Chen, Y. Xu, J. Zhang, W. Wu, G. Song, Enhanced stretchable graphene-based triboelectric nanogenerator via control of surface nanostructure. Nano Energy 58, 304–311 (2019). https://doi.org/10.1016/j.nanoen.2019.01.029
H. Chen, S. Zhang, Y. Zou, C. Zhang, B. Zheng et al., Performance-enhanced flexible triboelectric nanogenerator based on gold chloride-doped graphene. ACS Appl. Electron. Mater. 2, 1106–1112 (2020). https://doi.org/10.1021/acsaelm.0c00100
T. Huang, M. Lu, H. Yu, Q. Zhang, H. Wang et al., Enhanced power output of a triboelectric nanogenerator composed of electrospun nanofiber mats doped with graphene oxide. Sci. Rep. 5, 13942 (2015). https://doi.org/10.1038/srep13942
Z. Kınas, A. Karabiber, A. Yar, A. Ozen, F. Ozel et al., High-performance triboelectric nanogenerator based on carbon nanomaterials functionalized polyacrylonitrile nanofibers. Energy 239, 122369 (2022). https://doi.org/10.1016/j.energy.2021.122369
S. Shen, J. Fu, J. Yi, L. Ma, F. Sheng et al., High-efficiency wastewater purification system based on coupled photoelectric-catalytic action provided by triboelectric nanogenerator. Nano-Micro Lett. 13, 194 (2021). https://doi.org/10.1007/s40820-021-00695-3
M. Jannesari, E. Asadian, F. Ejehi, N.J. English, R. Mohammadpour et al., Boosting on-demand antibacterial activity using electrical stimulations from polypyrrole-graphene oxide triboelectric nanogenerator. Nano Energy 112, 108463 (2023). https://doi.org/10.1016/j.nanoen.2023.108463
R.F.S. Muktar Ahmed, S.B. Mohan, S.M. Ankanathappa, M. Shivanna, S.A. Basith et al., Sucrose assisted chemical-free synthesis of rGO for triboelectric nanogenerator: green energy source for smart-water dispenser. Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2022.108085
K. Shrestha, S. Sharma, G.B. Pradhan, T. Bhatta, S.S. Rana et al., A triboelectric driven rectification free self-charging supercapacitor for smart IoT applications. Nano Energy 102, 107713 (2022). https://doi.org/10.1016/j.nanoen.2022.107713