Ultrathin Zincophilic Interphase Regulated Electric Double Layer Enabling Highly Stable Aqueous Zinc-Ion Batteries
Corresponding Author: Xiaolei Wang
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 96
Abstract
The practical application of aqueous zinc-ion batteries for large-grid scale systems is still hindered by uncontrolled zinc dendrite and side reactions. Regulating the electrical double layer via the electrode/electrolyte interface layer is an effective strategy to improve the stability of Zn anodes. Herein, we report an ultrathin zincophilic ZnS layer as a model regulator. At a given cycling current, the cell with Zn@ZnS electrode displays a lower potential drop over the Helmholtz layer (stern layer) and a suppressed diffuse layer, indicating the regulated charge distribution and decreased electric double layer repulsion force. Boosted zinc adsorption sites are also expected as proved by the enhanced electric double-layer capacitance. Consequently, the symmetric cell with the ZnS protection layer can stably cycle for around 3,000 h at 1 mA cm−2 with a lower overpotential of 25 mV. When coupled with an I2/AC cathode, the cell demonstrates a high rate performance of 160 mAh g−1 at 0.1 A g−1 and long cycling stability of over 10,000 cycles at 10 A g−1. The Zn||MnO2 also sustains both high capacity and long cycling stability of 130 mAh g−1 after 1,200 cycles at 0.5 A g−1.
Highlights:
1 Electric double-layer regulation enabled by an ultrathin multifunctional solid electrolyte interphase layer with zincophilicity and rapid transport kinetics.
2 Lowered potential drop over the Helmholtz layer and suppressed diffuse layer.
3 Inhibited side reactions and uniform zinc deposition.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/AENM.201902915
- R. Zhao, J. Yang, X. Han, Y. Wang, Q. Ni et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries. Adv. Energy Mater. 13, 2370034 (2023). https://doi.org/10.1002/aenm.202370034
- Q. Jin, J. Xu, Y. Jin, Synergy of regulating zinc electrodeposition and suppressing hydrogen evolution by functional coating layer for highly reversible zinc anode. J. Power. Sources 560, 232711 (2023). https://doi.org/10.1016/j.jpowsour.2023.232711
- H. Cui, L. Ma, Z. Huang, Z. Chen, C. Zhi, Organic materials-based cathode for zinc ion battery. SmartMat 3, 565–581 (2022). https://doi.org/10.1002/smm2.1110
- Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
- Y. Chen, F. Gong, W. Deng, H. Zhang, X. Wang, Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries. Energy Storage Mater. 58, 20–29 (2023). https://doi.org/10.1016/j.ensm.2023.03.010
- L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 (2022). https://doi.org/10.1073/pnas.2121138119
- Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
- J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
- H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6, 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
- M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 (2023). https://doi.org/10.1002/anie.202215552
- R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16, 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
- J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022). https://doi.org/10.1016/j.nanoen.2021.106839
- R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
- J. Yang, H. Yan, H. Hao, Y. Song, Y. Li et al., Synergetic modulation on solvation structure and electrode interface enables a highly reversible zinc anode for zinc–iron flow batteries. ACS Energy Lett. 7, 2331–2339 (2022). https://doi.org/10.1021/acsenergylett.2c00560
- X. Peng, T. Li, L. Zhong, J. Lu, Flexible metal–air batteries: an overview. SmartMat 2, 123–126 (2021). https://doi.org/10.1002/smm2.1044
- Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang et al., Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ. Sci. 16, 687–697 (2023). https://doi.org/10.1039/D2EE03528F
- Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge. Adv. Energy Mater. 13, 2301999 (2023). https://doi.org/10.1002/aenm.202301999
- C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy Environ. Sci. 16, 1721–1731 (2023). https://doi.org/10.1039/D3EE00045A
- D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
- Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33, e2007388 (2021). https://doi.org/10.1002/adma.202007388
- Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31, 2101886 (2021). https://doi.org/10.1002/adfm.202101886
- D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., Frontispiece: ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, 2380762 (2023). https://doi.org/10.1002/anie.202380762
- X. Zhou, P. Cao, A. Wei, A. Zou, H. Ye et al., Driving the interfacial ion-transfer kinetics by mesoporous TiO2 spheres for high-performance aqueous Zn-ion batteries. ACS Appl. Mater. Interfaces 13, 8181–8190 (2021). https://doi.org/10.1021/acsami.0c18433
- L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
- Z. Zeng, Y. Zeng, L. Sun, H. Mi, L. Deng et al., Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode. Nanoscale 13, 12223–12232 (2021). https://doi.org/10.1039/D1NR02620H
- Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
- Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
- W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
- M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au ps as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
- Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 16869–16875 (2021). https://doi.org/10.1021/acsami.0c22911
- K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749 (2022). https://doi.org/10.1002/adfm.202109749
- J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An In-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, e2003021 (2020). https://doi.org/10.1002/adma.202003021
- X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020). https://doi.org/10.1039/C9EE03545A
- T.C. Li, Y. Von Lim, X. Xie, X.L. Li, G. Li et al., ZnSe modified zinc metal anodes: toward enhanced zincophilicity and ionic diffusion. Small 17, e2101728 (2021). https://doi.org/10.1002/smll.202101728
- T. Huang, K. Xu, N. Jia, L. Yang, H. Liu et al., Intrinsic interfacial dynamic engineering of zincophilic microbrushes via regulating Zn deposition for highly reversible aqueous zinc ion battery. Adv. Mater. 35, e2205206 (2023). https://doi.org/10.1002/adma.202205206
- P. Da, Y. Zheng, Y. Hu, Z. Wu, H. Zhao et al., Synthesis of bandgap-tunable transition metal sulfides through gas-phase cation exchange-induced topological transformation. Angew. Chem. Int. Ed. 62, 2301802 (2023). https://doi.org/10.1002/anie.202301802
- X. Xu, S. Li, J. Chen, S. Cai, Z. Long et al., Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Adv. Funct. Mater. 28, 1802029 (2018). https://doi.org/10.1002/adfm.201802029
- M. Fayette, H.J. Chang, I.A. Rodrı Guez-Pérez, X. Li, D. Reed, Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12, 42763–42772 (2020). https://doi.org/10.1021/acsami.0c10956
- R. Wang, S. Xin, D. Chao, Z. Liu, J. Wan et al., Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv. Funct. Mater. 32, 2207751 (2022). https://doi.org/10.1002/adfm.202207751
- T. Le Manh, E.M. Arce-Estrada, M. Romero-Romo, I. Mejía-Caballero, J. Aldana-González et al., On wetting angles and nucleation energies during the electrochemical nucleation of cobalt onto glassy carbon from a deep eutectic solvent. J. Electrochem. Soc. 164, D694–D699 (2017). https://doi.org/10.1149/2.1061712jes
- K. Ngamlerdpokin, N. Tantavichet, Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int. J. Hydrog. Energy 39, 2505–2515 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.013
- S. Kumar, S. Pande, P. Verma, Factor effecting electro-deposition process. IJCET 5, 700–703 (2015). http://inpressco.com/category/ijcet
- B. Sarma, R.S. Ray, M. Misra, Charge storage in flower-like ZnS electrochemically deposited on TiO2 nanotube. Mater. Lett. 139, 77–80 (2015). https://doi.org/10.1016/j.matlet.2014.09.115
- R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
- G. Li, Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Adv. Energy Mater. 11, 2002891 (2021). https://doi.org/10.1002/aenm.202002891
- G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018). https://doi.org/10.1038/s41560-018-0276-z
- T. Altalhi, A. Mezni, M.A. Amin, M.S. Refat, A.A. Gobouri et al., ZnS quantum dots decorated on one-dimensional scaffold of MWCNT/PANI conducting nanocomposite as an anode for enzymatic biofuel cell. Polymers 14, 1321 (2022). https://doi.org/10.3390/polym14071321
- Q. Zhang, A. Asthagiri, Solvation effects on DFT predictions of ORR activity on metal surfaces. Catal. Today 323, 35–43 (2019). https://doi.org/10.1016/j.cattod.2018.07.036
- H. Qin, W. Kuang, N. Hu, X. Zhong, D. Huang et al., Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 32, 2206695 (2022). https://doi.org/10.1002/adfm.202206695
- M. Sharma, D. Mishra, J. Kumar, First-principles study of the structural and electronic properties of bulk ZnS and small ZnnSn nanoclusters in the framework of the DFT+U method. Phys. Rev. B 100, 045151 (2019). https://doi.org/10.1103/physrevb.100.045151
- A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/D2EE02931F
- C. Ma, X. Wang, W. Lu, C. Wang, H. Yue et al., Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chem. Eng. J. 429, 132576 (2022). https://doi.org/10.1016/j.cej.2021.132576
- Y. Li, S. Yang, H. Du, Y. Liu, X. Wu et al., A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J. Mater. Chem. A 10, 14399–14410 (2022). https://doi.org/10.1039/D2TA03550B
- Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
- J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82–89 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
- S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40–51 (2022). https://doi.org/10.1016/j.ensm.2022.07.036
References
S. Wu, Y. Chen, T. Jiao, J. Zhou, J. Cheng et al., An aqueous Zn-ion hybrid supercapacitor with high energy density and ultrastability up to 80000 cycles. Adv. Energy Mater. 9, 1902915 (2019). https://doi.org/10.1002/AENM.201902915
R. Zhao, J. Yang, X. Han, Y. Wang, Q. Ni et al., Stabilizing Zn metal anodes via cation/anion regulation toward high energy density Zn-ion batteries. Adv. Energy Mater. 13, 2370034 (2023). https://doi.org/10.1002/aenm.202370034
Q. Jin, J. Xu, Y. Jin, Synergy of regulating zinc electrodeposition and suppressing hydrogen evolution by functional coating layer for highly reversible zinc anode. J. Power. Sources 560, 232711 (2023). https://doi.org/10.1016/j.jpowsour.2023.232711
H. Cui, L. Ma, Z. Huang, Z. Chen, C. Zhi, Organic materials-based cathode for zinc ion battery. SmartMat 3, 565–581 (2022). https://doi.org/10.1002/smm2.1110
Y. Lv, M. Zhao, Y. Du, Y. Kang, Y. Xiao et al., Engineering a self-adaptive electric double layer on both electrodes for high-performance zinc metal batteries. Energy Environ. Sci. 15, 4748–4760 (2022). https://doi.org/10.1039/D2EE02687B
Y. Chen, F. Gong, W. Deng, H. Zhang, X. Wang, Dual-function electrolyte additive enabling simultaneous electrode interface and coordination environment regulation for zinc-ion batteries. Energy Storage Mater. 58, 20–29 (2023). https://doi.org/10.1016/j.ensm.2023.03.010
L. Ma, J. Vatamanu, N.T. Hahn, T.P. Pollard, O. Borodin et al., Highly reversible Zn metal anode enabled by sustainable hydroxyl chemistry. Proc. Natl. Acad. Sci. U.S.A. 119, e2121138119 (2022). https://doi.org/10.1073/pnas.2121138119
Q. Ma, R. Gao, Y. Liu, H. Dou, Y. Zheng et al., Regulation of outer solvation shell toward superior low-temperature aqueous zinc-ion batteries. Adv. Mater. 34, e2207344 (2022). https://doi.org/10.1002/adma.202207344
J. Hao, L. Yuan, C. Ye, D. Chao, K. Davey et al., Boosting zinc electrode reversibility in aqueous electrolytes by using low-cost antisolvents. Angew. Chem. Int. Ed. 60, 7366–7375 (2021). https://doi.org/10.1002/anie.202016531
H. Jiang, L. Tang, Y. Fu, S. Wang, S.K. Sandstrom et al., Chloride electrolyte enabled practical zinc metal battery with a near-unity Coulombic efficiency. Nat. Sustain. 6, 806–815 (2023). https://doi.org/10.1038/s41893-023-01092-x
M. Li, X. Wang, J. Hu, J. Zhu, C. Niu et al., Comprehensive H2O molecules regulation via deep eutectic solvents for ultra-stable zinc metal anode. Angew. Chem. Int. Ed. 62, 2215552 (2023). https://doi.org/10.1002/anie.202215552
R. Chen, C. Zhang, J. Li, Z. Du, F. Guo et al., A hydrated deep eutectic electrolyte with finely-tuned solvation chemistry for high-performance zinc-ion batteries. Energy Environ. Sci. 16, 2540–2549 (2023). https://doi.org/10.1039/D3EE00462G
J. Cao, D. Zhang, Y. Yue, R. Chanajaree, S. Wang et al., Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93, 106839 (2022). https://doi.org/10.1016/j.nanoen.2021.106839
R. Qin, Y. Wang, M. Zhang, Y. Wang, S. Ding et al., Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries. Nano Energy 80, 105478 (2021). https://doi.org/10.1016/j.nanoen.2020.105478
J. Yang, H. Yan, H. Hao, Y. Song, Y. Li et al., Synergetic modulation on solvation structure and electrode interface enables a highly reversible zinc anode for zinc–iron flow batteries. ACS Energy Lett. 7, 2331–2339 (2022). https://doi.org/10.1021/acsenergylett.2c00560
X. Peng, T. Li, L. Zhong, J. Lu, Flexible metal–air batteries: an overview. SmartMat 2, 123–126 (2021). https://doi.org/10.1002/smm2.1044
Y. Lin, Z. Mai, H. Liang, Y. Li, G. Yang et al., Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ. Sci. 16, 687–697 (2023). https://doi.org/10.1039/D2EE03528F
Y. Lin, Y. Li, Z. Mai, G. Yang, C. Wang, Interfacial regulation via anionic surfactant electrolyte additive promotes stable (002)-textured zinc anodes at high depth of discharge. Adv. Energy Mater. 13, 2301999 (2023). https://doi.org/10.1002/aenm.202301999
C. Huang, X. Zhao, Y. Hao, Y. Yang, Y. Qian et al., Selection criteria for electrical double layer structure regulators enabling stable Zn metal anodes. Energy Environ. Sci. 16, 1721–1731 (2023). https://doi.org/10.1039/D3EE00045A
D. Wang, H. Liu, D. Lv, C. Wang, J. Yang et al., Rational screening of artificial solid electrolyte interphases on Zn for ultrahigh-rate and long-life aqueous batteries. Adv. Mater. 35, e2207908 (2023). https://doi.org/10.1002/adma.202207908
Y. Yang, C. Liu, Z. Lv, H. Yang, Y. Zhang et al., Synergistic manipulation of Zn2+ ion flux and desolvation effect enabled by anodic growth of a 3D ZnF2 matrix for long-lifespan and dendrite-free Zn metal anodes. Adv. Mater. 33, e2007388 (2021). https://doi.org/10.1002/adma.202007388
Y. An, Y. Tian, K. Zhang, Y. Liu, C. Liu et al., Stable aqueous anode-free zinc batteries enabled by interfacial engineering. Adv. Funct. Mater. 31, 2101886 (2021). https://doi.org/10.1002/adfm.202101886
D. Xie, Y. Sang, D.-H. Wang, W.-Y. Diao, F.-Y. Tao et al., Frontispiece: ZnF2-riched inorganic/organic hybrid SEI: in situ-chemical construction and performance-improving mechanism for aqueous zinc-ion batteries. Angew. Chem. Int. Ed. 62, 2380762 (2023). https://doi.org/10.1002/anie.202380762
X. Zhou, P. Cao, A. Wei, A. Zou, H. Ye et al., Driving the interfacial ion-transfer kinetics by mesoporous TiO2 spheres for high-performance aqueous Zn-ion batteries. ACS Appl. Mater. Interfaces 13, 8181–8190 (2021). https://doi.org/10.1021/acsami.0c18433
L. Kang, M. Cui, F. Jiang, Y. Gao, H. Luo et al., Nanoporous CaCO3 coatings enabled uniform Zn stripping/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 8, 1801090 (2018). https://doi.org/10.1002/aenm.201801090
Z. Zeng, Y. Zeng, L. Sun, H. Mi, L. Deng et al., Long cyclic stability of acidic aqueous zinc-ion batteries achieved by atomic layer deposition: the effect of the induced orientation growth of the Zn anode. Nanoscale 13, 12223–12232 (2021). https://doi.org/10.1039/D1NR02620H
Y. Cui, Q. Zhao, X. Wu, Z. Wang, R. Qin et al., Quasi-solid single Zn-ion conductor with high conductivity enabling dendrite-free Zn metal anode. Energy Storage Mater. 27, 1–8 (2020). https://doi.org/10.1016/j.ensm.2020.01.003
Y. Cui, Q. Zhao, X. Wu, X. Chen, J. Yang et al., An interface-bridged organic–inorganic layer that suppresses dendrite formation and side reactions for ultra-long-life aqueous zinc metal anodes. Angew. Chem. Int. Ed. 59, 16594–16601 (2020). https://doi.org/10.1002/anie.202005472
W. Shang, Q. Li, F. Jiang, B. Huang, J. Song, B. Zn et al., I2 battery’s performance by coating a zeolite-based cation-exchange protecting layer. Nano-Micro Lett. 14, 82 (2022). https://doi.org/10.1007/s40820-022-00825-5
M. Cui, Y. Xiao, L. Kang, W. Du, Y. Gao et al., Quasi-isolated Au ps as heterogeneous seeds to guide uniform Zn deposition for aqueous zinc-ion batteries. ACS Appl. Energy Mater. 2, 6490–6496 (2019). https://doi.org/10.1021/acsaem.9b01063
Q. Lu, C. Liu, Y. Du, X. Wang, L. Ding et al., Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl. Mater. Interfaces 13, 16869–16875 (2021). https://doi.org/10.1021/acsami.0c22911
K. Ouyang, D. Ma, N. Zhao, Y. Wang, M. Yang et al., A new insight into ultrastable Zn metal batteries enabled by in situ built multifunctional metallic interphase. Adv. Funct. Mater. 32, 2109749 (2022). https://doi.org/10.1002/adfm.202109749
J. Hao, B. Li, X. Li, X. Zeng, S. Zhang et al., An In-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 32, e2003021 (2020). https://doi.org/10.1002/adma.202003021
X. Xie, S. Liang, J. Gao, S. Guo, J. Guo et al., Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020). https://doi.org/10.1039/C9EE03545A
T.C. Li, Y. Von Lim, X. Xie, X.L. Li, G. Li et al., ZnSe modified zinc metal anodes: toward enhanced zincophilicity and ionic diffusion. Small 17, e2101728 (2021). https://doi.org/10.1002/smll.202101728
T. Huang, K. Xu, N. Jia, L. Yang, H. Liu et al., Intrinsic interfacial dynamic engineering of zincophilic microbrushes via regulating Zn deposition for highly reversible aqueous zinc ion battery. Adv. Mater. 35, e2205206 (2023). https://doi.org/10.1002/adma.202205206
P. Da, Y. Zheng, Y. Hu, Z. Wu, H. Zhao et al., Synthesis of bandgap-tunable transition metal sulfides through gas-phase cation exchange-induced topological transformation. Angew. Chem. Int. Ed. 62, 2301802 (2023). https://doi.org/10.1002/anie.202301802
X. Xu, S. Li, J. Chen, S. Cai, Z. Long et al., Design principles and material engineering of ZnS for optoelectronic devices and catalysis. Adv. Funct. Mater. 28, 1802029 (2018). https://doi.org/10.1002/adfm.201802029
M. Fayette, H.J. Chang, I.A. Rodrı Guez-Pérez, X. Li, D. Reed, Electrodeposited zinc-based films as anodes for aqueous zinc batteries. ACS Appl. Mater. Interfaces 12, 42763–42772 (2020). https://doi.org/10.1021/acsami.0c10956
R. Wang, S. Xin, D. Chao, Z. Liu, J. Wan et al., Fast and regulated zinc deposition in a semiconductor substrate toward high-performance aqueous rechargeable batteries. Adv. Funct. Mater. 32, 2207751 (2022). https://doi.org/10.1002/adfm.202207751
T. Le Manh, E.M. Arce-Estrada, M. Romero-Romo, I. Mejía-Caballero, J. Aldana-González et al., On wetting angles and nucleation energies during the electrochemical nucleation of cobalt onto glassy carbon from a deep eutectic solvent. J. Electrochem. Soc. 164, D694–D699 (2017). https://doi.org/10.1149/2.1061712jes
K. Ngamlerdpokin, N. Tantavichet, Electrodeposition of nickel–copper alloys to use as a cathode for hydrogen evolution in an alkaline media. Int. J. Hydrog. Energy 39, 2505–2515 (2014). https://doi.org/10.1016/j.ijhydene.2013.12.013
S. Kumar, S. Pande, P. Verma, Factor effecting electro-deposition process. IJCET 5, 700–703 (2015). http://inpressco.com/category/ijcet
B. Sarma, R.S. Ray, M. Misra, Charge storage in flower-like ZnS electrochemically deposited on TiO2 nanotube. Mater. Lett. 139, 77–80 (2015). https://doi.org/10.1016/j.matlet.2014.09.115
R. Zhao, H. Wang, H. Du, Y. Yang, Z. Gao et al., Lanthanum nitrate as aqueous electrolyte additive for favourable zinc metal electrodeposition. Nat. Commun. 13, 3252 (2022). https://doi.org/10.1038/s41467-022-30939-8
G. Li, Regulating mass transport behavior for high-performance lithium metal batteries and fast-charging lithium-ion batteries. Adv. Energy Mater. 11, 2002891 (2021). https://doi.org/10.1002/aenm.202002891
G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula et al., Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 3, 1076–1083 (2018). https://doi.org/10.1038/s41560-018-0276-z
T. Altalhi, A. Mezni, M.A. Amin, M.S. Refat, A.A. Gobouri et al., ZnS quantum dots decorated on one-dimensional scaffold of MWCNT/PANI conducting nanocomposite as an anode for enzymatic biofuel cell. Polymers 14, 1321 (2022). https://doi.org/10.3390/polym14071321
Q. Zhang, A. Asthagiri, Solvation effects on DFT predictions of ORR activity on metal surfaces. Catal. Today 323, 35–43 (2019). https://doi.org/10.1016/j.cattod.2018.07.036
H. Qin, W. Kuang, N. Hu, X. Zhong, D. Huang et al., Building metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 32, 2206695 (2022). https://doi.org/10.1002/adfm.202206695
M. Sharma, D. Mishra, J. Kumar, First-principles study of the structural and electronic properties of bulk ZnS and small ZnnSn nanoclusters in the framework of the DFT+U method. Phys. Rev. B 100, 045151 (2019). https://doi.org/10.1103/physrevb.100.045151
A. Chen, C. Zhao, J. Gao, Z. Guo, X. Lu et al., Multifunctional SEI-like structure coating stabilizing Zn anodes at a large current and capacity. Energy Environ. Sci. 16, 275–284 (2023). https://doi.org/10.1039/D2EE02931F
C. Ma, X. Wang, W. Lu, C. Wang, H. Yue et al., Achieving stable Zn metal anode via a simple NiCo layered double hydroxides artificial coating for high performance aqueous Zn-ion batteries. Chem. Eng. J. 429, 132576 (2022). https://doi.org/10.1016/j.cej.2021.132576
Y. Li, S. Yang, H. Du, Y. Liu, X. Wu et al., A stable fluoride-based interphase for a long cycle Zn metal anode in an aqueous zinc ion battery. J. Mater. Chem. A 10, 14399–14410 (2022). https://doi.org/10.1039/D2TA03550B
Z. Cao, X. Zhu, D. Xu, P. Dong, M.O.L. Chee et al., Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 36, 132–138 (2021). https://doi.org/10.1016/j.ensm.2020.12.022
J. Zhao, Y. Ying, G. Wang, K. Hu, Y.D. Yuan et al., Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries. Energy Storage Mater. 48, 82–89 (2022). https://doi.org/10.1016/j.ensm.2022.02.054
S. So, Y.N. Ahn, J. Ko, I.T. Kim, J. Hur, Uniform and oriented zinc deposition induced by artificial Nb2O5 Layer for highly reversible Zn anode in aqueous zinc ion batteries. Energy Storage Mater. 52, 40–51 (2022). https://doi.org/10.1016/j.ensm.2022.07.036