MOFs-Derived Strategy and Ternary Alloys Regulation in Flower-Like Magnetic-Carbon Microspheres with Broadband Electromagnetic Wave Absorption
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 245
Abstract
Broadband electromagnetic (EM) wave absorption materials play an important role in military stealth and health protection. Herein, metal–organic frameworks (MOFs)-derived magnetic-carbon CoNiM@C (M = Cu, Zn, Fe, Mn) microspheres are fabricated, which exhibit flower-like nano–microstructure with tunable EM response capacity. Based on the MOFs-derived CoNi@C microsphere, the adjacent third element is introduced into magnetic CoNi alloy to enhance EM wave absorption performance. In term of broadband absorption, the order of efficient absorption bandwidth (EAB) value is Mn > Fe = Zn > Cu in the CoNiM@C microspheres. Therefore, MOFs-derived flower-like CoNiMn@C microspheres hold outstanding broadband absorption and the EAB can reach up to 5.8 GHz (covering 12.2–18 GHz at 2.0 mm thickness). Besides, off-axis electron holography and computational simulations are applied to elucidate the inherent dielectric dissipation and magnetic loss. Rich heterointerfaces in CoNiMn@C promote the aggregation of the negative/positive charges at the contacting region, forming interfacial polarization. The graphitized carbon layer catalyzed by the magnetic CoNiMn core offered the electron mobility path, boosting the conductive loss. Equally importantly, magnetic coupling is observed in the CoNiMn@C to strengthen the magnetic responding behaviors. This study provides a new guide to build broadband EM absorption by regulating the ternary magnetic alloy.
Highlights:
1 Metal–organic frameworks-derived CoNiM@C (M = Cu, Zn, Fe, Mn) microspheres were successfully fabricated with custom-built magnetic alloy-carbon heterogeneous interfaces.
2 Flower-like CoNiMn@C microspheres achieve broadband electromagnetic wave absorption with effective absorption bandwidth of 5.8 GHz at only 2.0 mm thickness.
3 Visual interface charge distribution and hierarchical magnetic coupling were observed to elucidate the electromagnetic energy absorption mechanism.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Z. Wu, W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
- L. Wang, J. Cheng, Y. Zou, W. Zheng, Y. Wang et al., Current advances and future perspectives of MXene-based electromagnetic interference shielding materials. Adv. Compos. Hybrid. Mater. 6(5), 172 (2023). https://doi.org/10.1007/s42114-023-00752-y
- M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
- L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
- J. Yan, Y. Huang, X. Zhang, X. Gong, C. Chen et al., MoS2-decorated/integrated carbon fiber: phase engineering well-regulated microwave absorber. Nano-Micro Lett. 13, 114 (2021). https://doi.org/10.1007/s40820-021-00646-y
- M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
- R. Che, L. Peng, X. Duan, Q. Chen, X. Liang., Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
- H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
- M. Qiao, J. Li, S. Li, D. Wei, X. Lei, Hierarchical CoNi alloys toward microwave absorption application: Chain-like versus p-like. J. Alloy. Compd. 926, 166854 (2022). https://doi.org/10.1016/j.jallcom.2022.166854
- J. Park, D. Ahn, J. Ro, S. Suh, CoNi Nanops with different compositions using a polyol method for a microwave absorber in high-frequency bands. Met. Mater. Int. 29(5), 1542–1554 (2023). https://doi.org/10.1007/s12540-022-01298-2
- Q. Liu, Qi Cao, X. Zhao, H. Bi, C. Wang, Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233–4240 (2015) https://doi.org/10.1021/am508527s
- Z. Wang, W. Yang, Q. Lv, S. Liu, Z. Fang, Ferromagnetic and excellent microwave absorbing properties of CoNi microspheres and heterogeneous Co/Ni nanocrystallines. RSC Adv. 9(24), 13365–13371 (2019). https://doi.org/10.1039/C9RA02013F
- X. He, J. Zhou, J. Tao, Y. Liu, B. Wei et al., Preparation of porous CoNi/N-doped carbon microspheres based on magnetoelectric coupling strategy: a new choice against electromagnetic pollution. J. Colloid Interf. Sci. 626, 123–135 (2022). https://doi.org/10.1016/j.jcis.2022.06.153
- B. Zhao, G. Shao, B. Fan, Y. Xie, R. Zhang, Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. J. Magn. Magn. Mater. 372, 195–200 (2014). https://doi.org/10.1016/j.jmmm.2014.08.018
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 202316691 (2024). https://doi.org/10.1002/adfm.202316691
- B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
- J. Ge, Y. Cui, J. Qian, L. Liu, F. Meng et al., Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 102, 24–35 (2022). https://doi.org/10.1016/j.jmst.2021.07.003
- W. Min, D. Xu, P. Chen, G. Chen, Q. Yu et al., Synthesis of novel hierarchical CoNi@NC hollow microspheres with enhanced microwave absorption performance. J. Mater. Sci. Mater. 32, 8000–8016 (2021). https://doi.org/10.1007/s10854-021-05523-3
- X. Wu, W. Ma, J. Xu, P. He, Y. Du et al., Hierarchical multi-core–shell CoNi@graphite carbon@carbon nanoboxes for highly efficient broadband microwave absorption. ACS Appl. Nano Mater. 5(5), 7300–7311 (2022). https://doi.org/10.1021/acsanm.2c01215
- Y. Qiu, H. Yang, F. Hu, Y. Lin, Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Res. 15(9), 7769–7777 (2022). https://doi.org/10.1007/s12274-022-4617-7
- J. Shu, W. Cao, M. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
- Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
- Z. Gao, A. Iqbal, T. Hassan, Limin. Zhang, H. Wu et al., Texture regulation of metal-organic frameworks, microwave absorption mechanism‐oriented structural optimization and design perspectives. Adv. Sci. 9(35), 2204151 (2022). https://doi.org/10.1002/advs.202204151
- X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12(15), 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
- T. Wu, F. Ren, Z. Guo, J. Zhang, X. Hou et al., Bayberry-like bimetallic CoNi-MOF-74 derivatives/MXene hybrids with abundant heterointerfaces toward high-efficiency electromagnetic wave absorption. J. Alloy. Compd. 976, 172984 (2024). https://doi.org/10.1016/j.jallcom.2023.172984
- Y. Yu, Y. Fang, Q. Hu, X. Shang, C. Tang et al., Hollow MOF-derived CoNi/C composites as effective electromagnetic absorbers in the X-band and Ku-band. J. Mater. Chem. C 10(3), 983–993 (2022). https://doi.org/10.1039/D1TC04645D
- C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/C9NJ04115J
- Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546 (2022). https://doi.org/10.1007/s12274-022-4674-y
- J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607 (2024). https://doi.org/10.1007/s12274-023-6090-3
- Z. Jiang, Y. Gao, Z. Pan, M. Zhang, J. Guo et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195 (2024). https://doi.org/10.1016/j.jmst.2023.08.013
- C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2023). https://doi.org/10.1007/s40820-022-00986-3
- H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
- X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
- J. Chen, J. Zheng, Q. Huang, F. Wang, G. Ji, Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanops. ACS Appl. Mater. Interfaces 13(30), 36182–36189 (2021). https://doi.org/10.1021/acsami.1c09430
- L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@ graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5(8), 2005–2014 (2017). https://doi.org/10.1039/C6TC05179K
- Y. Guo, S. Zhang, J. Wang, Z. Liu, Y. Liu, Facile preparation of high-performance cobalt-manganese layered double hydroxide/polypyrrole composite for battery-type asymmetric supercapacitors. J. Alloy. Compd. 832, 154899 (2020). https://doi.org/10.1016/j.jallcom.2020.154899
- F. Pan, X. Wu, D. Batalu, W. Lu, H. Guan, Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. Adv. Powder Mater. 2(2), 100100 (2023). https://doi.org/10.1016/j.apmate.2022.100100
- L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), e2106195 (2022). https://doi.org/10.1002/adma.202106195
- L. Jin, J. Wang, F. Wu, Y. Yin, B. Zhang, MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: optimum composition and performance evaluation. Carbon 182, 770–780 (2021). https://doi.org/10.1016/j.carbon.2021.06.073
- F. Wu, M. Ling, L. Wan, P. Liu, Y. Wang et al., Three-dimensional FeMZn (M= Co or Ni) MOFs: Ions coordinated self-assembling processes and boosting microwave absorption. Chem. Eng. J. 435, 134905 (2022). https://doi.org/10.1016/j.cej.2022.134905
- H. Wang, S.H. Yang, P.Y. Zhao, X.J. Zhang, G.S. Wang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
- B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core-shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
- Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4
- X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co‐C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C Band. Adv. Funct. Mater. 2313544 (2024). https://doi.org/10.1002/adfm.202313544
- X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
- H. Jia, Y. Dua, C. Dou, L. Niu, N. Wu et al., Thermally-driven contraction asymmetric yolk-shell MnSe@C microsphere with boosted dielectric behaviors and microwave absorption. J. Mater. Sci. Technol. 183, 223–231 (2024). https://doi.org/10.1016/j.jmst.2023.10.017
- H. Jia, Y. Duan, M. Wang, W. Chen, C. Dou et al., 1D CNTs assembled MOF-derived hollow CoSe2@N-doped carbon constructed high-efficiency electromagnetic wave absorbers. Carbon 215, 118400 (2023). https://doi.org/10.1016/j.carbon.2023.118400
- L. Wang, R. Mao, M. Huang, H. Jia, Y. Li et al., Heterogeneous interface engineering of high-density MOFs-derived Co nanops anchored on N-doped RGO toward wide-frequency electromagnetic wave absorption. Mat. Today Phy. 35, 101128 (2023). https://doi.org/10.1016/j.mtphys.2023.101128
- M. Li, X. Song, J. Xue, F. Ye, L. Yin et al., Construction of hollow carbon nanofibers with graphene nanorods as nano-antennas for lower-frequency microwave absorption. ACS Appl. Mater. Interfaces 15(26), 31720–31728 (2023). https://doi.org/10.1021/acsami.3c04839
- M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16(14), 2000158 (2020). https://doi.org/10.1002/smll.202000158
- S. Gao, Y. Zhang, W. Chen, X. Zhang, J. He et al., Heterojunction MoS2@VO2 Microspheres for electromagnetic Wave Absorption in the X-Band. ACS Appl. Electron. Mater. 5(11), 6255–6265 (2023). https://doi.org/10.1021/acsaelm.3c01155
- M. Huang, L. Wang, K. Pei, B. Li, W. You et al., Heterogeneous interface engineering of Bi-metal MOFs-derived ZnFe2O4-ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 34(3), 2308898 (2024). https://doi.org/10.1002/adfm.202308898
- Q. Ma, Y. Zheng, L. Zhu, M. Li, Cao, Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption. J. Materiomics 8(3), 577–585 (2022). https://doi.org/10.1016/j.jmat.2021.12.003
- S. Gao, Y. Zhang, H. Xing, H. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 387, 124149 (2020). https://doi.org/10.1016/j.cej.2020.124149
- Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
- J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv et al., Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020). https://doi.org/10.1016/j.cej.2019.122591
- Y. Guo, Y. Duan, X. Liu, H. Zhang, T. Yuan et al., Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower‐frequency microwave absorption. Small 2308809 (2023). https://doi.org/10.1002/smll.202308809
- G. Liu, C. Wu, L. Hu, X. Hu, X. Zhang et al., Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon 181, 48–57 (2021). https://doi.org/10.1016/j.carbon.2021.05.015
- G. Liu, K. Bi, J. Cai, Q. Wang, M. Yan et al., Nanofilms of Fe3Co7 on a mixed cellulose membrane for flexible and wideband electromagnetic absorption. ACS Appl. Nano Mater. 5, 17194–17202 (2022). https://doi.org/10.1021/acsanm.2c04163
- Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
References
Z. Wu, W. Cheng, C. Jin, B. Yang, C. Xu et al., Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 34(11), 2107538 (2022). https://doi.org/10.1002/adma.202107538
L. Wang, J. Cheng, Y. Zou, W. Zheng, Y. Wang et al., Current advances and future perspectives of MXene-based electromagnetic interference shielding materials. Adv. Compos. Hybrid. Mater. 6(5), 172 (2023). https://doi.org/10.1007/s42114-023-00752-y
M. Cao, X. Wang, M. Zhang, W. Cao, X. Fang et al., Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 32(10), 1907156 (2020). https://doi.org/10.1002/adma.201907156
L. Wang, Z. Ma, H. Qiu, Y. Zhang, Z. Yu et al., Significantly enhanced electromagnetic interference shielding performances of epoxy nanocomposites with long-range aligned lamellar structures. Nano-Micro Lett. 14, 224 (2022). https://doi.org/10.1007/s40820-022-00949-8
J. Yan, Y. Huang, X. Zhang, X. Gong, C. Chen et al., MoS2-decorated/integrated carbon fiber: phase engineering well-regulated microwave absorber. Nano-Micro Lett. 13, 114 (2021). https://doi.org/10.1007/s40820-021-00646-y
M. Cao, X. Wang, W. Cao, X. Fang, B. Wen et al., Thermally driven transport and relaxation switching self-powered electromagnetic energy conversion. Small 14(29), 1800987 (2018). https://doi.org/10.1002/smll.201800987
R. Che, L. Peng, X. Duan, Q. Chen, X. Liang., Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes. Adv. Mater. 16(5), 401–405 (2004). https://doi.org/10.1002/adma.200306460
H. Zhao, Y. Cheng, W. Liu, L. Yang, B. Zhang et al., Biomass-derived porous carbon-based nanostructures for microwave absorption. Nano-Micro Lett. 11, 24 (2019). https://doi.org/10.1007/s40820-019-0255-3
M. Qiao, J. Li, S. Li, D. Wei, X. Lei, Hierarchical CoNi alloys toward microwave absorption application: Chain-like versus p-like. J. Alloy. Compd. 926, 166854 (2022). https://doi.org/10.1016/j.jallcom.2022.166854
J. Park, D. Ahn, J. Ro, S. Suh, CoNi Nanops with different compositions using a polyol method for a microwave absorber in high-frequency bands. Met. Mater. Int. 29(5), 1542–1554 (2023). https://doi.org/10.1007/s12540-022-01298-2
Q. Liu, Qi Cao, X. Zhao, H. Bi, C. Wang, Insights into size-dominant magnetic microwave absorption properties of CoNi microflowers via off-axis electron holography. ACS Appl. Mater. Interfaces 7(7), 4233–4240 (2015) https://doi.org/10.1021/am508527s
Z. Wang, W. Yang, Q. Lv, S. Liu, Z. Fang, Ferromagnetic and excellent microwave absorbing properties of CoNi microspheres and heterogeneous Co/Ni nanocrystallines. RSC Adv. 9(24), 13365–13371 (2019). https://doi.org/10.1039/C9RA02013F
X. He, J. Zhou, J. Tao, Y. Liu, B. Wei et al., Preparation of porous CoNi/N-doped carbon microspheres based on magnetoelectric coupling strategy: a new choice against electromagnetic pollution. J. Colloid Interf. Sci. 626, 123–135 (2022). https://doi.org/10.1016/j.jcis.2022.06.153
B. Zhao, G. Shao, B. Fan, Y. Xie, R. Zhang, Preparation and electromagnetic wave absorption of chain-like CoNi by a hydrothermal route. J. Magn. Magn. Mater. 372, 195–200 (2014). https://doi.org/10.1016/j.jmmm.2014.08.018
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. 202316691 (2024). https://doi.org/10.1002/adfm.202316691
B. Zhao, Y. Li, H. Ji, P. Bai, S. Wang et al., Lightweight graphene aerogels by decoration of 1D CoNi chains and CNTs to achieve ultra-wide microwave absorption. Carbon 176, 411–420 (2021). https://doi.org/10.1016/j.carbon.2021.01.136
J. Ge, Y. Cui, J. Qian, L. Liu, F. Meng et al., Morphology-controlled CoNi/C hybrids with bifunctions of efficient anti-corrosion and microwave absorption. J. Mater. Sci. Technol. 102, 24–35 (2022). https://doi.org/10.1016/j.jmst.2021.07.003
W. Min, D. Xu, P. Chen, G. Chen, Q. Yu et al., Synthesis of novel hierarchical CoNi@NC hollow microspheres with enhanced microwave absorption performance. J. Mater. Sci. Mater. 32, 8000–8016 (2021). https://doi.org/10.1007/s10854-021-05523-3
X. Wu, W. Ma, J. Xu, P. He, Y. Du et al., Hierarchical multi-core–shell CoNi@graphite carbon@carbon nanoboxes for highly efficient broadband microwave absorption. ACS Appl. Nano Mater. 5(5), 7300–7311 (2022). https://doi.org/10.1021/acsanm.2c01215
Y. Qiu, H. Yang, F. Hu, Y. Lin, Two-dimensional CoNi@mesoporous carbon composite with heterogeneous structure toward broadband microwave absorber. Nano Res. 15(9), 7769–7777 (2022). https://doi.org/10.1007/s12274-022-4617-7
J. Shu, W. Cao, M. Cao, Diverse metal-organic framework architectures for electromagnetic absorbers and shielding. Adv. Funct. Mater. 31(23), 2100470 (2021). https://doi.org/10.1002/adfm.202100470
Z. Zhang, Z. Cai, Z. Wang, Y. Peng, L. Xia et al., A review on metal-organic framework-derived porous carbon-based novel microwave absorption materials. Nano-Micro Lett. 13, 56 (2021). https://doi.org/10.1007/s40820-020-00582-3
Z. Gao, A. Iqbal, T. Hassan, Limin. Zhang, H. Wu et al., Texture regulation of metal-organic frameworks, microwave absorption mechanism‐oriented structural optimization and design perspectives. Adv. Sci. 9(35), 2204151 (2022). https://doi.org/10.1002/advs.202204151
X. Xu, F. Ran, Z. Fan, Z. Cheng, T. Lv et al., Bimetallic metal-organic framework-derived pomegranate-like nanoclusters coupled with CoNi-doped graphene for strong wideband microwave absorption. ACS Appl. Mater. Interfaces 12(15), 17870–17880 (2020). https://doi.org/10.1021/acsami.0c01572
T. Wu, F. Ren, Z. Guo, J. Zhang, X. Hou et al., Bayberry-like bimetallic CoNi-MOF-74 derivatives/MXene hybrids with abundant heterointerfaces toward high-efficiency electromagnetic wave absorption. J. Alloy. Compd. 976, 172984 (2024). https://doi.org/10.1016/j.jallcom.2023.172984
Y. Yu, Y. Fang, Q. Hu, X. Shang, C. Tang et al., Hollow MOF-derived CoNi/C composites as effective electromagnetic absorbers in the X-band and Ku-band. J. Mater. Chem. C 10(3), 983–993 (2022). https://doi.org/10.1039/D1TC04645D
C. Liu, J. Qiao, X. Zhang, D. Xu, N. Wu et al., Bimetallic MOF-derived porous CoNi/C nanocomposites with ultra-wide band microwave absorption properties. New J. Chem. 43(42), 16546–16554 (2019). https://doi.org/10.1039/C9NJ04115J
Z. Jiang, H. Si, Y. Li, D. Li, H. Chen et al., Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption. Nano Res. 15, 8546 (2022). https://doi.org/10.1007/s12274-022-4674-y
J. Zhao, Z. Gu, Q. Zhang, Stacking MoS2 flower-like microspheres on pomelo peels-derived porous carbon nanosheets for high-efficient X-band electromagnetic wave absorption. Nano Res. 17, 1607 (2024). https://doi.org/10.1007/s12274-023-6090-3
Z. Jiang, Y. Gao, Z. Pan, M. Zhang, J. Guo et al., Pomegranate-like ATO/SiO2 microspheres for efficient microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 174, 195 (2024). https://doi.org/10.1016/j.jmst.2023.08.013
C. Wang, Y. Liu, Z. Jia, W. Zhao, G. Wu, Multicomponent nanops synergistic one-dimensional nanofibers as heterostructure absorbers for tunable and efficient microwave absorption. Nano-Micro Lett. 15, 13 (2023). https://doi.org/10.1007/s40820-022-00986-3
H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, A novel hierarchically porous magnetic carbon derived from biomass for strong lightweight microwave absorption. Carbon 142, 245–253 (2019). https://doi.org/10.1016/j.carbon.2018.10.027
X. Liang, Z. Man, B. Quan, J. Zheng, W. Gu et al., Environment-stable CoxNiy encapsulation in stacked porous carbon nanosheets for enhanced microwave absorption. Nano-Micro Lett. 12, 102 (2020). https://doi.org/10.1007/s40820-020-00432-2
J. Chen, J. Zheng, Q. Huang, F. Wang, G. Ji, Enhanced microwave absorbing ability of carbon fibers with embedded FeCo/CoFe2O4 nanops. ACS Appl. Mater. Interfaces 13(30), 36182–36189 (2021). https://doi.org/10.1021/acsami.1c09430
L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@ graphene composites with superior microwave absorption properties. J. Mater. Chem. C 5(8), 2005–2014 (2017). https://doi.org/10.1039/C6TC05179K
Y. Guo, S. Zhang, J. Wang, Z. Liu, Y. Liu, Facile preparation of high-performance cobalt-manganese layered double hydroxide/polypyrrole composite for battery-type asymmetric supercapacitors. J. Alloy. Compd. 832, 154899 (2020). https://doi.org/10.1016/j.jallcom.2020.154899
F. Pan, X. Wu, D. Batalu, W. Lu, H. Guan, Assembling of low-dimensional aggregates with interlaminar electromagnetic synergy network for high-efficient microwave absorption. Adv. Powder Mater. 2(2), 100100 (2023). https://doi.org/10.1016/j.apmate.2022.100100
L. Liang, W. Gu, Y. Wu, B. Zhang, G. Wang et al., Heterointerface engineering in electromagnetic absorbers: new insights and opportunities. Adv. Mater. 34(4), e2106195 (2022). https://doi.org/10.1002/adma.202106195
L. Jin, J. Wang, F. Wu, Y. Yin, B. Zhang, MXene@Fe3O4 microspheres/fibers composite microwave absorbing materials: optimum composition and performance evaluation. Carbon 182, 770–780 (2021). https://doi.org/10.1016/j.carbon.2021.06.073
F. Wu, M. Ling, L. Wan, P. Liu, Y. Wang et al., Three-dimensional FeMZn (M= Co or Ni) MOFs: Ions coordinated self-assembling processes and boosting microwave absorption. Chem. Eng. J. 435, 134905 (2022). https://doi.org/10.1016/j.cej.2022.134905
H. Wang, S.H. Yang, P.Y. Zhao, X.J. Zhang, G.S. Wang et al., 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nano-Micro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y
B. Wen, H. Yang, Y. Lin, L. Ma, Y. Qiu et al., Synthesis of core-shell Co@S-doped carbon@mesoporous N-doped carbon nanosheets with a hierarchically porous structure for strong electromagnetic wave absorption. J. Mater. Chem. A 9(6), 3567–3575 (2021). https://doi.org/10.1039/D0TA09393A
Y. Wu, L. Chen, Y. Han, P. Liu, H. Xu et al., Hierarchical construction of CNT networks in aramid papers for high-efficiency microwave absorption. Nano Res. 16, 7801–7809 (2023). https://doi.org/10.1007/s12274-023-5522-4
X. Zhong, M. He, C. Zhang, Y. Guo, J. Hu et al., Heterostructured BN@Co‐C@C endowing polyester composites excellent thermal conductivity and microwave absorption at C Band. Adv. Funct. Mater. 2313544 (2024). https://doi.org/10.1002/adfm.202313544
X. Wang, F. Pan, Z. Xiang, Q. Zeng, K. Pei et al., Magnetic vortex core-shell Fe3O4@C nanorings with enhanced microwave absorption performance. Carbon 157, 130–139 (2020). https://doi.org/10.1016/j.carbon.2019.10.030
H. Jia, Y. Dua, C. Dou, L. Niu, N. Wu et al., Thermally-driven contraction asymmetric yolk-shell MnSe@C microsphere with boosted dielectric behaviors and microwave absorption. J. Mater. Sci. Technol. 183, 223–231 (2024). https://doi.org/10.1016/j.jmst.2023.10.017
H. Jia, Y. Duan, M. Wang, W. Chen, C. Dou et al., 1D CNTs assembled MOF-derived hollow CoSe2@N-doped carbon constructed high-efficiency electromagnetic wave absorbers. Carbon 215, 118400 (2023). https://doi.org/10.1016/j.carbon.2023.118400
L. Wang, R. Mao, M. Huang, H. Jia, Y. Li et al., Heterogeneous interface engineering of high-density MOFs-derived Co nanops anchored on N-doped RGO toward wide-frequency electromagnetic wave absorption. Mat. Today Phy. 35, 101128 (2023). https://doi.org/10.1016/j.mtphys.2023.101128
M. Li, X. Song, J. Xue, F. Ye, L. Yin et al., Construction of hollow carbon nanofibers with graphene nanorods as nano-antennas for lower-frequency microwave absorption. ACS Appl. Mater. Interfaces 15(26), 31720–31728 (2023). https://doi.org/10.1021/acsami.3c04839
M. Huang, L. Wang, K. Pei, W. You, X. Yu et al., Multidimension-controllable synthesis of MOF-derived Co@N-doped carbon composite with magnetic-dielectric synergy toward strong microwave absorption. Small 16(14), 2000158 (2020). https://doi.org/10.1002/smll.202000158
S. Gao, Y. Zhang, W. Chen, X. Zhang, J. He et al., Heterojunction MoS2@VO2 Microspheres for electromagnetic Wave Absorption in the X-Band. ACS Appl. Electron. Mater. 5(11), 6255–6265 (2023). https://doi.org/10.1021/acsaelm.3c01155
M. Huang, L. Wang, K. Pei, B. Li, W. You et al., Heterogeneous interface engineering of Bi-metal MOFs-derived ZnFe2O4-ZnO-Fe@C microspheres via confined growth strategy toward superior electromagnetic wave absorption. Adv. Funct. Mater. 34(3), 2308898 (2024). https://doi.org/10.1002/adfm.202308898
Q. Ma, Y. Zheng, L. Zhu, M. Li, Cao, Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption. J. Materiomics 8(3), 577–585 (2022). https://doi.org/10.1016/j.jmat.2021.12.003
S. Gao, Y. Zhang, H. Xing, H. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 387, 124149 (2020). https://doi.org/10.1016/j.cej.2020.124149
Y. Zhao, X. Zuo, Y. Guo, H. Huang, H. Zhang et al., Structural engineering of hierarchical aerogels comprised of multi-dimensional gradient carbon nanoarchitectures for highly efficient microwave absorption. Nano-Micro Lett. 13, 144 (2021). https://doi.org/10.1007/s40820-021-00667-7
J. Qiao, X. Zhang, D. Xu, L. Kong, L. Lv et al., Design and synthesis of TiO2/Co/carbon nanofibers with tunable and efficient electromagnetic absorption. Chem. Eng. J. 380, 122591 (2020). https://doi.org/10.1016/j.cej.2019.122591
Y. Guo, Y. Duan, X. Liu, H. Zhang, T. Yuan et al., Boosting conductive loss and magnetic coupling based on “size modulation engineering” toward lower‐frequency microwave absorption. Small 2308809 (2023). https://doi.org/10.1002/smll.202308809
G. Liu, C. Wu, L. Hu, X. Hu, X. Zhang et al., Anisotropy engineering of metal organic framework derivatives for effective electromagnetic wave absorption. Carbon 181, 48–57 (2021). https://doi.org/10.1016/j.carbon.2021.05.015
G. Liu, K. Bi, J. Cai, Q. Wang, M. Yan et al., Nanofilms of Fe3Co7 on a mixed cellulose membrane for flexible and wideband electromagnetic absorption. ACS Appl. Nano Mater. 5, 17194–17202 (2022). https://doi.org/10.1021/acsanm.2c04163
Y. Han, M. He, J. Hu, P. Liu, Z. Liu et al., Hierarchical design of FeCo-based microchains for enhanced microwave absorption in C band. Nano Res. 16, 1773–1778 (2023). https://doi.org/10.1007/s12274-022-5111-y
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194 (2024). https://doi.org/10.1016/j.jmst.2023.08.020