Constructing Built-In Electric Fields with Semiconductor Junctions and Schottky Junctions Based on Mo–MXene/Mo–Metal Sulfides for Electromagnetic Response
Corresponding Author: Renchao Che
Nano-Micro Letters,
Vol. 16 (2024), Article Number: 213
Abstract
The exploration of novel multivariate heterostructures has emerged as a pivotal strategy for developing high-performance electromagnetic wave (EMW) absorption materials. However, the loss mechanism in traditional heterostructures is relatively simple, guided by empirical observations, and is not monotonous. In this work, we presented a novel semiconductor–semiconductor–metal heterostructure system, Mo–MXene/Mo–metal sulfides (metal = Sn, Fe, Mn, Co, Ni, Zn, and Cu), including semiconductor junctions and Mott–Schottky junctions. By skillfully combining these distinct functional components (Mo–MXene, MoS2, metal sulfides), we can engineer a multiple heterogeneous interface with superior absorption capabilities, broad effective absorption bandwidths, and ultrathin matching thickness. The successful establishment of semiconductor–semiconductor–metal heterostructures gives rise to a built-in electric field that intensifies electron transfer, as confirmed by density functional theory, which collaborates with multiple dielectric polarization mechanisms to substantially amplify EMW absorption. We detailed a successful synthesis of a series of Mo–MXene/Mo–metal sulfides featuring both semiconductor–semiconductor and semiconductor–metal interfaces. The achievements were most pronounced in Mo–MXene/Mo–Sn sulfide, which achieved remarkable reflection loss values of − 70.6 dB at a matching thickness of only 1.885 mm. Radar cross-section calculations indicate that these MXene/Mo–metal sulfides have tremendous potential in practical military stealth technology. This work marks a departure from conventional component design limitations and presents a novel pathway for the creation of advanced MXene-based composites with potent EMW absorption capabilities.
Highlights:
1 Mo–MXene/Mo–metal sulfides with semiconductor junctions and Mott–Schottky junctions are designed.
2 Built-in electric field are constructed in semiconductor–semiconductor–metal heterostructure, enhancing dielectric polarization and impedance matching.
3 Density functional theory calculations and Radar cross-section simulations confirmed the excellent electromagnetic wave absorption ability of heterostructures.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591
- J. Yan, Q. Zheng, S. Wang, Y. Tian, W. Gong et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023). https://doi.org/10.1002/adma.202300015
- F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023). https://doi.org/10.1002/adfm.202306599
- R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023). https://doi.org/10.1073/pnas.2209807120
- H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10(21), 2301599 (2023). https://doi.org/10.1002/advs.202301599
- Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
- J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/adfm.202201129
- Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022). https://doi.org/10.1002/adfm.202204499
- B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202314653
- L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
- F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm.202300374
- M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
- K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi.org/10.1007/s40820-023-01280-6
- J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2024). https://doi.org/10.1007/s40820-023-01247-7
- M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229
- J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm.202200141
- J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
- X. Wu, S. Xie, H. Zhang, Q. Zhang, B. Sels et al., Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33(50), 2007129 (2021). https://doi.org/10.1002/adma.202007129
- Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021). https://doi.org/10.1016/j.cej.2021.131272
- Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
- L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
- Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
- L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
- B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2023). https://doi.org/10.1002/adfm.202213357
- M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16(5), 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
- Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr.202300224
- L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of SnS2–MXene Mott–Schottky heterojunction in Li–S batteries. Small 19(15), 2206462 (2023). https://doi.org/10.1002/smll.202206462
- J. Choi, Y. Kim, S. Cho, K. Park, H. Kang et al., In situ formation of multiple schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30(40), 2003998 (2020). https://doi.org/10.1002/adfm.202003998
- X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 16(12), 19959–19979 (2022). https://doi.org/10.1021/acsnano.2c09888
- S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015). https://doi.org/10.1039/C5CS00064E
- M. Eshete, X. Li, L. Yang, X. Wang, J. Zhang et al., Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges. Small Sci. 3(3), 2200041 (2023). https://doi.org/10.1002/smsc.202200041
- Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott–Schottky VS2/MoS2 heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470–1478 (2020). https://doi.org/10.1016/j.scib.2020.05.007
- M. Saraf, B. Chacon, S. Ippolito, R. Lord, M. Anayee et al., Enhancing charge storage of Mo2Ti2C3 MXene by partial oxidation. Adv. Funct. Mater. 34(1), 2306815 (2023). https://doi.org/10.1002/adfm.202306815
- B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
- X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanops for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023). https://doi.org/10.26599/JAC.2023.9220772
- Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim et al., Probing local strain at MX2-metal boundaries with surface plasmon-enhanced Raman scattering. Nano Lett. 14(9), 5329–5334 (2014). https://doi.org/10.1021/nl5023767
- X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
- L. Huang, L. Zhao, Y. Zhang, Y. Chen, Q. Zhang et al., Self-limited on-site conversion of MoO3 nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution. Adv. Energy Mater. 8(21), 1800734 (2018). https://doi.org/10.1002/aenm.201800734
- J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023). https://doi.org/10.1002/sstr.202200379
- J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
- X. Zeng, C. Zhao, Y. Yin, T. Nie, N. Xie et al., Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 193, 26–34 (2022). https://doi.org/10.1016/j.carbon.2022.03.029
- Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
- X. Jiang, Q. Wang, L. Song, H. Lu, H. Xu et al., Enhancing electromagnetic wave absorption with core-shell structured SiO2@MXene@MoS2 nanospheres. Carbon Energy (2024). https://doi.org/10.1002/cey2.502
- Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang et al., In situ formation ZnIn2S4/Mo2TiC2 Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: manipulation of local coordination and electronic structure. Small 19(24), 2300717 (2023). https://doi.org/10.1002/smll.202300717
- F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 11(9), 1466–1478 (2022). https://doi.org/10.1007/s40145-022-0624-0
- J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 429, 132253 (2022). https://doi.org/10.1016/j.cej.2021.132253
- X. Zeng, H. Zhang, R. Yu, G. Stucky, J. Qiu, A phase and interface co-engineered MoPxSy@NiFePxSy@NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J. Mater. Chem. A 11(26), 14272–14283 (2023). https://doi.org/10.1039/D3TA01993D
- Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022). https://doi.org/10.1002/adfm.202112294
- T. Zeng, G. Chen, Q. Peng, D. Feng, Q. Wang, Nano Sn2S3 embedded in nitrogenous-carbon compounds for long-life and high-rate cycling sodium-ion batteries. ChemSusChem 14(11), 2383–2392 (2021). https://doi.org/10.1002/cssc.202100615
- J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018
- X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023). https://doi.org/10.1002/smll.202303393
- Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
- Z. Chen, J. Zhang, L. Ni, D. Sheng, R. Gao et al., Improving electromagnetic wave absorption property of metal borides/carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy. Carbon 221, 118901 (2024). https://doi.org/10.1016/j.carbon.2024.118901
- A. Xie, D. Sheng, W. Liu, Y. Chen, S. Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92–100 (2023). https://doi.org/10.1016/j.jmst.2023.05.004
- Y. Jiao, Z. Dai, M. Feng, J. Luo, Y. Xu, Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites. Mater. Today Phys. 33, 101058 (2023). https://doi.org/10.1016/j.mtphys.2023.101058
- T. Gao, R. Zhao, Y.X. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). https://doi.org/10.1002/adfm.202204370
- A. Xie, Z. Ma, Z. Xiong, W. Li, L. Jiang et al., Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application. J. Mater. Sci. Technol. 175, 125–131 (2024). https://doi.org/10.1016/j.jmst.2023.08.016
- K. Cole, R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
- Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311411
- A. Xie, R. Guo, L. Wu, W. Dong, Anion-substitution interfacial engineering to construct C@MoS2 hierarchical nanocomposites for broadband electromagnetic wave absorption. J. Colloid Interf. Sci. 651, 1–8 (2023). https://doi.org/10.1016/j.jcis.2023.07.169
- Z. Li, L. Zhang, H. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption. Small 20(11), 2305120 (2024). https://doi.org/10.1002/smll.202305120
- C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
- Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023). https://doi.org/10.1002/adfm.202211352
- X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420–8432 (2023). https://doi.org/10.1021/acsnano.3c00338
- J. Wen, G. Chen, S. Hui, Z. Li, J. Yun et al., Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers. Adv. Powder Mater. 3(3), 100180 (2024). https://doi.org/10.1016/j.apmate.2024.100180
- H. Liang, S. Hui, G. Chen, H. Shen, J. Yun et al., Discovery of deactivation phenomenon in NiCo2S4/NiS2 electromagnetic wave absorbent and its reactivation mechanism. Small Methods (2024). https://doi.org/10.1002/smtd.202301600
- S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024). https://doi.org/10.1002/advs.202307649
References
Y. Xia, W. Gao, C. Gao, A review on graphene-based electromagnetic functional materials: electromagnetic wave shielding and absorption. Adv. Funct. Mater. 32, 2204591 (2022). https://doi.org/10.1002/adfm.202204591
J. Yan, Q. Zheng, S. Wang, Y. Tian, W. Gong et al., Multifunctional organic-inorganic hybrid perovskite microcrystalline engineering and electromagnetic response switching multi-band devices. Adv. Mater. 35, 2300015 (2023). https://doi.org/10.1002/adma.202300015
F. Pan, K. Pei, G. Chen, H. Guo, H. Jiang et al., Integrated electromagnetic device with on-off heterointerface for intelligent switching between wave-absorption and wave-transmission. Adv. Funct. Mater. 33(49), 2306599 (2023). https://doi.org/10.1002/adfm.202306599
R. Song, B. Mao, Z. Wang, Y. Hui, N. Zhang et al., Comparison of copper and graphene-assembled films in 5G wireless communication and THz electromagnetic-interference shielding. Proc. Natl. Acad. Sci. U.S.A. 120, e2209807120 (2023). https://doi.org/10.1073/pnas.2209807120
H. Jiang, L. Cai, F. Pan, Y. Shi, J. Cheng et al., Ordered heterostructured aerogel with broadband electromagnetic wave absorption based on mesoscopic magnetic superposition enhancement. Adv. Sci. 10(21), 2301599 (2023). https://doi.org/10.1002/advs.202301599
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Hygroscopic holey graphene aerogel fibers enable highly efficient moisture capture, heat allocation and microwave absorption. Nat. Commun. 13, 1227 (2022). https://doi.org/10.1038/s41467-022-28906-4
J. Cheng, H. Zhang, H. Wang, Z. Huang, H. Raza et al., Tailoring self-polarization of bimetallic organic frameworks with multiple polar units toward high-performance consecutive multi-band electromagnetic wave absorption at gigahertz. Adv. Funct. Mater. 32(24), 2201129 (2022). https://doi.org/10.1002/adfm.202201129
Y. Liu, X. Zhou, Z. Jia, H. Wu, G. Wu, Oxygen vacancy-induced dielectric polarization prevails in the electromagnetic wave-absorbing mechanism for Mn-based MOFs-derived composites. Adv. Funct. Mater. 32, 2204499 (2022). https://doi.org/10.1002/adfm.202204499
B. Li, H. Tian, L. Li, W. Liu, J. Liu et al., Graphene-assisted assembly of electrically and magnetically conductive ceramic nanofibrous aerogels enable multifunctionality. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202314653
L. Gai, Y. Wang, P. Wan, S. Yu, Y. Chen et al., Compositional and hollow engineering of silicon carbide/carbon microspheres as high-performance microwave absorbing materials with good environmental tolerance. Nano-Micro Lett. 16, 167 (2024). https://doi.org/10.1007/s40820-024-01369-6
F. Pan, M. Ning, Z. Li, D. Batalu, H. Guo et al., Sequential architecture induced strange dielectric-magnetic behaviors in ferromagnetic microwave absorber. Adv. Funct. Mater. 33, 2300374 (2023). https://doi.org/10.1002/adfm.202300374
M. He, J. Hu, H. Yan, X. Zhong, Y. Zhang et al., Shape anisotropic chain-like CoNi/polydimethylsiloxane composite films with excellent low-frequency microwave absorption and high thermal conductivity. Adv. Funct. Mater. (2024). https://doi.org/10.1002/adfm.202316691
K. Zhang, Y. Liu, Y. Liu, Y. Yan, G. Ma et al., Tracking regulatory mechanism of trace Fe on graphene electromagnetic wave absorption. Nano-Micro Lett. 16, 66 (2024). https://doi.org/10.1007/s40820-023-01280-6
J. Cheng, Y. Jin, J. Zhao, Q. Jing, B. Gu et al., From VIB- to VB-group transition metal disulfides: structure engineering modulation for superior electromagnetic wave absorption. Nano-Micro Lett. 16, 29 (2024). https://doi.org/10.1007/s40820-023-01247-7
M. Ning, P. Jiang, W. Ding, X. Zhu, G. Tan et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229
J. Liang, F. Ye, Y. Cao, R. Mo, L. Cheng et al., Defect-engineered graphene/Si3N4 multilayer alternating core-shell nanowire membrane: a plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 32, 2200141 (2022). https://doi.org/10.1002/adfm.202200141
J. Wang, L. Liu, S. Jiao, K. Ma, J. Lv et al., Hierarchical carbon fiber@MXene@MoS2 core-sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 30(45), 2002595 (2020). https://doi.org/10.1002/adfm.202002595
X. Wu, S. Xie, H. Zhang, Q. Zhang, B. Sels et al., Metal sulfide photocatalysts for lignocellulose valorization. Adv. Mater. 33(50), 2007129 (2021). https://doi.org/10.1002/adma.202007129
Y. Dong, X. Zhu, F. Pan, Z. Xiang, X. Zhang et al., Fire-retardant and thermal insulating honeycomb-like NiS2/SnS2 nanosheets@3D porous carbon hybrids for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 426, 131272 (2021). https://doi.org/10.1016/j.cej.2021.131272
Z. Tang, L. Xu, C. Xie, L. Guo, L. Zhang et al., Synthesis of CuCo2S4@expanded graphite with crystal/amorphous heterointerface and defects for electromagnetic wave absorption. Nat. Commun. 14, 5951 (2023). https://doi.org/10.1038/s41467-023-41697-6
L. Xing, X. Li, Z. Wu, X. Yu, J. Liu et al., 3D hierarchical local heterojunction of MoS2/FeS2 for enhanced microwave absorption. Chem. Eng. J. 379, 122241 (2020). https://doi.org/10.1016/j.cej.2019.122241
Y. Zhang, K. Ruan, K. Zhou, J. Gu, Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 35(16), 2211642 (2023). https://doi.org/10.1002/adma.202211642
L. Liang, Q. Li, X. Yan, Y. Feng, Y. Wang et al., Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 15(4), 6622–6632 (2021). https://doi.org/10.1021/acsnano.0c09982
B. Li, N. Wu, Y. Yang, F. Pan, C. Wang et al., Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 33(11), 2213357 (2023). https://doi.org/10.1002/adfm.202213357
M. Li, Y. Sun, D. Feng, K. Ruan, X. Liu et al., Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 16(5), 7820–7828 (2023). https://doi.org/10.1007/s12274-023-5594-1
Y. Zhang, K. Ruan, Y. Guo, J. Gu, Recent advances of MXenes-based optical functional materials. Adv. Photonics Res. 4(12), 2300224 (2023). https://doi.org/10.1002/adpr.202300224
L. Chen, L. Yue, X. Wang, S. Wu, W. Wang et al., Synergistically accelerating adsorption-electrocataysis of sulfur species via interfacial built-in electric field of SnS2–MXene Mott–Schottky heterojunction in Li–S batteries. Small 19(15), 2206462 (2023). https://doi.org/10.1002/smll.202206462
J. Choi, Y. Kim, S. Cho, K. Park, H. Kang et al., In situ formation of multiple schottky barriers in a Ti3C2 MXene film and its application in highly sensitive gas sensors. Adv. Funct. Mater. 30(40), 2003998 (2020). https://doi.org/10.1002/adfm.202003998
X. Zhao, M. Liu, Y. Wang, Y. Xiong, P. Yang et al., Designing a built-in electric field for efficient energy electrocatalysis. ACS Nano 16(12), 19959–19979 (2022). https://doi.org/10.1021/acsnano.2c09888
S. Bai, J. Jiang, Q. Zhang, Y. Xiong, Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chem. Soc. Rev. 44(10), 2893–2939 (2015). https://doi.org/10.1039/C5CS00064E
M. Eshete, X. Li, L. Yang, X. Wang, J. Zhang et al., Charge steering in heterojunction photocatalysis: general principles, design, construction, and challenges. Small Sci. 3(3), 2200041 (2023). https://doi.org/10.1002/smsc.202200041
Y. Dong, Y. Liu, Y. Hu, K. Ma, H. Jiang et al., Boosting reaction kinetics and reversibility in Mott–Schottky VS2/MoS2 heterojunctions for enhanced lithium storage. Sci. Bull. 65(17), 1470–1478 (2020). https://doi.org/10.1016/j.scib.2020.05.007
M. Saraf, B. Chacon, S. Ippolito, R. Lord, M. Anayee et al., Enhancing charge storage of Mo2Ti2C3 MXene by partial oxidation. Adv. Funct. Mater. 34(1), 2306815 (2023). https://doi.org/10.1002/adfm.202306815
B. Anasori, Y. Xie, M. Beidaghi, J. Lu, B. Hosler et al., Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9(10), 9507–9516 (2015). https://doi.org/10.1021/acsnano.5b03591
X. Zeng, X. Jiang, Y. Ning, F. Hu, B. Fan, Construction of dual heterogeneous interface between zigzag-like Mo–MXene nanofibers and small CoNi@NC nanops for electromagnetic wave absorption. J. Adv. Ceram. 12(8), 1562–1576 (2023). https://doi.org/10.26599/JAC.2023.9220772
Y. Sun, K. Liu, X. Hong, M. Chen, J. Kim et al., Probing local strain at MX2-metal boundaries with surface plasmon-enhanced Raman scattering. Nano Lett. 14(9), 5329–5334 (2014). https://doi.org/10.1021/nl5023767
X. Wang, T. Zhu, S. Chang, Y. Lu, W. Mi et al., 3D nest-like architecture of core-shell CoFe2O4@1T/2H-MoS2 composites with tunable microwave absorption performance. ACS Appl. Mater. Interfaces 12(9), 11252–11264 (2020). https://doi.org/10.1021/acsami.9b23489
L. Huang, L. Zhao, Y. Zhang, Y. Chen, Q. Zhang et al., Self-limited on-site conversion of MoO3 nanodots into vertically aligned ultrasmall monolayer MoS2 for efficient hydrogen evolution. Adv. Energy Mater. 8(21), 1800734 (2018). https://doi.org/10.1002/aenm.201800734
J. Liu, H. Liang, B. Wei, J. Yun, L. Zhang et al., “Matryoshka Doll” heterostructures induce electromagnetic parameters fluctuation to tailor electromagnetic wave absorption. Small Struct. 4(7), 2200379 (2023). https://doi.org/10.1002/sstr.202200379
J. Liu, L. Zhang, H. Wu, Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 32(26), 2200544 (2022). https://doi.org/10.1002/adfm.202200544
X. Zeng, C. Zhao, Y. Yin, T. Nie, N. Xie et al., Construction of NiCo2O4 nanosheets-covered Ti3C2Tx MXene heterostructure for remarkable electromagnetic microwave absorption. Carbon 193, 26–34 (2022). https://doi.org/10.1016/j.carbon.2022.03.029
Y. Liu, P. Zhang, N. Sun, B. Anasori, Q. Zhu et al., Self-assembly of transition metal oxide nanostructures on MXene nanosheets for fast and stable lithium storage. Adv. Mater. 30(23), 1707334 (2018). https://doi.org/10.1002/adma.201707334
X. Jiang, Q. Wang, L. Song, H. Lu, H. Xu et al., Enhancing electromagnetic wave absorption with core-shell structured SiO2@MXene@MoS2 nanospheres. Carbon Energy (2024). https://doi.org/10.1002/cey2.502
Q. Xi, F. Xie, J. Liu, X. Zhang, J. Wang et al., In situ formation ZnIn2S4/Mo2TiC2 Schottky junction for accelerating photocatalytic hydrogen evolution kinetics: manipulation of local coordination and electronic structure. Small 19(24), 2300717 (2023). https://doi.org/10.1002/smll.202300717
F. Hu, F. Zhang, X. Wang, Y. Li, H. Wang et al., Ultrabroad band microwave absorption from hierarchical MoO3/TiO2/Mo2TiC2Tx hybrids via annealing treatment. J. Adv. Ceram. 11(9), 1466–1478 (2022). https://doi.org/10.1007/s40145-022-0624-0
J. Liu, Z. Jia, W. Zhou, X. Liu, C. Zhang et al., Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption. Chem. Eng. J. 429, 132253 (2022). https://doi.org/10.1016/j.cej.2021.132253
X. Zeng, H. Zhang, R. Yu, G. Stucky, J. Qiu, A phase and interface co-engineered MoPxSy@NiFePxSy@NPS-C hierarchical heterostructure for sustainable oxygen evolution reaction. J. Mater. Chem. A 11(26), 14272–14283 (2023). https://doi.org/10.1039/D3TA01993D
Z. Gao, Z. Ma, D. Lan, Z. Zhao, L. Zhang et al., Synergistic polarization loss of MoS2-based multiphase solid solution for electromagnetic wave absorption. Adv. Funct. Mater. 32, 2112294 (2022). https://doi.org/10.1002/adfm.202112294
T. Zeng, G. Chen, Q. Peng, D. Feng, Q. Wang, Nano Sn2S3 embedded in nitrogenous-carbon compounds for long-life and high-rate cycling sodium-ion batteries. ChemSusChem 14(11), 2383–2392 (2021). https://doi.org/10.1002/cssc.202100615
J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018
X. Zeng, C. Zhao, X. Jiang, R. Yu, R. Che, Functional tailoring of multi-dimensional pure MXene nanostructures for significantly accelerated electromagnetic wave absorption. Small 19(41), 2303393 (2023). https://doi.org/10.1002/smll.202303393
Q. Tang, Z. Zhou, P. Shen, Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X= F, OH) monolayer. J. Am. Chem. Soc. 134(40), 16909–16916 (2012). https://doi.org/10.1021/ja308463r
Z. Chen, J. Zhang, L. Ni, D. Sheng, R. Gao et al., Improving electromagnetic wave absorption property of metal borides/carbon nanocomposites by magnetic-electric balance and ion substitution tuning strategy. Carbon 221, 118901 (2024). https://doi.org/10.1016/j.carbon.2024.118901
A. Xie, D. Sheng, W. Liu, Y. Chen, S. Cheng, Enhancing electromagnetic absorption performance of Molybdate@Carbon by metal ion substitution. J. Mater. Sci. Technol. 163, 92–100 (2023). https://doi.org/10.1016/j.jmst.2023.05.004
Y. Jiao, Z. Dai, M. Feng, J. Luo, Y. Xu, Electromagnetic absorption behavior regulation in bimetallic polyphthalocyanine derived CoFe-alloy/C 0D/2D nanocomposites. Mater. Today Phys. 33, 101058 (2023). https://doi.org/10.1016/j.mtphys.2023.101058
T. Gao, R. Zhao, Y.X. Li, Z. Zhu, C. Hu et al., Sub-nanometer Fe clusters confined in carbon nanocages for boosting dielectric polarization and broadband electromagnetic wave absorption. Adv. Funct. Mater. 32(31), 2204370 (2022). https://doi.org/10.1002/adfm.202204370
A. Xie, Z. Ma, Z. Xiong, W. Li, L. Jiang et al., Conjugate ferrocene polymer derived magnetic Fe/C nanocomposites for electromagnetic absorption application. J. Mater. Sci. Technol. 175, 125–131 (2024). https://doi.org/10.1016/j.jmst.2023.08.016
K. Cole, R. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341–351 (1941). https://doi.org/10.1063/1.1750906
Z. Gao, A. Iqbal, T. Hassan, S. Hui, H. Wu et al., Tailoring built-in electric field in a self-assembled zeolitic imidazolate framework/MXene nanocomposites for microwave absorption. Adv. Mater. (2024). https://doi.org/10.1002/adma.202311411
A. Xie, R. Guo, L. Wu, W. Dong, Anion-substitution interfacial engineering to construct C@MoS2 hierarchical nanocomposites for broadband electromagnetic wave absorption. J. Colloid Interf. Sci. 651, 1–8 (2023). https://doi.org/10.1016/j.jcis.2023.07.169
Z. Li, L. Zhang, H. Wu, A regulable polyporous graphite/melamine foam for heat conduction, sound absorption and electromagnetic wave absorption. Small 20(11), 2305120 (2024). https://doi.org/10.1002/smll.202305120
C. Wei, L. Shi, M. Li, M. He, M. Li et al., Hollow engineering of sandwich NC@Co/NC@MnO2 composites toward strong wideband electromagnetic wave attenuation. J. Mater. Sci. Technol. 175, 194–203 (2024). https://doi.org/10.1016/j.jmst.2023.08.020
Y. Liu, X. Wei, X. He, J. Yao, R. Tan et al., Multifunctional shape memory composites for Joule heating, self-healing, and highly efficient microwave absorption. Adv. Funct. Mater. 33(5), 2211352 (2023). https://doi.org/10.1002/adfm.202211352
X. Liu, W. Ma, Z. Qiu, T. Yang, J. Wang et al., Manipulation of impedance matching toward 3D-printed lightweight and stiff MXene based aerogels for consecutive multiband tunable electromagnetic wave absorption. ACS Nano 17(9), 8420–8432 (2023). https://doi.org/10.1021/acsnano.3c00338
J. Wen, G. Chen, S. Hui, Z. Li, J. Yun et al., Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers. Adv. Powder Mater. 3(3), 100180 (2024). https://doi.org/10.1016/j.apmate.2024.100180
H. Liang, S. Hui, G. Chen, H. Shen, J. Yun et al., Discovery of deactivation phenomenon in NiCo2S4/NiS2 electromagnetic wave absorbent and its reactivation mechanism. Small Methods (2024). https://doi.org/10.1002/smtd.202301600
S. Hui, X. Zhou, L. Zhang, H. Wu, Constructing multiphase-induced interfacial polarization to surpass defect-induced polarization in multielement sulfide absorbers. Adv. Sci. 11(6), 2307649 (2024). https://doi.org/10.1002/advs.202307649